期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:254
The Regularized Boussinesq equation: Instability of periodic traveling waves
Article
Pava, Jaime Angulo1  Banquet, Carlos2  Silva, Jorge Drumond3  Oliveira, Filipe4,5 
[1] IME USP, Dept Math, BR-05508090 Sao Paulo, Brazil
[2] Univ Cordoba, Dept Matemat & Estadist, Monteria 76103, Colombia
[3] Inst Super Tecn, Dept Matemat, Ctr Anal Matemat Geometria & Sistemas Dinam LARSy, P-1049001 Lisbon, Portugal
[4] Univ Lisboa CMAF UL, Ctr Matemat & Aplicacoes Fundamentals, Monte De Caparica, Portugal
[5] Univ Nova Lisboa FCT UNL, Fac Ciencias & Tecnol, Monte De Caparica, Portugal
关键词: Linear instability;    Nonlinear instability;    Boussinesq equations;    Coupled Boussinesq equations;    Well-posedness;   
DOI  :  10.1016/j.jde.2013.01.034
来源: Elsevier
PDF
【 摘 要 】

In this work we study the linear instability of periodic traveling waves associated with a generalization of the Regularized Boussinesq equation. By using analytic and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so the linear instability of periodic profiles is obtained. With respect to applications of this approach, we prove the linear/nonlinear instability of cnoidal wave solutions for the modified Regularized Boussinesq equation and for a system of two coupled Boussinesq equations. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_01_034.pdf 412KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次