期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:269
A KAM theorem for finitely differentiable Hamiltonian systems
Article
Koudjinan, C. E.1 
[1] Univ Roma Tre, Dipartimento Matemat & Fis, Largo SL Murialdo 1, I-00146 Rome, Italy
关键词: Nearly integrable Hamiltonian systems;    KAM theory;    Smooth KAM tori;    Arnold?s scheme;    Cantor-like set;    Smoothing techniques;   
DOI  :  10.1016/j.jde.2020.03.044
来源: Elsevier
PDF
【 摘 要 】

Given / > 2v > 2d > 4, we prove the persistence of a Cantor family of KAM tori of measure 0 (E1/2 v/) for any non degenerate nearly integrable Hamiltonian system of class C/ (g x Td), where v 1 is the Diophantine power of the frequencies of the persistent KAM tori and gr C Rd is a bounded domain, provided that the sizes of the perturbation is sufficiently small. This extends a result by D. Salamon in [25] according to which we do have the persistence of a single KAM torus in the same framework. Moreover, as for the persistence of a single torus, the regularity assumption is essentially optimal. 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2020_03_044.pdf 455KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次