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In this work we study the linear instability of periodic traveling
waves associated with a generalization of the Regularized Boussi-
nesq equation. By using analytic and asymptotic perturbation the-
ory, we establish sufficient conditions for the existence of exponen-
tially growing solutions to the linearized problem and so the linear
instability of periodic profiles is obtained. With respect to appli-
cations of this approach, we prove the linear/nonlinear instability
of cnoidal wave solutions for the modified Regularized Boussinesq
equation and for a system of two coupled Boussinesq equations.
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1. Introduction

This paper is concerned with the linear instability of periodic traveling waves for the following
type of Regularized Boussinesq equation (RBou-type henceforth)
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∂2
t (1 +M)u − ∂2

x u − ∂2
x f (u) = 0, (1.1)

where u = u(x, t), x, t ∈R, is a real-valued function, M is a differential or pseudo-differential operator
in the framework of periodic functions, which is defined as a Fourier multiplier operator by

M̂g(n) = α(n)̂g(n), n ∈ Z,

and f is assumed to be a smooth nonlinear function. The symbol α of M (representing the dispersive
effects) is assumed to be a measurable, locally bounded, even function on R, satisfying the conditions

a1|n|m1 � α(n) � a2
(
1 + |n|)m2

,

for 1 � m1 � m2, |n| � k0, α(n) > b, for all n ∈ Z, ai > 0, i = 1,2. Furthermore, in the applications we
shall consider f (u) = up+1, with integer p � 1.

For M = −∂2
x and f (u) = u2 Eq. (1.1) arises in the modelling of acoustic waves on elastic rods

with circular cross-section, when transverse motion and nonlinear effects are considered. In partic-
ular, it is used to describe the wave propagation at right angles to the magnetic field and also to
approach the “bad” Boussinesq equation (see Makhankov [31]) or to study ion-sound waves (see Bo-
golubsky [15]).

The RBou equation has been studied by many authors and from many points of view. For instance,
Yang and Wang in [39] studied the local well-posedness and blow up of solutions on the spatial
interval (0,1) by the Galerkin method (see also Zhijian [40], Guowang and Shubin [23]). On the real
line Liu [30] proved the existence of local and global solutions for the Pochhammer–Chree equation,

utt − uxxtt − f (u)xx = 0, x, t ∈ R,

where f (u) satisfies f ∈ Cm(R), with m a positive integer, and f (0) = 0 (note that we obtain the
Regularized Boussinesq equation if f (u) = u + u2). The local well-posedness in Hs(R) × Hs+1(R) is
obtained for s � 1 if m � s. Moreover, the global well-posedness on the same space is attained if
F (u) := ∫ u

0 f (x)dx � 0 and there exists q > 1/2 such that | f (x)| � F (x)1/q + |x|, for all x ∈ R. Liu also
obtained a nonlinear scattering result for the Pochhammer–Chree equation, which was later improved
by Cho and Ozawa in [20]. The RBou equation has also been studied in Rn , where explicit solitary
and periodic solutions have been established (see for example [1,18,36,37]).

We want to call the attention to the generalized Regularized Boussinesq equation (gRBou), that is,
when M= −∂2

x and f (u) = 1
p+1 up+1 in (1.1). For this equation, the existence of solitary waves is well

known, with profile given by

uc(x) = α sech2/p(γ x), (1.2)

where

c2 > 1, α =
[

1

2

(
c2 − 1

)
(p + 2)(p + 1)

] 1
p

and γ = 1

2
p
[(

c2 − 1
)
/c2] 1

2 .

Pego and Weinstein [33] proved that if 1 < c2 <
3p

4+2p (and consequently p > 4) the family of solitary
waves c �→ uc is linearly exponentially unstable by the flow of the gRBou. The nonlinear stability
or instability for the solitary waves (1.2) with 1 � p � 4 remains an open problem (the situation
being the same in the periodic case). In the present work, and in the periodic case, we present a
partial answer to this problem, for p = 2 (see Section 5 below). Specifically, we show that the cnoidal
solution’s profile remains nonlinearly unstable by the flow of the modified RBou.
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We are interested in writing equation (1.1) as an equivalent system,{
vt + (Mv)t − ( f (u)

)
x − ux = 0,

ut − vx = 0.
(1.3)

For (1.3) we now wish to find solutions of the form

(
uc(x, t), vc(x, t)

)= (φc(x − ct),ψc(x − ct)
)
, (1.4)

with profiles φc,ψc : R → R being L-periodic smooth functions and c ∈ R the wave-speed. If we
substitute (1.4) in (1.3), the following pseudo-differential system is obtained after an integration{

cMψc + cψc + f (φc) + φc = Aφc ,ψc ,

cφc + ψc = Bφc ,ψc ,
(1.5)

where Aφc ,ψc and Bφc ,ψc are constants, which are considered zero in our theory.
Some symmetry considerations deserve to be mentioned, before talking about instability. Since

Eq. (1.3) is invariant under translations (if (u(x, t), v(x, t)) is a solution for (1.3), then (u(x + y, t),
v(x + y, t)) is also a solution for every y ∈ R) we obtain that the one-parameter group of unitary
operators {T (y)}y∈R , defined by T (y) f (·) = f (· + y), determines the (φc,ψc)-orbit

Ω(φc ,ψc) := {(T (y)φc, T (y)ψc
); y ∈R

}
.

Then, we say that Ω(φc ,ψc) is stable in the periodic space X = H
m2

2
per ([0, L]) × L2

per([0, L]) by the flow of
Eq. (1.3), if for all ε > 0 there is δ > 0 such that if ‖(u0, v0) − (φc,ψc)‖X < δ and (u(t), v(t)) is the
global solution of (1.3) with initial data (u(x,0), v(x,0)) = (u0(x), v0(x)), then

inf
y∈R
∥∥(u(t), v(t)

)− (T (y)φc, T (y)ψc
)∥∥

X < ε, ∀t ∈R.

Otherwise, the (φc,ψc)-orbit is said to be orbitally unstable in X .
The instability behavior would happen if the solutions ceased to exist after a finite time (blow-up

case), for a class of initial data close to (φc,ψc). This kind of behavior for models of dispersive type
is in general a very difficult task to be addressed.

Consider w(x, t) = u(x + ct, t)− φc(x) and z(x, t) = v(x + ct, t)− ψc(x) in (1.3). Then, we obtain via
the Taylor Theorem the next system{

(∂t − c∂x)(z +Mz) − ∂x
(

w + f ′(φc)w
)+ O

(∥∥(w, z)
∥∥2)= 0,

(∂t − c∂x)w − zx + O
(∥∥(w, z)

∥∥)= 0.

Therefore, the following system,{
(∂t − c∂x)(z +Mz) − ∂x

(
w + f ′(φc)w

)= 0,

(∂t − c∂x)w − zx = 0,
(1.6)

represents the linearization of (1.3) around (φc,ψc). Our objective will be to provide sufficient con-
ditions which imply that the solution (w, z) ≡ (0,0) is unstable by the linear flow of (1.6). More
exactly, we are interested in finding a growing mode solution for (1.6) of the form (eλt u(x), eλt v(x))
with Reλ > 0. Hence, for this to hold (u, v) has to satisfy the non-local differential equation
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⎧⎪⎪⎨⎪⎪⎩
v +Mv − ∂x

λ − c∂x

(
u + f ′(φc)u

)= 0,

u = ∂x

λ − c∂x
v,

(1.7)

where the expression ∂x
λ−c∂x

, with Reλ > 0, is a notation for the linear operator ∂x(λ − c∂x)
−1 defined

in L2
per([0, L]). From Eq. (1.7) it is clear that u and v have zero mean. Using the second equation

of (1.7) to replace u in the first one, we arrive at

v +Mv −
(

∂x

λ − c∂x

)2(
1 + f ′(φc)

)
v = 0. (1.8)

Next, we consider the space V of zero mean functions, more precisely

V :=
{

f ∈ L2
per

([0, L]): 〈 f 〉 = 1

L

L∫
0

f (x)dx = 0

}

and the orthogonal projection on V, Q : L2
per([0, L]) → V, given by Q u = u − 〈u〉. Define X0

m2
=

Hm2
per([0, L]) ∩ V. Then, based on Eq. (1.8) (see [29]), we consider the family of closed linear opera-

tors, for Reλ > 0, Aλ : X0
m2

→ V given by

Aλw := (M+ 1)w −
(

∂x

λ − c∂x

)2

Q
(

w + f ′(φc)w
)
. (1.9)

We note that ∂2
x (λ − c∂x)

−2 :V →V and that Aλ is also well defined in Hm2
per([0, L]). From the analyt-

icity of the resolvent associated to the operator ∂x , λ ∈ S → (λ − c∂x)
−1, for S = {z ∈ C: Re z > 0}, we

obtain that λ ∈ S → Aλ represents an analytical family of operators of type-A, namely,

(1) D(Aλ) = Hm2
per([0, L]) for all λ ∈ S,

(2) for u ∈ Hm2
per([0, L]), λ ∈ S �→ Aλu is analytic in the topology of L2

per([0, L]).

Therefore, we obtain that all discrete eigenvalues of Aλ (Reλ > 0) are stable (see Kato [28]).
In order to deduce the existence of a growing mode solution for (1.8), it is sufficient to find λ ∈ C

with Reλ > 0 such that the operator Aλ possesses a nontrivial kernel. Indeed, for u ∈ Hm2
per([0, L])∩V,

u 
= 0, such that Aλu = 0 we obtain

0 = (λ − c∂x)
2(M+ 1)u + ∂2

x

[
u + f ′(φc)u − 〈 f ′(φc)u

〉]
= (λ − c∂x)

2(M+ 1)u + ∂2
x

[
u + f ′(φc)u

]
.

In our approach we find a growing mode solution for λ > 0 via asymptotic analytic perturbation
theory. Indeed, since for

L0 = (M+ 1) − 1

c2

(
1 + f ′(φc)

)
, (1.10)

we have that

Aλ → Q L0 as λ → 0+,
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strongly in Hm2
per([0, L]) ∩ V, the usual perturbation theories do not apply and so we extend the

asymptotic perturbation arguments due to Vock and Hunziker [35] and Lin [29] (see also Hislop and
Sigal [25]) to the periodic case in order to deduce the existence of a purely growing mode. In our
analysis we need to count the number of eigenvalues of Aλ (λ small) in the left-half plane. Since
the kernel of L0 is nontrivial we need to know how the zero eigenvalue of Q L0 is perturbed, so we
deduce a moving kernel formula that allows us to decide when zero is moving to the right or left
(see Lemma 4.1 below). We also establish the stability of all discrete eigenvalues of Q L0 when they
are analytically perturbed by the operator Aλ , for λ > 0 and small enough (see Definition 3.1 and
Lemma 3.4 below).

The linearized instability result for the RBou equation (1.3) is the following:

Theorem 1.1 (Instability criterion for the RBou-type equation). Define the space X0
m2

= Hm2
per([0, L]) ∩ V and

let c �→ (φc,ψc) ∈ X0
m2

× X0
m2

be a smooth curve of periodic solutions for Eq. (1.5) with c2 > 1. Assume that

ker(Q L0) =
[

d

dx
φc

]
.

Denote by n−(Q L0) the number (counting multiplicity) of negative eigenvalues of the operator Q L0 defined
in X0

m2
. Then, there is a purely growing mode (eλt u(x), eλt v(x)) to the linearized equation (1.6), with λ > 0,

u, v ∈ X0
m2

− {(0,0)}, if one of the following conditions is true:

(i) n−(Q L0) is even and I(c) < 0,
(ii) n−(Q L0) is odd and I(c) > 0.

Here,

I(c) := − 1

‖φ′
c‖2

L2
per

1

c2

dP

dc

with P given by

P (c) = c
〈
(M+ 1)φc, φc

〉
L2

per
.

Theorem 1.1 enables us to establish a novel proof of the linear instability of cnoidal wave’s profiles
associated with the modified RBou equation (mRBou henceforth)

utt − uxxtt − uxx − (3u2ux
)

x = 0,

i.e., f (u) = u3 and M = −∂2
x in Eq. (1.1), provided c ∈ (c∗,+∞), c∗ > 1 (see Theorem 5.2 below).

In Section 6 we adapt the results due to Henry, Perez and Wreszinski [24] (see Theorem 6.1 below)
to the case of dispersive equations and we obtain that the linear instability result implies nonlinear
instability. The proof that linear instability implies nonlinear instability is obtained because the data-
solution mapping associated with the mRBou equation is at least of class C2.

In the last part of the paper, the theory of instability established for the RBou-type equation is also
used to study the linear instability of periodic traveling waves for two coupled Boussinesq equations

{
vtt − vxxtt − (v − β0 v p + w p)

xx = 0,

wtt − wxxtt − (w + pv w p−1) = 0
(1.11)
xx
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where v = v(x, t), w = w(x, t), p ∈N, p � 2, and β0 ∈R−{0}. The case p = 2 in (1.11) models weakly
nonlinear vibrations in a cubic lattice (see Christiansen, Lomdahl and Muto [19], Pego, Smereka and
Weinstein [34]), where v = v(x, t) is the longitudinal strain and w = w(x, t) is the transverse strain.
In the case p = 3 we adapt the theory of linear instability established for the RBou equation to obtain
the nonlinear instability of periodic traveling wave solutions of cnoidal type for system (1.11).

Our paper is organized as follows. In Section 2 we present notation and preliminaries. Section 3
presents the main properties of the operator Aλ and sets that all the eigenvalues of Q L0 are stable
by the perturbations Aλ , for λ small enough. Section 4 establishes the moving kernel formula and the
instability proof. In Sections 5 and 6, we provide the theories of instability of two families of traveling
wave solutions, with cnoidal profile, for the mRBou and a coupled system of Regularized Boussinesq
equations, respectively.

2. Notation and preliminaries

The L2-based Sobolev spaces of periodic functions are defined as follows (for further details see
Iorio and Iorio [27]). Let P = C∞

per denote the collection of all functions f : R → C which are C∞
and periodic with period L > 0. The collection P′ of all continuous linear functionals from P

into C is the set of periodic distributions. If Ψ ∈ P′ and ϕ ∈ P, we denote the value of Ψ at
ϕ by 〈Ψ,ϕ〉. Define the functions Θk(x) = exp(2π ikx/L), k ∈ Z, x ∈ R. The Fourier transform of
Ψ is the function Ψ̂ : Z → C defined by Ψ̂ (k) = 1

L 〈Ψ,Θk〉, for all k ∈ Z. So, if Ψ is a periodic

function with period L, we have Ψ̂ (k) = 1
L

∫ L
0 Ψ (x)e− 2kπ ix

L dx. For s ∈ R, the Sobolev space of or-

der s, denoted by Hs
per([0, L]), is the set of all f ∈ P′ such that (1 + |k|2) s

2 f̂ (k) ∈ l2(Z), with norm

‖ f ‖2
Hs

per
= L
∑∞

k=−∞(1 + |k|2)s |̂ f (k)|2. We also note that Hs
per is a Hilbert space with respect to the

inner product ( f |g)s = L
∑∞

n=−∞(1 + |k|2)s f̂ (k)̂g(k). The space H0
per will be denoted by L2

per and its

norm will be ‖ · ‖L2
per

. Of course Hs
per ⊆ L2

per , for any s � 0.

The normal elliptic integral of first type (see Byrd and Friedman [17]) is defined by

y∫
0

dt√
(1 − t2)(1 − k2t2)

=
φ∫

0

dθ√
1 − k2 sin2 θ

= F (φ,k)

where y = sin φ and k ∈ (0,1). k is called the modulus and φ the argument. When y = 1, we de-
note F (π/2,k) by K = K (k). The Jacobian elliptic functions are denoted by sn(u;k), cn(u;k) and
dn(u;k) (called snoidal, cnoidal and dnoidal, respectively), and are defined via the previous elliptic
integral. More precisely, let u(y;k) := u = F (φ,k), then y = sin φ := sn(u;k), cn(u;k) =√1 − sn2(u;k)

and dn(u;k) = √1 − k2 sn2(u;k). We have the following asymptotic formulas: sn(x;1) = tanh(x),
cn(x;1) = sech(x) and dn(x;1) = sech(x).

3. Stability of the eigenvalues of Q L0 by Aλ

In this section we show that all the discrete eigenvalues of Q L0 are stable by the family of linear
operators Aλ in (1.9), for λ positive and small enough. We begin by establishing some basic structure
of the family Aλ .

3.1. Properties of Aλ

Let us define the differential operators D = c∂x and Eλ = λ
λ−D

. Then we can rewrite the opera-

tor Aλ in (1.9) as

Aλu = (M+ 1)u − 1

c2

(
Eλ − 1

)2
Q
(
u + f ′(φc)u

)
.
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Proposition 3.1. For λ > 0, the operator Aλ converges to A0 := Q L0 strongly in V when λ → 0+ , and
converges to M+ 1 strongly in L2

per when λ → +∞.

Proof. Consider ϕ ∈V. Then for Hϕ := (1 + f ′(φc))ϕ we have

∥∥(Aλ − Q L0
)
ϕ
∥∥

L2
per

= 1

c2

∥∥[(Eλ − 1
)2 − 1

]
Q Hϕ

∥∥
L2

per
,

and

∥∥(Aλ − (M+ 1)
)
ϕ
∥∥

L2
per

= 1

c2

∥∥(Eλ − 1
)2

Q Hϕ
∥∥

L2
per

.

Thus, since for λ > 0 the operator Eλ is continuous in L2
per([0, L]) with respect to λ and satisfies

the properties ‖Eλ‖B(L2
per)

� 1, ‖Eλ − 1‖B(L2
per)

� 1 and Eλ converges to 0 strongly (uniformly) in V

as λ → 0+ and Eλ converges to I strongly in L2
per([0, L]) as λ → +∞, we immediately obtain the

proposition. �
Now, since the spectrum of T = M + 1 is discrete and Aλ − T is T -compact, we have for σess(A)

denoting the essential spectrum of the operator A, that σess(A
λ) = σess(T ) = ∅. Therefore, the spec-

trum of Aλ with domain H2
per ∩ V is also discrete. So, for σp(A) denoting the discrete spectrum of

the operator A, we obtain the following proposition.

Proposition 3.2. For any λ > 0, we have σ(Aλ) = σp(Aλ).

The next result is established for Aλ with domain Hm2
per , and in particular it gives a localization of

the spectrum of Aλ for every λ > 0.

Lemma 3.1. Let c2 > 1. There exists Λ > 0 such that for all λ > Λ, Aλ does not have eigenvalues z ∈ C

satisfying Re z � 0.

Proof. We follow the ideas established by Lin in [29]. Suppose by contradiction that there exists a
sequence λn → +∞ and {bn}n∈N ⊂ C, {un}n∈N ⊂ Hm2

per, such that Re bn � 0 and (Aλn − bn)un = 0.

Now, the inequality

∥∥Aλu − (M+ 1)u
∥∥

L2
per

� c−2
∥∥(Eλ − 1

)2
Q Hu

∥∥
L2

per
� C‖u‖L2

per

where C > 0 does not depend on λ > 0, implies for z ∈ σp(Aλ) and Aλψ = zψ (‖ψ‖ = 1) that

(
Re z − 〈ψ, (M+ 1)ψ

〉)2 + (Im z)2 + ∥∥(M+ 1)ψ
∥∥2

L2
per

− 〈ψ, (M+ 1)ψ
〉2 � C2.

Since M + 1 is a self-adjoint positive operator, we obtain from Cauchy–Schwarz inequality that all
eigenvalues of Aλ must lie in the closed subset

DC := {z ∈C: Re z � −C and |Im z| � C
}
,

σp(Aλ) ⊂ DC . Then, there exists b∞ ∈ DC such that bn → b∞, as n → +∞ and Re b∞ � 0. Denote
e(x) = [ f ′(φc(x))]2, thus we can normalize un such that ‖un‖L2

per,e
:= ∫ u2

n(x)e(x)dx = 1. Now, since

the equation (Aλn − bn)un = 0 implies (see Lemma 3.3 below)
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‖un‖
H

m1
2

per

� M,

where M does not depend on n, there exists a subsequence of {un}n∈N, that we still denote

by {un}n∈N, such that un ⇀ u∞ in H
m1

2
per , as n → +∞. On the other hand, since the embedding

H
m1

2
per ↪→ L2

per is compact we deduce un → u∞ in L2
per and un → u∞ in L2

per,e , as n → +∞. Hence
‖u∞‖L2

per,e
= 1. Next, by using Proposition 3.1 we have Aλn un − (M+ 1)un → 0 as n → +∞. So, since

Aλn un → b∞u∞ we obtain that (M + 1)un → b∞u∞ . Therefore, as M is a closed operator, we have
u∞ ∈ Hm2

per and (M + 1)u∞ = b∞u∞ . However, since Re b∞ � 0 we obtain a contradiction because
M+ 1 is a positive operator. �
Remark 3.1. Since λ ∈ S := {z ∈ C: Re z > 0} �→ Aλ is an analytic family of type-A, we obtain that
every η ∈ σp(Aλ) (η ∈ DC ) is stable, in other words, there is δ > 0 such that for λ0 ∈ B(η; δ) we
obtain that Aλ0 has ηi(λ0) eigenvalues close to η with total algebraic multiplicity equal to that of η.

Using Lemma 3.1 we obtain

Lemma 3.2. Let c2 > 1. There exists Λ > 0 such that for all λ > Λ, Aλ with domain Hm2
per([0, L]) ∩ V does

not have eigenvalues z ∈C satisfying Re z � 0.

3.2. The stability of eigenvalues for λ small enough

In this subsection we study the spectra of the family of linear operators Aλ in X0
m2

, for 0 < λ � 1,
that is, λ > 0 is small enough. In order to obtain the results we extend the arguments of asymp-
totic perturbation theory in Hislop and Sigal [25, Chapter 19] and Kato [28, Chapter VIII] to the
periodic context. We start with the following definition. Consider the self-adjoint linear operator
Q L0 : X0

m2
→V, given by

Q L0 g = L0 g + 1

c2L

〈
g, f ′(φc)

〉
.

Definition 3.1. An eigenvalue μ0 ∈ σ(Q L0) = σp(Q L0) is stable with respect to the family Aλ defined
in (1.9) if the following two conditions hold:

(i) There is δ > 0 such that the punctured region Qδ := {z ∈C; 0 < |z − μ0| < δ} satisfies

Qδ ⊂ ρ(Q L0) ∩ �b,

where ρ(Q L0) is the resolvent set of Q L0 and �b is the region of boundedness for the fam-
ily Aλ , defined by

�b := {z ∈ C; ∥∥Rλ(z)
∥∥

B(V)
� M, ∀0 < λ � 1

}
.

Here M = M(z) > 0 does not depend on λ and Rλ(z) = (Aλ − z)−1 : V→ X0
m2

.
(ii) Let Γ be a simple closed curve about μ0 such that Γ ⊂ Qδ ⊂ ρ(Q L0) ∩ ρ(Aλ), for all λ small,

and define the associated Riesz projector for Aλ

Pλ = − 1

2π i

∫
Rλ(z)dz.
Γ
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Then,

lim
λ→0+ ‖Pλ − Pμ0‖B(V) = 0,

where Pμ0 is the Riesz projector for Q L0 and μ0.

Remark 3.2. It follows from Definition 3.1 that, for all 0 < λ � 1, the operators Aλ have discrete
spectra inside the domain determined by Γ with total algebraic multiplicity equal to that of μ0,
because dim(Im Pλ) = dim(Im Pμ0) for λ small. In order to simplify the notation, we write dim(Pλ)

to refer dim(Im Pλ).

The next lemma is a periodic version of Lemma 2.8 in Lin [29] (see also [9]) and because of this,
we omit its proof.

Lemma 3.3. Let c2 > 1. For all λ > 0 small enough, consider u ∈ Hm2
per([0, L]) satisfying the equation

(Aλ − z)u = v, where z ∈ C with Re z � 1
2 (1 − 1

c2 ) and v ∈ L2
per([0, L]). Then, we have the estimative

‖u‖
H

m1
2

per

� M
(‖u‖L2

per,e
+ ‖v‖L2

per

)
,

for some constant M > 0 which does not depend on λ > 0.

The following result gives us sufficient conditions for determining when a complex number be-
longs to the region of boundedness for the family {Aλ}.

Lemma 3.4. Let c2 > 1. For z ∈ C with Re z � 1
2 (1 − 1

c2 ), we have z ∈ �b if and only if z ∈ ρ(Q L0).

Proof. Let z ∈ �b . Then for all u ∈ C∞
per([0, L]) ∩V we have

∥∥(Aλ − z
)
u
∥∥

L2
per

� ε‖u‖L2
per

> 0, (3.1)

for all 0 < λ � 1 and ε > 0 does not depend on λ. From Proposition 3.1 and (3.1) we obtain, making
λ → 0+ , that

∥∥(Q L0 − z)u
∥∥

L2
per

� ε‖u‖L2
per

.

Since Q L0 is self-adjoint it follows that z ∈ ρ(Q L0).
Next, we suppose that z ∈ ρ(Q L0) but z /∈ �b . Then, we guarantee the existence of a sequence

{uλ} ⊂ C∞
per([0, L]) ∩V, with ‖uλ‖L2

per
= 1 such that

∥∥(Aλ − z
)
uλ

∥∥
L2

per
→ 0, as λ → 0+.

Denote by vλ = (Aλ − z)uλ . From Lemma 3.3 we thus have, for λ small,

‖uλ‖
H

m1
2

� M
(‖uλ‖L2

per,e
+ ‖vλ‖L2

per

)
� K .
per
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Hence, from the compact embedding H
m1

2
per ↪→ L2

per , we have (modulo a subsequence) that uλ ⇀ u

in H
m1

2
per and uλ → u in V as λ → 0+ . Then ‖u‖L2

per
= 1. Next, for any v ∈ D((Aλ)∗) = D(Q L0) we

conclude

0 = lim
λ→0+

〈
v,
(
Aλ − z

)
uλ

〉
L2

per
= lim

λ→0+
〈((

Aλ
)∗ − z̄

)
v, uλ

〉
L2

per
= 〈(Q L0 − z̄)v, u

〉
L2

per
.

Therefore, u ∈ D(Q L0) and (Q L0 − z)u = 0. Since z ∈ ρ(Q L0), we conclude that u = 0. This last fact
yields a contradiction because ‖u‖L2

per
= 1. The proof of the theorem is now complete. �

Using Lemma 3.4 we obtain the following main result.

Theorem 3.1. Let Aλ be the linear operator defined in (1.9). Suppose that μ0 ∈ σ(Q L0) (therefore μ0 is a
discrete eigenvalue). Then μ0 is stable in the sense of Definition 3.1.

Proof. We only give a sketch of the proof (see [9]). Let μ0 ∈ σ(Q L0) and δ > 0 such that Qδ =
{z ∈ C: 0 < |z − μ0| < δ} ⊂ ρ(Q L0). From Lemma 3.4, we see that Qδ ⊂ �b . Then for z ∈ Qδ∥∥Rλ(z)

∥∥
B(V)

� M, for 0 < λ � 1. (3.2)

Therefore since Aλu → Q L0u when λ → 0+ and ρ(Q L0) ∩ �b 
= ∅, from Kato [28] we have that for
all z ∈ Qδ and u ∈ C∞

per([0, L]) ∩ V, limλ→0+ Rλ(z)u = R0(z)u. Then, the strong resolvent convergence
Rλ(z) → R0(z) is uniform on the circle Γ = {z: |z − μ0| = r < δ}. Hence, since limλ→0+ Pλu = Pμ0 u
and limλ→0+ P∗

λu = Pμ0 u, for u ∈ C∞
per([0, L]) ∩ V, we have dim(Pλ) � dim(Pμ0 ) (see Lemma 1.23 in

Kato [28, p. 438]). Next, from Lemma 1.24 in Kato [28] the condition

dim(Pλ) � dim(Pμ0), 0 < λ � 1, (3.3)

is sufficient to establish the condition (ii) in Definition 3.1. Thus, let us suppose that (3.3) does not oc-
cur. Then, since Pμ0 is an orthogonal projection, we can find a sequence uλ ∈V, ‖uλ‖L2

per
= 1 such that

Pλuλ = uλ and Pμ0 uλ = 0. Hence, there is a subsequence, still denoted by {uλ}, such that uλ ⇀ u0

in L2
per . Therefore, u0 = 0.

On the other hand, for z ∈ Qδ − Γ we have from the first resolvent identity that

(
Aλ − z

)
Pλuλ = − 1

2π i

∫
Γ

[
uλ − (z − η)Rλ(η)uλ

]
dη.

Therefore, from (3.2) and the compactness of Γ , we obtain for 0 < λ � 1 that,∥∥(Aλ − z
)

Pλuλ

∥∥
L2

per
� M0

[
1 + sup

η∈Γ

|z − η|
]
.

Hence, ∥∥Aλuλ

∥∥
L2

per
�
∥∥(Aλ − z

)
Pλuλ

∥∥
L2

per
+ ‖zPλuλ‖L2

per
� M, (3.4)

where M > 0 does not depend on λ > 0. Inequality (3.4) implies that uλ is bounded in Hm2
per . So,

we obtain (modulo a subsequence) that there is u ∈ L2
per such that uλ → u in L2

per , as λ → 0+, with

‖u‖L2
per

= 1. Since uλ converges weakly to zero in L2
per we obtain a contradiction from the uniqueness

of the weak limit. This finishes the proof of the theorem. �



4004 J.A. Pava et al. / J. Differential Equations 254 (2013) 3994–4023
4. The moving kernel formula and the instability proof

In this section we study the perturbation of the eigenvalue μ = 0 associated with the linear opera-
tor Q L0 with respect to the operator Aλ for small λ > 0. For this purpose we derive a moving kernel
formula in order to determine an instability criterion. Let us suppose that ker(Q L0) = ker(L0) =
[ d

dx φc]. Then, since dim P0 = 1 and from Theorem 3.1 one has dim Pλ = 1 for all 0 < λ � 1. We note
that since the eigenvalues of Aλ appear in conjugate pairs, we have that there is only one real eigen-
value bλ of Aλ inside B(0; δ). The idea of the following result is to determine the sign of bλ , for λ

small, in other words, we want to know when the zero eigenvalue is moving to the left or to the
right of the real axis.

Lemma 4.1. Let c2 > 1 and assume that ker(Q L0) = [ d
dx φc]. For λ > 0 small enough, let bλ ∈ R be the only

eigenvalue of Aλ near the origin. Then,

lim
λ→0+

bλ

λ2
= − 1

c2

1

‖φ′
c‖2

L2
per

dP

dc
(4.1)

with P (c) = c〈(M+ 1)φc, φc〉L2
per

.

Proof. From Theorem 3.1 there exists uλ ∈ Hm2
per([0, L]) ∩ V such that (Aλ − bλ)uλ = 0, bλ ∈ R and

limλ→0+ bλ = 0. We set ‖uλ‖L2
per,e

= 1. So, from Lemma 3.3 we have that ‖uλ‖
H

m1
2

per

� C , for some

constant C > 0 which does not depend on λ > 0. Then, modulo a subsequence, we have that uλ ⇀ u0

in H
m1

2
per ([0, L]), as λ → 0+, and,

uλ → u0 in V, as λ → 0+. (4.2)

Hence, since A0u0 = Q L0u0 and ker(Q L0) = [φ′
c], we have u0 = c0φ

′
c with c0 
= 0. We can as-

sume c0 = 1 by normalizing the sequence. Moreover, from the equality (Aλ − bλ)(uλ − u0) =
bλu0 + (A0 −Aλ)u0, we obtain from Lemma 3.3, Proposition 3.1 and (4.2) that uλ → u0 in H

m1
2

per ([0, L])
as λ → 0+ .

Next, we show that limλ→0+ bλ

λ
= 0. Indeed, since (Aλ − bλ)uλ = 0 we obtain

bλ

λ
uλ = 1

λ
Aλuλ = 1

λ
A0uλ + Aλ −A0

λ
uλ.

Then, A0φ′
c = 0 implies that bλ

λ
〈uλ,φ

′
c〉 = 〈Aλ−A0

λ
uλ,φ

′
c〉. Using the arguments in Proposition 3.1 and

from the formula 〈
Aλ −A0

λ
uλ,φ

′
c

〉
= 1

c2

〈
∂x(2c∂x − λ)

(λ − c∂x)2
Q Huλ,φc

〉
,

we conclude that

lim
λ→0+

bλ

λ
= 2

c3‖φ′‖2

〈
Q
[
1 + f ′(φc)

]
φ′

c, φc
〉= 2

c3‖φ′‖2

〈[
1 + f ′(φc)

]
φ′

c, φc
〉= 0. (4.3)

The following step is to compute the limλ→0+ bλ

λ2 . We write uλ = cλφ
′
c + λvλ , with cλ = 〈uλ,φ′

c〉
‖φ′

c‖2 .

Then 〈vλ,φ
′
c〉 = 0 and cλ → 1 as λ → 0+ . Next, we obtain the bound,
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‖vλ‖
H

m2
2

per

� C, (4.4)

where C > 0 does not depend on λ > 0. Indeed, first note that

Aλvλ = bλ

λ
uλ − cλ

Aλφ′
c

λ
= bλ

λ
uλ − cλ

(
Aλ −A0

λ

)
φ′

c. (4.5)

So, by denoting wλ := (A
λ−A0

λ
)φ′

c , we get that

wλ = − 1

c2

(2c∂x − λ)∂x

(λ − c∂x)2
Q
[
φc + f (φc)

]
(4.6)

and therefore ‖wλ‖L2
per

� C , for some C > 0 which does not depend on λ > 0. Since 〈φc〉 = 0 Eq. (1.5)

implies that 〈φc + f (φc)〉 = 0 and so from (4.6) we have for λ → 0+ ,

ωλ → − 1

c2

2

c

(
φc + f (φc)

)= −2

c
(M+ 1)φc. (4.7)

Therefore, if we combine (4.3), (4.7) and Lemma 3.3 we get the desired result in (4.4). Thus vλ ⇀ v0

in H
m2

2
per ([0, L]) and vλ → v0 in V, as λ → 0+ . From (4.5) and (4.7) we obtain the equality Q L0 v0 =

2
c (M+ 1)φc . Now, from (1.5) we have

L0

(
d

dc
φc

)
= −2

c
(M+ 1)φc,

that is, Q L0(v0 + d
dc φc) = 0. From ker(Q L0) = [φ′

c], there is θ ∈ R such that v0 + d
dc φc = θφ′

c . Next,
defining cλ := cλ + λθ and vλ := vλ − θφ′

c we obtain

uλ = cλφ
′
c + λvλ.

From the limit vλ → v0 in L2
per,e([0, L]) and the fact that

(
Aλ − bλ

)
(vλ − v0) = bλ

λ
uλ − cλωλ −Aλv0 − bλvλ + bλv0 → 0,

in L2
per([0, L]), as λ → 0+, we obtain from Lemma 3.3 that ‖vλ − v0‖

H
m1

2
per

→ 0, as λ → 0+. Then,

vλ → v0 − θφ′
c = − d

dc φc , as λ → 0+.

Now, for Θλ = λ−1(Aλ − A0) we have that bλ

λ2 uλ = 1
λ
Θλuλ + 1

λ2 Q L0uλ = cλ
1
λ
Θλφ

′
c + Θλvλ +

1
λ2 Q L0uλ. Hence, we obtain

J(λ) := λ−2〈bλuλ,φ
′
c

〉
L2

per
= λ−2〈Q L0uλ,φ

′
c

〉
L2

per
+ λ−1cλ

〈
Θλφ

′
c, φ

′
c

〉
L2

per
+ 〈Θλvλ,φ

′
c

〉
L2

per
. (4.8)

We now need to handle with the last two terms in (4.8) for 0 < λ � 1 small enough. In fact, from
Proposition 3.1 we obtain, when λ → 0+ ,
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〈
Θλvλ,ϕ

′
c

〉
L2

per
= c−2

〈
2c∂2

x − λ∂x

(λ − c∂x)2
Q
(
1 + f ′(φc)

)
vλ,φc

〉
L2

per

→ 2

c3

〈
Q
[
1 + f ′(φc)

](− d

dc
φc

)
, φc

〉
L2

per

= − 2

c3

〈[
1 + f ′(φc)

] d

dc
φc, φc

〉
L2

per

,

and from (1.5),

λ−1〈Θλφ
′
c, φ

′
c

〉
L2

per
= −c−2

〈[
2c2∂2

x

λ(λ − c∂x)
− c2∂2

x

(λ − c∂x)2

]
(M+ 1)φc, φc

〉
L2

per

= − 2

c2

〈(
Eλ − 1

)
(M+ 1)φc, φc

〉
L2

per
+ 2

c2λ

〈
c∂x(M+ 1)φc, φc

〉
L2

per

+ 1

c2

〈(
Eλ − 1

)2
(M+ 1)φc, φc

〉
L2

per

→ 3

c2

〈
(M+ 1)φc, φc

〉
L2

per
,

where we have used that Eλ → 0 and 〈c∂x(M+ 1)φc, φc〉L2
per

= 0. Then, from the equality

(
1 + f ′(φc)

) d

dc
φc = c2(M+ 1)

d

dc
φc + 2c(M+ 1)φc

we obtain from (4.8),

lim
λ→0+ J(λ) = −2

c

〈
(M+ 1)

d

dc
φc, φc

〉
L2

per

− 1

c2

〈
(M+ 1)φc, φc

〉
L2

per
.

Thus we finally conclude that

lim
λ→0+

bλ

λ2
= lim

λ→0+
J(λ)

〈uλ,φ
′
c〉L2

per

= − 1

c2

1

‖φ′
c‖2

L2
per

dP

dc
. �

Next we give a sufficient condition to have the relation ker(Q L0) = ker(L0) = [ d
dx φc].

Lemma 4.2. Consider the operator L0 : Hm2
per → L2

per defined in (1.10) and suppose ker(L0) = [ d
dx φc]. Then the

operator Q L0 : X0
m2

→V satisfies ker(Q L0) = ker(L0) provided that for all g ∈L−1
0 (1) we have 〈g〉 
= 0.

Proof. Let ψ ∈ X0
m2

such that Q L0ψ = 0. Then L0ψ = r, r ∈R. Suppose r 
= 0, then 1
r ψ ∈ L−1

0 (1) but

〈 1
r ψ〉 = 0. Therefore r = 0 and so ψ = θ d

dx φc . �
The proof of Theorem 1.1 follows the ideas of Lin [29]. We present it here just for the sake of

completeness.

Instability criterion for the RBou-type equation. We sketch the proof assuming (ii) since the ar-
guments can be mimicked if we suppose (i). Assume that n−(Q L0) is odd and I(c) > 0. Consider
k−

1 ,k−
2 , . . . ,k−

l , with l � n−(Q L0), all the distinct negative eigenvalues of Q L0. Since the eigen-
values k−

i , i = 1,2, . . . , l are isolated we can choose a δ1 > 0 such that the l open disks Bδ1 (k
−
i )
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are disjoint and still lie in the left-half plane (Re z < 0). Using Theorem 3.1, there exists λ1 > 0
and δ > 0 small enough, δ < δ1, such that for 0 < λ < λ1, Aλ has n−(Q L0) eigenvalues (counting
multiplicity) in

⋃l
i=1 Bδ(k

−
i ). Since I(c) > 0, we see from Lemma 4.1 that the zero eigenvalue of

A0 = Q L0 is perturbed to a positive eigenvalue 0 < bλ < δ of Aλ for small λ0. Let us consider the
region D0

C := {z ∈ C: −2C < Re z < 0 and |Im z| < 2C}, where C > 0 is the same constant which ap-
pears in Lemma 3.1. If we repeat the same arguments as in Lemma 3.1, we get that Aλ has exactly
n−(Q L0) + 1 eigenvalues (counting multiplicity) in D0

C := {z ∈ C: −2C < Re z < 2δ and |Im z| < 2C}.
Then, all eigenvalues of Aλ with real part no greater than 2δ lie in

⋃l
i=1 Bδ(k

−
i ) ∪ Bδ(0). Thus for

small λ, Aλ has exactly n−(Q L0) eigenvalues in D0
C .

Now, we assume that the conclusion of the theorem does not occur. Then, ker(Aλ) = {0} for any
λ > 0. Let nD0

C
(λ) be the number of eigenvalues (with multiplicity) of Aλ in D0

C . Since the spectrum of

Aλ is discrete and D0
C is compact, we conclude that nD0

C
(λ) is always a finite integer for every λ > 0.

Moreover, for λ > 0 small enough nD0
C
(λ) = n−(Q L0) is odd and there is Λ > 0 such that for λ > Λ

we conclude nD0
C
(λ) = 0. Define now the two non-empty sets Sodd = {λ > 0; nD0

C
(λ) is odd}, and

Seven = {λ > 0; nD0
C
(λ) is even}. Because the complex eigenvalues of Aλ appear in conjugate pairs,

the number of pure complex eigenvalues is even (since ker(Aλ) = {0}) and due to the analyticity of
the mapping λ ∈ (0,+∞) → Aλ (see p. 4 above) we can conclude that both Sodd and Seven are open
disjoint subsets such that (0,+∞) = Sodd ∪ Seven, which is a contradiction.

So, there exists λ > 0 and 0 
= u ∈ X0
m2

such that Aλu = 0 and therefore eλt u(x) is a purely growing
mode solution to (1.8). With this solution at hand, it is easy to obtain a solution for (1.7) of the form
(eλt u(x), eλt v(x)). This finishes the proof of Theorem 1.1. �
5. Linear instability for the mRBou equation

In this section we study the instability of a family of periodic traveling wave solutions for the
mRBou equation associated to the equation

utt − uxxtt − uxx − (3u2ux
)

x = 0.

For studying the linear instability we apply the results established in the last sections.
The mBou equation is equivalent to the system

{
vt − vxxt − ux − 3u2ux = 0,

ut − vx = 0.
(5.1)

So, suppose that (u, v), with u(x, t) = φc(x − ct) and v(x, t) = ψ(x − ct), is a solution of (5.1). Then
(φc,ψc) satisfy

{
cψc − cψ ′′

c + φc + φ3
c = 0,

cφc + ψc = 0,
(5.2)

where we considered all the constants of integration equal to zero. Using the last system we have
that the profile φc satisfies

c2φ′′
c − (c2 − 1

)
φc + φ3

c = 0. (5.3)

In order to obtain the existence results of periodic waves solutions for (5.3), we will apply the phase
portrait analytical technique. Eq. (5.3) is equivalent to the Hamiltonian system
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dφ

dx
= y,

dy

dx
= c2 − 1

c2
φ − 1

c2
φ3, (5.4)

with the Hamiltonian H(φ, y) = y2

2 − c2−1
2c2 φ2 + 1

4c2 φ4 = h, where h is an integral constant. For

c2 − 1 > 0, the system (5.4) has three equilibrium points. Denote them by P0(0,0), P1(
√

c2 − 1,0)

and P2(−
√

c2 − 1,0), respectively. By the qualitative theory of ordinary differential equations, we
have that P0(0,0) is a saddle point and P1(

√
c2 − 1,0) and P2(−

√
c2 − 1,0) are two centers. For a

fixed h ∈R, the curve

Γh = {(φ, y) ∈R×R: H(φ, y) = h
}

is called a level curve with the energy level h. Each orbit of Eq. (5.4) is a branch of certain energy
curve. Next we investigate the relation between the bounded orbit of (5.4) and the energy level h.
For Uh(φ) = 2c2h + (c2 − 1)φ2 − 1

2 φ4, we have that the three extreme points are: φ0 = 0 and φ± =
±√

c2 − 1. Let hc = H(
√

c2 − 1,0) = − (c2−1)2

4c2 . Then for each given h we have:

(1) If hc < h < 0, then Uh(φ) = 0 has four different real roots. Denote them by ±φ1,±φ2 with 0 <

φ2 < φ1;
(2) If h = 0, then Uh(φ) = 0 has a zero root and two different nonzero real roots which are denoted

by ±φ3 with φ3 > 0;
(3) If h > 0, then Uh(φ) = 0 has two different real roots which are denoted by ±φ4 with φ4 > 0.

Now, since the energy curves Γh are equivalent to the curves defined by y2 = 1
c2 Uh(φ) (the quadrature

form associated to (5.3)), from the above arguments we obtain the following results:

(1) System (5.4) does not have any bounded orbit with energy level h satisfying h � hc ;
(2) System (5.4) has two families of periodic orbits Γh = {(φ, y) ∈ R × R: H(φ, y) = h, hc < h < 0}

which lie on the inside of the different bounded regions determined by two homoclinic orbits.
The periodic orbits on the right-hand side of the plane (φ, y) correspond to the so-called dnoidal
waves and they are positive solutions of (5.3) (see Angulo [2]);

(3) System (5.4) has two homoclinic orbits with energy level 0. The homoclinic orbit on the right-
hand side of the plane (φ, y) corresponds to the positive solitary wave solutions of (5.3) (see
(5.6) below);

(4) System (5.4) has a family of periodic orbits Γh = {(φ, y) ∈ R × R: H(φ, y) = h, h > 0} which lie
on the outside of the bounded region determined by two homoclinic orbits. These periodic orbits
in the plane (φ, y) correspond to the so-called cnoidal waves and they are periodic sign-changing
solutions for (5.3).

The two Jacobian elliptic profile solutions of (5.3), the dnoidal and cnoidal solutions are of im-
portant interest in applications. In this work we only establish a result of instability for the cnoidal
solutions. The stability or instability for the dnoidal waves remains an open problem. Next we obtain
the specific profiles of the cnoidal waves.

5.1. Linear instability of cnoidal waves for the mRBou equation

Here we apply the results established in Section 4 to conclude the linear instability of cnoidal
waves for the mRBou equation. From the above arguments, we have from (5.3) the differential equa-
tion in quadrature form,

[
φ′

c

]2 = 1

2c2

[−φ4
c + 2

(
c2 − 1

)
φ2

c + 4hφc

]
,
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where hφc is a nonzero integration constant. For c2 − 1 > 0 and hφc > 0, the polynomial Q (t) =
−t4 + 2(c2 − 1)t2 + 4hφc has two symmetric real roots, −b < 0 < b, and a pure imaginary root ia. The
periodic solutions arising in this case have the cnoidal’s profile (see Angulo [2])

φc(x) = b cn

(
β

c
x;k

)
, (5.5)

which is a periodic sign-changing solution for (5.3). Here, we have

k2 = b2

a2 + b2
, b2 − a2 = 2

(
c2 − 1

)
and β =

√
a2 + b2

2
.

We note that 4hφc = b2a2 and for c2 > 1 we get that b2 > 2(c2 − 1). Since k2 = b2

j(b,c) for j(b, c) =
2b2 − 2(c2 − 1), we must have k2 ∈ ( 1

2 ,1). Next, since the cnoidal has real fundamental period equal
to 4K we obtain that the fundamental period for φc can be regarded as a function of b,

Tφc (b) = 4
√

2c√
j(b, c)

K
(
k(b)
)
.

If a → 0 then hφc → 0 and so from the above arguments we get the corresponding homoclinic orbit
in the (φ, y)-phase plane. In fact, in this case k → 1− and Tφc → +∞ and so the cnoidal wave loses
its periodicity and we obtain the solitary wave solution for (5.3) in the form

φs(x) =
√

2
(
c2 − 1

)
sech

(√
c2 − 1

c
x

)
. (5.6)

Next, applying a similar argument as in Theorem 2.3 in Angulo [2] we can deduce, from the
Implicit Function Theorem, the following result.

Theorem 5.1. Let L > 0 be fixed and k2 ∈ ( 1
2 ,1), satisfying L2 > 16K 2(k)(2k2 − 1). Then,

(i) For every c > 1 there is a unique b = b(c) ∈ (
√

2(c2 − 1),+∞) such that the map c ∈ (1,+∞) �→ b(c)

is a strictly increasing smooth function and L = 4
√

2c√
j(b(c),c)

K (k). The modulus k = k(c) is given by k2(c) =
b2(c)

j(b(c),c) and dk
dc > 0.

(ii) For every c > 1 and h(c) ≡ 1
2c2 j(b(c), c), the wave

(
φc(x),ψc(x)

)= (b cn
(√

h(c) · x;k
)
,−cb cn

(√
h(c) · x;k

))
,

has fundamental period L and satisfies Eq. (5.2). Moreover, the mapping c ∈ (1,+∞) �→ (φc,ψc) ∈
Hn

per([0, L]) × Hn
per([0, L]) is a smooth function for all n ∈N.

Next, for L0 defined in (1.10) with f (u) = u3 we consider the eigenvalue problem in H2
per([0, L]),

{
L0ψ = ηψ,

′ ′ (5.7)

ψ(0) = ψ(L), ψ (0) = ψ (L),
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which immediately implies the existence of a countable set of eigenvalues {ηi}i�0. From (5.5) and the

transformation Φ(x) = ψ(
√

cx/β) we obtain the eigenvalue problem

LΦ := −Φ ′′ + 6k2 sn2(x;k)Φ = θΦ, Φ(0) = Φ
(
4K (k)

)
, Φ ′(0) = Φ ′(4K (k)

)
. (5.8)

Here θ will be an eigenvalue satisfying

θ = 1

β2

[
3b2 − (c2 − 1

)+ c2η
]
. (5.9)

Now, it is known that for (5.8) the set of eigenvalues {θi}i�0 has the distribution

θ0 < θ1 < θ2 < θ3 < θ4 < θ5 � θ6 < · · · ,

this means that the first five eigenvalues are simple and that all other eigenvalues have multiplicity
two (see Magnus and Winkler [32]). Since the exact value of these five eigenvalues, as well as their
associated eigenfunctions, will be useful for all subsequent calculations, we have the following (see
Ince [26]).

θ0 =2
[
1 + k2 − r(k)

]; Φ0(x)=1 − (1 + k2 − r(k)
)

sn2(x),

θ1 =1 + k2; Φ1(x)= ∂x sn(x) = cn(x)dn(x),

θ2 =1 + 4k2; Φ2(x)= ∂x cn(x) = − sn(x)dn(x),

θ3 =4 + k2; Φ3(x)= ∂x dn(x) = −k2 sn(x) cn(x),

θ4 =2
[
1 + k2 + r(k)

]; Φ4(x)=1 − (1 + k2 + r(k)
)

sn2(x), (5.10)

where r(k) = √
1 − k2 + k4. Moreover, the following basic computation shows that for j 
= 0 and j 
= 4

we have that the associated eigenfunction Φ j has zero mean. Indeed, LΦ j = θ jΦ j implies

θ j〈Φ j,1〉 = 6
〈
k2 sn2,Φ j

〉= 6〈Φ j,Φ4〉 + 2
[
1 + k2 − r(k)

]〈Φ j,1〉.

Since θ j > θ0 we obtain 〈Φ j,1〉 = 0.

Now, using the same steps as in the proof of Theorem 2.3 in Angulo [2] we obtain that n−(L0) = 2
and ker(L0) = [ d

dx φc] (from (5.9) the eigenvalues θ0, θ1 and θ2 determine η0, η1 and η2 = 0, respec-

tively. Moreover, η0 < η1 < η2 = 0). Furthermore, since 〈Φ1,1〉 = ∫ 4K (k)

0 ∂x sn(x;k)dx = 0 we conclude
that the eigenvalue η1 belongs to the negative spectrum of Q L0, so we have that 1 � n−(Q L0) � 2.

Next, we obtain the sign of I(c) given in (4.1). From Theorem 5.1 we get

dP (c)

dc
=

L∫
0

(
φ′2

c + φ2
c

)
dx + 4c

d

dc

{
b2

α

K∫
0

[
cn2(x;k) + α2 sn2(x;k)dn2(x;k)

]
dx

}
, (5.11)

with α = 4K
L . Moreover, for all L > 0 we can write b2 = 32c2k2 K 2(k)

L2 and the wave speed c > 1 by the
expression

c2 = L2

L2 − 16K 2(k)(2k2 − 1)
, k2 ∈ (1/2,1).
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Now, from Byrd and Friedman [17], we have

K∫
0

cn2(x;k)dx = 1

k2

[
E(k) − (1 − k2)K (k)

] := f1(k),

with E = E(k) the complete elliptic integral of second kind, and

α2

K∫
0

sn2(x;k)dn2(x;k)dx = 16K (k)2

3k2L2

[(
2k2 − 1

)
E(k) + (1 − k2)K (k)

] := f2(k).

Since dk
dc > 0 implies that c �→ c2k2 K (k) is a strictly increasing function and k �→ f i(k) are positive

strictly increasing functions in (
√

2
2 ,1), we have from (5.11) that dP (c)

dc > 0 and thus I(c) < 0.
Next, we show that n−(Q L0) = 2 for a specific range of the elliptic modulus k. Let {ψi}i�0 be the

complete orthonormal system of eigenfunctions associated with the periodic problem (5.7). Then, by
considering ψ ∈ D(Q L0) such that Q L0ψ = λψ we obtain the following three relations:

ψ =
∞∑

i=0

〈ψ,ψi〉ψi, Q L0ψ =
∞∑

i=0

ηi〈ψ,ψi〉ψi + 3

c

〈
φ2

c ψ
〉= λψ,

and

(λ − ηi)〈ψ,ψi〉 = 3

c

〈
φ2

c ψ
〉 L∫

0

ψi dx. (5.12)

Now, we obtain immediately from (5.12) that if 〈ψi〉 = 0 then ηi ∈ σ(Q L0). So, if λ 
= ηi we obtain
from (5.12)

ψ = 3L

c

〈
φ2

c ψ
〉 ∞∑

i=0

〈ψi〉
λ − ηi

ψi, (5.13)

where the sum in (5.13) is taken over those eigenfunctions ψi /∈V. From the analysis above we know
that for i = 0 and i = 4,

ψi(x) =
√

4K

L

1

‖Φi‖L2
per([0,4K ])

Φi(βx/
√

c )

satisfies 〈ψi〉 
= 0. Therefore, since 3
c 〈φ2

c ψ〉 
= 0 and 〈ψ〉 = 0 we obtain from (5.13) that λ must be a
zero of the meromorphic function

J (λ) = 〈ψ0〉2

λ − η0
+ 〈ψ4〉2

λ − η4
. (5.14)

We note that J is a two variable function depending on λ and k ∈ (0,1). Moreover, since Q L0 is
self-adjoint we are interested in the zeros of the function J (λ). So, since J ′(λ) < 0 for λ /∈ {η0, η4},
we see that every (real) zero of J must be simple and we guarantee the existence of a unique zero
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λ∗ ∈ (η0, η4) (this last fact comes from (5.9) and (5.10) since in this case we have η0 < 0 < η4). Next,
we show that there is a unique k∗ such that J (0) < 0 for k ∈ (k∗,1) and J (0) � 0 for k ∈ (0,k∗].
Indeed, from (5.9) and (5.10) the exactly values of η0 and η4 are

L2

16K 2
η0 = 1 − 2k2 − 2r(k), and

L2

16K 2
η4 = 1 − 2k2 + 2r(k). (5.15)

Using the identities for k ∈ (0,1),

2K (k)∫
0

k2 sn2(x;k)dx = 2
(

K (k) − E(k)
)
,

2K (k)∫
0

k4 sn4(x;k)dx = 2

3

((
2 + k2)K (k) − 2

(
1 + k2)E(k)

)
(5.16)

we obtain for j = 0 and j = 4 the following,

4K (k)∫
0

Φ j(x)dx = 1

k2

(
4k2 K (k) − 4a j

(
K (k) − E(k)

))≡ 1

k2
J j(k),

4K (k)∫
0

Φ2
j (x)dx = 4K (k) − 8a j

k2

(
K (k) − E(k)

)+ 4a2
j

3k4

((
2 + k2)K (k) − 2

(
1 + k2)E(k)

)
, (5.17)

where a j = 1 + k2 ± r(k), with sign “−” for j = 0 and sign “+” for j = 4. Therefore, we conclude that
J (0) < 0 if and only if the function

F (k) = 1

1 − 2k2 − 2r(k)

J 2
0(k)

‖Φ0‖2
L2

per([0,4K ])
+ 1

1 − 2k2 + 2r(k)

J 2
4(k)

‖Φ4‖2
L2

per([0,4K ])
,

is positive. Doing the necessary calculations we found the value k∗ ≈ 0.909. Thus, if k ∈ (k∗,1)

we see that F (k) > 0, and for k ∈ (0,k∗] we deduce F (k) � 0. Therefore, for k ∈ (k∗,1) we obtain

n−(Q L0) = 2, and for k ∈ (
√

2
2 ,k∗), n−(Q L0) = 1.

Next we see that ker(Q L0) = [ d
dx φc]. By Lemma 4.2 it is sufficient to show that if L0 g = 1 then

〈g〉 
= 0. Suppose that 〈g〉 = 0. Initially, from (1.10) we obtain 3
c 〈φ2

c g〉 = −1. So, from (5.12) we have

ηi〈g,ψi〉 = − 3
c 〈φ2

c g〉 ∫ L
0 ψi dx = L〈ψi〉, for i = 0,4, and therefore

0 = 〈g,ψ0〉〈ψ0〉 + 〈g,ψ4〉〈ψ4〉 = −L J (0). (5.18)

This is a contradiction because J (0) < 0.
From Theorem 1.1 the following result is obtained.
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Theorem 5.2 (Linear instability of cnoidal waves for the mRBou equation). The solution (φc,ψc) where ψc =
−cφc and φc is given in (5.5) is linearly unstable for the mRBou equation (5.1), provided that the wave speed
c ∈ (c∗,+∞), where

c∗2 = L2

L2 − 16K 2(k∗)(2k∗2 − 1)
. (5.19)

Remark 5.1. We can numerically determine the value of c∗2 ≈ L2

L2−56,277
and so our minimal period L

must satisfy a priori the lower bound L2 > 56,277.

6. Nonlinear instability of cnoidal waves for the mRBou equation

In this section we establish the nonlinear instability of the linearly unstable cnoidal waves for the
mRBou equation determined in Theorem 5.2.

6.1. Linking nonlinear instability and linear instability

The following theorem is the link to achieving nonlinear instability from a linear instability result.

Theorem 6.1. Let Y be a Banach space and Ω ⊂ Y an open set containing 0. Suppose T : Ω → Y satisfies
T (0) = 0, and for some p > 1 and continuous linear operator L, with spectral radius r(L) > 1, we have that
‖T (x) −Lx‖Y = O (‖x‖p

Y ) as x → 0. Then 0 is unstable as a fixed point of T .

Proof. See Theorem 2 in Henry, Perez and Wreszinski [24]. �
Remark 6.1. In Theorem 6.1, 0 is unstable as a fixed point of T if there is ε0 > 0 such that for all
B(0;η) and arbitrarily large N0 ∈N, there is an N > N0 and x ∈ B(0;η) such that ‖T N (x)‖Y � ε0.

By using Taylor’s Theorem, Theorem 6.1 implies immediately the following result.

Corollary 6.1. Let S : Ω ⊂ Y → Y be a C2 map defined in an open neighborhood of a fixed point ϕ of S. If
there is an element μ ∈ σ(S ′(ϕ)) with |μ| > 1 then ϕ is an unstable fixed point of S.

6.2. Local and global well-posedness for the gRBou equation

In this subsection we study the specific initial value problem⎧⎪⎨⎪⎩
vt − vxxt − ux − (up+1)

x = 0,

ut − vx = 0,(
u(0), v(0)

)= (u0, v0),

(6.1)

for p � 1, p ∈ N, in the periodic setting and it which will be necessary to apply Theorem 6.1 above.
Write (6.1) in the form ⎧⎪⎨⎪⎩

iut = −ψ(Dx)v,

ivt = −ϕ(Dx)
(
u + up+1),(

u(0), v(0)
)= (u0, v0)

(6.2)

where ϕ̂(Dx)u(ξ) = ξ

1+|ξ |2 û(ξ) = ϕ(ξ )̂u(ξ) and ψ̂(Dx)u(ξ) = ξ û(ξ) = ψ(ξ )̂u(ξ). Solving the linear

problem
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⎧⎪⎨⎪⎩
iut = −ψ(Dx)v,

ivt = −ϕ(Dx)u,(
u(0), v(0)

)= (u0, v0)

we get the solution (u(t), v(t)) = S(t)(u0, v0), where(
û(t, ξ)

v̂(t, ξ)

)
=
(

cos(α(ξ)t) i
√

1 + |ξ |2 sin(α(ξ)t)
i√

1+|ξ |2 sin(α(ξ)t) cos(α(ξ)t)

)(
û0(ξ)

v̂0(ξ)

)
with α(ξ) = ξ√

1+|ξ |2 . Then, (6.2) may be rewritten as the integral equation

(
u(x, t), v(x, t)

)= S(t)(u0, v0) + i

t∫
0

S(t − τ )G
[
u(x, τ )

]
dτ

where G is given by G(u) = [0,ϕ(Dx)(up+1)]. This latter equation can be solved locally in time, using
the fact that Hs

per, for s > 1/2, is a Banach algebra and performing a Picard iteration in the space X s
T

of continuous functions defined on [−T , T ] with values in X s := Hs
per × Hs+1

per , equipped with the usual
norm ∥∥(u, v)

∥∥
Xs

T
= sup

t∈[0,T ]
∥∥(u, v)(·, t)

∥∥
Xs .

More precisely, argue as follows. For any t � 0 and s ∈ R it easy to see that ‖S(t)(v0, v0)‖X s �
‖(u0, v0)‖X s and consequently, for any T > 0,∥∥S(·)(v0, v0)

∥∥
Xs

T
�
∥∥(u0, v0)

∥∥
Xs .

Using the properties of S(t), we obtain for s > 1/2 that∥∥∥∥∥
t∫

0

S(t − τ )G
[
u(·, τ )

]
dτ

∥∥∥∥∥
Xs

�
t∫

0

∥∥ϕ(Dx)
(
up+1)(t′)∥∥

Hs+1 dt′ �
t∫

0

∥∥up+1(t′)∥∥
Hs dt′

�
t∫

0

∥∥u
(
t′)∥∥p+1

Hs dt � Cs T
∥∥(u, v)

∥∥p+1
Xs

T
,

where Cs is a constant depending only on s. Therefore∥∥∥∥∥
t∫

0

S(t − τ )G
[
u(·, τ )

]
dτ

∥∥∥∥∥
Xs

T

� T
∥∥(u, v)

∥∥p+1
Xs

T
.

Similarly, we arrive at∥∥∥∥∥
t∫

0

S(t − τ )
[
G
(
u(τ )

)− G
(
u(τ )

)]
dτ

∥∥∥∥∥
Xs

T

� T
∥∥(u, v) − (w, z)

∥∥
Xs

T

[∥∥(u, v)
∥∥p

X T
s

+ ∥∥(w, z)
∥∥p

Xs
T

]
.

Using the last two inequalities we get the next result.
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Theorem 6.2. The Cauchy problem associated with the gRBou equation (6.1) is locally well-posed in X s =
Hs

per × Hs+1
per , for s > 1/2, that is, if (u0, v0) ∈ X s there is T > 0 and a unique mild solution (u, v) ∈

C([0, T ]; X s) of (6.1). Moreover, the data-solution mapping associated to the gRBou equation,

Υ : Xs → C
([0, T ]; Xs),

(u0, v0) �→ Υ (u0, v0) = (uu0 , v v0),

is smooth and we have that the following quantities,

E(u, v) = 1

2

∫ (
u2 + v2 + v2

x + 2

p + 2
up+2

)
dx, F (u, v) =

∫
(uv + ux vx)dx,

I1(u, v) =
∫

u dx and I2(u, v) =
∫

v dx, (6.3)

are conserved by the flow of the gRBou equation.
If
∫

up+2 dx � 0, the Cauchy problem (6.1) is globally well-posed in X s, for s � 1.

Proof. The proof of the global well-posedness is obtained in the same way as Theorem 2.4 in Liu [30].
The proof that the data-solution mapping is smooth is based on the Implicit Function Theorem as in
Angulo and Natali [9]. �
6.3. Nonlinear instability for cnoidal waves for the mRBou

In this subsection we achieve the main result of this section.

Theorem 6.3. The cnoidal profile solution (φc,ψc) where ψc = −cφc and φc is given in (5.5) is nonlinearly
unstable in X s, with s > 1/2, for the mRBou equation (5.1), provided that the wave speed c ∈ (c∗,+∞),
with c∗ defined in (5.19).

Proof. In system (5.1) we replace (u(x, t), v(x, t)) by (u(x + ct, t), v(x + ct, t)) and then we obtain{
vt − cvx + cvxxx − vxxt − ux − 3u2ux = 0,

ut − cux − vx = 0.
(6.4)

Then (φc,ψc), is an equilibrium solution for Eq. (6.4). Defining G(u, v) = E(u, v) + cF (u, v), where E
and F are defined in (6.3), we have that equation in (6.4) can be written as

((
1 − ∂2

x

)
u, v
)

t = J G ′(u, v), (6.5)

where J = [ 0 ∂x(1−∂2
x )−1

∂x 0

]
. Moreover, from (6.5) we see that the linearized equation, at the equilibrium

point (φc,ψc), is ((1 − ∂2
x )w, z)t = J H0(w, z) (see (1.6)), where H0 is the linear self-adjoint operator

defined by

H0 =
[

1 + 3φ2
c c(1 − ∂2

x )

c(1 − ∂2
x ) 1 − ∂2

x

]
.

Let us define S : X s → X s as S(u0, v0) = (uu0(1), v v0 (1)), where (uu0(t), v v0 (t)) is the solution of
(6.4) with initial data (u(x,0), v(x,0)) = (u0(x), v0(x)). If one considers Υc : X s → C([0, T ]; X s) the
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data-solution mapping related to Eq. (6.4), we see from Theorem 6.2 that Υc is smooth. Further-
more S(φc,ψc) = (φc,ψc) and S is a C2 map defined on a neighborhood of (φc,ψc) (this last fact
follows since translation in x is a linear continuous map in X s). Moreover, for (g,h) ∈ X s we have
S ′(φc,ψc)(g,h) = (w g(1), zh(1)), where (w g(1), zh(1)) is the solution of the linear initial value prob-
lem {((

1 − ∂2
x

)
w, z
)

t = J H0(w, z),

(w, z)(0) = (g,h),

evaluated at t = 1. Then, from arguments established in Section 4 and Section 5.1, we deduce
that there is λ > 0 and (w0, z0) ∈ X1 − {0} such that J H0(w0, z0) = λ((1 − ∂2

x )w0, z0). Hence
for (w w0 (t), zz0 (t)) = eλt(w0, z0) and μ := eλ we obtain S ′(φc,ψc)(w0, z0) = μ(w0, z0). Therefore
μ ∈ σ(S ′(φc,ψc)) and from Corollary 6.1 we obtain the nonlinear instability in X s of the cnoidal
solution (φc,ψc), provided c ∈ (c∗,+∞). �
7. Instability for coupled Boussinesq equations in lattice vibrations

In this section we study the instability of periodic traveling waves for two coupled Boussinesq
equations, namely {

vtt − vxxtt − (v − β0 v p + w p)
xx = 0,

wtt − wxxtt − (w + pv w p−1)
xx = 0

(7.1)

where v = v(x, t), w = w(x, t), p ∈N, p � 2, and β0 ∈R− {0}.
By supposing v(x, t) = φc(x − ct) and w(x, t) = αφc(x − ct) we obtain from (7.1) the system{(

c2 − 1
)
φc − c2φ′′

c + (β0 − αp)φp
c = 0,(

c2 − 1
)
φc − c2φ′′

c − pαp−2φ
p
c = 0,

(7.2)

which implies the condition β0 + pαp−2 = αp . In the case p = 2 we obtain the following profile of
solitary wave solution, satisfying the second equation in (7.2), for c2 > 1:

φc(ξ) = 3

4

(
c2 − 1

)
sech2(γ ξ), α =√2 + β0, γ = 1

2

√
c2 − 1

c2
. (7.3)

Moreover, in the case where φc is a periodic profile, from the ideas in Angulo [4] (see also Angulo,
Bona and Scialom [8]) we can derive the cnoidal type solution, for c2 > 1:

φc(ξ) = 1

4
β2 + 1

4
(β3 − β2) cn2

(√
β3 − β1

12c2
ξ ;k

)
, (7.4)

where

β1 < β2 < β3, β1 + β2 + β3 = 3
(
c2 − 1

)
, k2 = β3 − β2

β3 − β1
. (7.5)

It follows immediately from (7.4) and (7.5) that φc must take values in the range β2 � φc � β3, with
β2 > 0. Therefore, φc does not have zero mean (we note that the same can be deduced by integrating
the second equation in (7.2)). We now consider some degenerate cases. Suppose, say, that c and β1
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are fixed. If β2 → β+
1 then k2 → 1, and so the elliptic function cn converges, uniformly on compacts

sets, to the hyperbolic function sech and (7.4) becomes, in this limit,

φ(ξ) = φ∞ + θ sech2
(√

θ

3c2
ξ

)
(7.6)

with φ∞ = 1
4 β1 and θ = 1

4 (β3 − β1). If β1 = 0, we obtain the solitary wave in (7.3).
The stability of the traveling wave profiles in (7.3) and (7.4) might be studied via Lyapunov’s direct

method (see [3–14,16,21,22,38]). In this approach (for both solitary and periodic waves), the traveling
wave profile is characterized as a minimum of a modified Hamiltonian, subject to the constraint that
the momentum is fixed. In the case of the solitary wave profile it is well known that this method
fails for (7.1), since the second variation of the appropriate conserved functional turns out to have an
infinite-dimensional indefiniteness, namely, there are two infinite-dimensional subspaces of variations,
such that the second variation is negative definite on one subspace, and positive definite on the other
(see Pego, Smereka and Weinstein [34]). To date, no variational method of proving stability has been
designed to handle the strong indefiniteness. A similar phenomenon is well known to occur for the
RBou equation (1.1), with f (u) = 1

p+1 up+1 and the solitary wave solutions

φ(ξ) =
[

1

2

(
c2 − 1

)
(p + 1)(p + 2)

]1/p

sech2/p(pγ ξ),

with γ given by (7.3). If one tries to deduce the stability of the cnoidal profile (7.4) by the Lyapunov’s
method, the approach fails for the same reasons as it does for the system (7.1).

7.1. Linear instability of cnoidal waves for coupled Boussinesq equations

We are now interested in the linear instability of the cnoidal profiles for system (7.1), with p = 3.
In fact, from (5.3), (5.5) and Theorem 5.1 we have a smooth family c → (φc,α,αφc,α) (c2 > 1 and
α > 0) of periodic solutions for (7.1), where

φc,α(ξ) = 1√
3α

b cn

(
β

c
ξ ;k

)
(7.7)

and b = b(c), β = β(c) and k = k(c) are smooth functions determined by Theorem 5.1.
We proceed by describing a Hamiltonian formulation of system (7.1). We define J = (1 − ∂2

x )1/2

and the bounded operator B= ∂x J−1, introducing the new variables u, z such that

{
vt = Bu, ut = B

(
v − β0 v p + w p),

wt = Bz, zt = B
(

w + pv w p−1). (7.8)

The Hamiltonian defined by

H(v, w, u, z) =
∫

1

2
u2 + 1

2
z2 + 1

2
v2 + 1

2
w2 − β0

p + 1
v p+1 + v w p dx, (7.9)

is a conserved quantity for (7.8), which allows (7.8) to be written as

∂tY(t) = IH ′(Y(t)
)

(7.10)
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where Y = (v, w, u, z) and I is the skew-symmetric operator

I =
⎛⎜⎝

0 0 B 0
0 0 0 B

B 0 0 0
0 B 0 0

⎞⎟⎠ . (7.11)

In addition to the functional H , there is the conserved quantity, called momentum, arising from
the translation invariance of the system (7.1),

M(v, w, u, z) =
∫

u J v + z J w dx. (7.12)

Then, if we consider the functional F = H + cM , a traveling wave solution of the system (7.8) is a
critical point of this functional. Therefore, (7.10) has periodic traveling wave solutions of the form

Yc = (φc,αφc,−c Jφc,−αc Jφc),

with α satisfying β0 + pαp−2 = αp and φc defined by (7.7).
To study linear instability we look for solutions of (7.10) of the form

W(x, t) = Y(x + ct, t) − Yc

and neglect terms which are O (‖W‖2), thus leading to the linear evolution equation

∂tW(t) = IS
(
W(t)

)
(7.13)

where S = F′′(Yc) is given by

S =

⎛⎜⎜⎝
I − pβ0φ

p−1
c pαp−1φ

p−1
c c J 0

pαp−1φ
p−1
c I + p(p − 1)αp−2φ

p−1
c 0 c J

c J 0 I 0
0 c J 0 I

⎞⎟⎟⎠ . (7.14)

At this point, we search for solutions of (7.13) of the form eλt Y (x) with Y (x) = (v(x), w(x), u(x), z(x))t

and Reλ > 0. Eliminating u and z from the equations

(λ − c∂x)v = Bu, (λ − c∂x)w = Bz,

we find that v and w satisfy

(λ − c∂x)
2 J 2
(

v
w

)
= ∂2

x

[
I + pφ

p−1
c

( −β0 αp−1

αp−1 (p − 1)αp−2

)](
v
w

)
. (7.15)

Changing variables via the transformation(
f
g

)
= 1

1 + α2

(
1 α

−α 1

)(
v
w

)
, (7.16)

the eigenvalue problem (7.15) becomes
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{
(λ − c∂x)

2 J 2 f = ∂2
x

(
1 + p2αp−2φ

p−1
c
)

f ,

(λ − c∂x)
2 J 2 g = ∂2

x

(
1 − pφ

p−1
c (β0 + αp−2)

)
g.

(7.17)

Thus from the theory developed in Sections 4 and 5 above, we have for the linear operator associated
to the second equation in (7.2)

L1 = (1 − ∂2
x

)− 1

c2

(
1 + p2αp−2φ

p−1
c
)

(7.18)

the following instability criterion for the Boussinesq type system (7.8).

Theorem 7.1. Define the space X0
1 = [H1

per([0, L])]4 ∩ V and let c �→ (φc,αφc,−c Jφc,−αc Jφc) ∈ X0
1 be a

smooth curve of periodic solutions such that (φc,αφc) satisfies the system (7.2) with c2 > 1. Assume that

ker(Q L1) =
[

d

dx
φc

]
. (7.19)

Denote by n−(Q L1) the number (counting multiplicity) of negative eigenvalues of the operator Q L1 de-
fined in H1

per([0, L]) ∩ V. Then there is a purely growing mode eλt(v(x), w(x), u(x), z(x))t with λ > 0,

(v, w, u, z) ∈ X0
1 − {(0,0,0,0)}, to the linearized equation (7.13) if one of the following conditions holds:

(i) n−(Q L1) is even and V (c) < 0,

(ii) n−(Q L1) is odd and V (c) > 0.

Here,

V (c) := − 1

‖φ′
c‖2

L2
per

1

c2

dP

dc

with P given by

P (c) = c
〈(

1 − ∂2
x

)
φc, φc

〉
L2

per
.

Proof. The first eigenvalue problem in (7.17) induced the following family of linear operators for
Reλ > 0, Fλ : X0

1 → V given by

Fλ f := (1 − ∂2
x

)
f − ∂2

x

(λ − c∂x)2
Q
(
1 + p2αp−2φ

p−1
c
)

f ,

which belong to the class of operators defined in (1.9) with M = −∂2
x and f (φc) = p2αp−2φ

p
c . More-

over, we have the convergence

Fλ → Q L1 as λ → 0+

strongly in H1
per([0, L]) ∩ V. Since the kernel of Q L1 satisfies (7.19) we obtain, from the proof

of Theorem 1.1, that the conditions (i) and (ii) above imply the existence of a coupled ( f0, λ0) ∈
(Ker(Fλ) − {0}) × R+ which satisfies the first equation in (7.17). Next, if we consider g ≡ 0 for the
second equation in (7.17) then we obtain from (7.16) that
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(
v
w

)
≡
(

f0
α f0

)
,

satisfies the eigenvalue problem (7.15). Therefore,

Y0(x) = eλ0t( f0,α f0, ∂
−1
x J (λ0 − c∂x) f0,α∂−1

x J (λ0 − c∂x) f0
)

is a purely growing mode to the linearized equation (7.13). This finishes the proof of the theorem. �
We can immediately provide an application of Theorem 7.1 for the case of the cnoidal profiles

in (7.7), namely, p = 3, c2 − 1 > 0 and α being a positive root of β0 + 3α = α3 in (7.2). From (7.7),
(5.5) and (7.18) we obtain that

L1 = L0 = (1 − ∂2
x

)− 1

c2

(
1 + 3φ2

c

)
with c → φc being the smooth curve of cnoidal profiles determined by Theorem 5.1. Therefore

from the analysis in Section 5.1 we have ker(Q L1) = [ d
dx φc,α], n−(Q L1) = 1 for k ∈ (

√
2

2 ,k∗) and
n−(Q L1) = 2 for k ∈ (k∗,1), where k∗ ∼ 0.909. Moreover, we obtain from (5.11) that

Pα(c) = c
〈(

1 − ∂2
x

)
φc,α,φc,α

〉= c

3α

〈(
1 − ∂2

x

)
φc, φc

〉
,

hence d
dc Pα(c) > 0. Therefore, from Theorem 7.1 we obtain the linear instability of the cnoidal profiles

in (7.7) for the Boussinesq system (7.8) provided the elliptic modulus k satisfies k ∈ (k∗,1).
Before to establish the result of nonlinear instability for the cnoidal waves, we need a result of

local or global well-posedness, we make this on the next subsection.

7.2. Local well-posedness for coupled Boussinesq equations

In this subsection we study the initial value problem⎧⎪⎨⎪⎩
vt = Bu, ut = B

(
v − β0 v p + w p),

wt =Bz, zt =B
(

w + pv w p−1),(
v(0), u(0), w(0), z(0)

)= (u0, v0, w0, z0).

(7.20)

Solving the linear problem associated to (7.20) we get the solution (v(t), w(t), u(t), z(t)) = S(t)(v0,

w0, u0, z0), where⎛⎜⎜⎜⎝
v̂(t, ξ)

ŵ(t, ξ)

û(t, ξ)

ẑ(t, ξ)

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
cos(θ(ξ)t) 0 i sin(θ(ξ)t) 0

0 cos(θ(ξ)t) 0 i sin(α(ξ)t)

i sin(θ(ξ)t) 0 cos(θ(ξ)t) 0

0 i sin(θ(ξ)t) 0 cos(θ(ξ)t)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

v̂0(ξ)

ŵ0(ξ)

û0(ξ)

ẑ0(ξ)

⎞⎟⎟⎟⎠
with θ(ξ) = ξ

〈ξ〉 and 〈ξ〉 =√1 + |ξ |2. Then, (7.20) may be rewritten as the integral equation

[
v(x, t), w(x, t), u(x, t), z(x, t)

]= S(t)[v0, w0, u0, z0] + i

t∫
0

S(t − τ )G
[
(v, w)(x, τ )

]
dτ

where G is given by G(v, w) = [0,0,B(w p − β0 v p),B(pv w p−1)].
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Similarly to Theorem 6.2, we obtain the following result.

Theorem 7.2. The Cauchy problem associated to the coupled Boussinesq equations (7.20) is locally well-posed
in X s = (Hs

per)
4, for s > 1/2, that is, if (v0, u0, w0, z0) ∈ X s there is T > 0 and a unique mild solution

(v, u, w, z) ∈ C([0, T ]; X s) of (7.20). Moreover, the data-solution mapping associated to the RBou system,

Υ : Xs → C
([0, T ]; Xs),

(v0, w0, u0, z0) �→ Υ (v0, w0, u0, z0) = (v v0 , w w0 , uu0 , zz0),

is smooth and we have that the quantities (7.9), (7.12),

I1(v, w, u, z) =
∫

v dx, I2(v, w, u, z) =
∫

u dx,

I2(v, w, u, z) =
∫

w dx and I2(v, w, u, z) =
∫

z dx,

are conserved by the flow of the coupled Boussinesq equations.

7.3. Nonlinear instability for cnoidal waves for coupled Boussinesq equations

Finally, in this section we obtain the nonlinear instability of cnoidal waves solutions for sys-
tem (7.1). Next, we present the main result of this section.

Theorem 7.3. The cnoidal profile solution Φc := (φc,αφc,−c Jφc,−cα Jφc), where φc is given in (7.7), is
nonlinearly unstable in Xs, with s > 1/2, for the coupled equations (7.8), provided that the wave speed c ∈
(c∗,+∞) with c∗ defined in (5.19).

Proof. In system (7.8) we replace (v(x, t), w(x, t), u(x, t), z(x, t)) by (v(x + ct, t), w(x + ct, t), v(x +
ct, t), z(x + ct, t)) yielding{

vt − cvx = Bu, ut − cux = B
(

v − β0 v p + w p),
wt − cwx = Bz, zt − czx =B

(
w + pv w p−1). (7.21)

Then, Φc is an equilibrium solution for Eq. (7.21). Defining F = H + cM , where H and M are given in
(7.9) and (7.12), we have that system (7.21) can be written as

(v, w, u, z)t = JF′(v, w, u, z), (7.22)

where J is given by (7.11). Moreover, from (7.22) we see that the linearized equation at the equi-
librium point Φc is (v, w, u, z)t = JS(v, w, u, z), where S is the linear self-adjoint operator defined
by (7.14).

Let us define S : X s → X s as S(v0, w0, u0, z0) = (v v0 (1), w w0 (1), uu0 (1), zz0 (1)), where

(
v v0(t), w w0(t), v v0(t), w w0(t)

)
is the solution of (7.20) with initial data (v(x,0), w(x,0), u(x,0), z(x,0)) = (v0(x), w0(x), u0(x), z0(x)).
If one considers Υc : X s → C([0, T ]; X s) the data-solution mapping related to the system (7.20), we
see from Theorem 7.2 that Υc is smooth. Furthermore, S(Φc) = Φc and S is a C2 map defined on
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a neighborhood of Φc (this last fact is a consequence of translation in x being a linear continu-
ous map in X s). For ( f , g,h, i) ∈ X s we have S ′(Φc)( f , g,h, i) = (a f (1),bg(1), ch(1),di(1)), where
(a f (1),bg(1), ch(1),di(1)), is the solution of the linear initial value problem{

(a,b, c,d)t = JS(a,b, c,d),

(a,b, c,d, )(0) = ( f , g,h, i),

evaluated at t = 1. Then, from arguments established in Section 4 and Section 5.1, we deduce that
there is λ > 0 and (a0,b0, c0,d0) ∈ X s − {0} such that JS(a0,b0, c0,d0) = λ(a0,b0, c0,d0). Hence,
for (aa0 (t),bb0 (t), cc0 (t),dd0 (t)) = eλt(a0,b0, c0,d0) and μ := eλ we obtain S ′(Φc)(a0,b0, c0,d0) =
μ(a0,b0, c0,d0). Therefore μ ∈ σ(S ′(Φc)) and from Corollary 6.1 we obtain the nonlinear instability
in X s of the solution Φc , provided c ∈ (c∗,+∞). �
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