JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:255 |
On convexity of level sets of p-harmonic functions | |
Article | |
Zhang, Ting1  Zhang, Wei2  | |
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China | |
[2] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia | |
关键词: Curvature estimates; p-Harmonic functions; Support function; Maximum principle; | |
DOI : 10.1016/j.jde.2013.06.004 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we give sharp estimates of the smallest principal curvature k(1) of level sets of n-dimensional p-harmonic functions which extends the result of 2-dimensional minimal surface case due to Longinetti [Longinetti, On minimal surfaces bounded by two convex curves in parallel planes, J. Differential Equations 67 (3) (1987) 344-358]. More precisely, we prove that the function vertical bar del u vertical bar k(1)(-1) is a convex function with respect to the layer parameter of the level sets for all 2 <= n < + infinity and 1 < p < + infinity. (c) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2013_06_004.pdf | 265KB | download |