期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:255
On convexity of level sets of p-harmonic functions
Article
Zhang, Ting1  Zhang, Wei2 
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia
关键词: Curvature estimates;    p-Harmonic functions;    Support function;    Maximum principle;   
DOI  :  10.1016/j.jde.2013.06.004
来源: Elsevier
PDF
【 摘 要 】

In this paper, we give sharp estimates of the smallest principal curvature k(1) of level sets of n-dimensional p-harmonic functions which extends the result of 2-dimensional minimal surface case due to Longinetti [Longinetti, On minimal surfaces bounded by two convex curves in parallel planes, J. Differential Equations 67 (3) (1987) 344-358]. More precisely, we prove that the function vertical bar del u vertical bar k(1)(-1) is a convex function with respect to the layer parameter of the level sets for all 2 <= n < + infinity and 1 < p < + infinity. (c) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_06_004.pdf 265KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次