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1. Introduction

Convexity of level sets is an important geometric feature for solutions of elliptic boundary value
problems. By the work of Gabriel [7], the level sets of the Green function of a 3-dimensional bounded
convex domain are strictly convex. In 1977, Lewis [13] extended Gabriel’s result to p-harmonic func-
tions in high dimensions. Caffarelli and Spruck [4] generalized Lewis’s results to a class of semilinear
elliptic partial differential equations. The convexity of level sets for solutions of partial differential
equations has been extensively studied in the literature, we refer to [1,2,11,12,16,21] and references
therein.

The results stated above are all of qualitative nature. It is natural for us to give quantitative descrip-
tions of the convexity of level sets. For 2-dimensional harmonic function with convex level curves,
Longinetti [14], Ortel and Schneider [19], Talenti [22] proved that the curvature of the level curves
attains its minimum on the boundary. Longinetti [15] also studied the relation between the curvature
of the convex level curves and the height of 2-dimensional minimal surface. More precisely, let I
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and 7 be two convex plane curves lying in the planes {x3 = 0} and {x3 = 1}, respectively. Denote
by S the minimal surface between Iy and I';. For 0 <t <1, let It = SN {x3 =t} and let k be the
curvature of I;. Then the function of one variable

f () = minlogk(x)
xelt

is a concave function for t € (0, 1). From this, Longinetti proved that the curvature k of the convex
curves I on the minimal surface S takes its minimum on the boundary Ip U I7.

Recently, Ma, Ou and Zhang [17] got the Gaussian curvature estimates of the convex level sets of
high dimensional p-harmonic functions. In the paper Chang, Ma and Yang [5], they obtained principal
curvature estimates for convex level sets of high dimensional harmonic functions. These results are
also generalized by Guan and Xu [8] to a class of fully nonlinear elliptic equations under certain
structural condition (introduced by Bianchini, Longinetti and Salani [2]) by the approach of constant
rank theorem. For more results on curvature estimates, please see the papers [3,10,18,23,24].

The main focus of this paper is to give sharp estimates of the principal curvature of level sets of
p-harmonic functions which extends the results of minimal surfaces case due to Longinetti [15]. Now
we state our main theorem.

Theorem 1.1. Let u satisfy

div(|VulP=2Vu) =0 in 2=\ 21,
u=20 on 082,
u=1 on d821,

where 29 and $21 are bounded smooth convex domains in R (n >2), 1 < p < +oo and 21 C $2o. Let k1 be
the smallest principal curvature of the level sets of u. For t € (0, 1), denote £2; = {x € £2 | u(x) =t}. Then the
function of one variable

f©) =max(|Vulk; ) (0

is a convex function for t € (0, 1).

Remark 1.2. Let u be the standard p-Green function of the ball Bg(0) C R", i.e.

u(x) = |X|H—RH, forl1<p<n,
—log|x| +logR, forp=n.

Then

n=p it f
[Vu|(x) = p71|x|P , forl<p<n,

|x|71, for p =n,
and the smallest principal curvature of the level set through x is
ke (o) = x|~

Hence, for t=u(x) and 1 < p <n,
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_ n—p, pmon
Vulk ) (x) = p
(IVulky ) (x) p—llxl
_p p—n
= _l[u(x)+RH]
n—p n—p p=n
= t Rp-1
p—1 +p—1

For p =n, we have
(IVulk; ")) =1.

From the above calculation, we know that |Vu|k1_1 is an affine function of the height of the
p-Green function. In this sense, the result in Theorem 1.1 is sharp.

Remark 1.3. It is well-known that the norm of the gradient |Vu| attains its maximum and minimum
on the boundary 952 (see Proposition 4.1 in Ma, Ou and Zhang [17]). So Theorem 1.1 implies a positive
lower bound for the principal curvatures.

The approach to prove Theorem 1.1 is essentially a maximum principle argument. The main diffi-
culty lies in deriving a differential inequality for a suitable test function.

The organization of this paper is as follows. In Section 2, we first give some notations relative to
support function on S™', then obtain a fully nonlinear version of the p-Laplace equation which is
stated in the language of support function. Section 3 is devoted to the proof of Theorem 1.1.

2. Support function

We start by introducing some basic notations, which appeared in [6,16]. B
Let_ 20 and [2_1 be two bounded smooth convex domains in R" such that £21 C £2¢ and let 2 =
20\ §21. Let u: 2 — R be a smooth function such that

u=0 ondsy, u=1 on£.

Furthermore, we assume that |Vu| > 0 in £ and the level sets of u are strictly convex with respect
to the normal direction Vu. For 0 <t < 1, we set

2e={xe2|u>t).

Then each point x € £2 belongs to the boundary of .(_ZL,(X>. Under these assumptions, it is possible to
define a function H : R" x [0,1] — R, (X,t) = H(X,t) as follows. For each t € [0, 1], H(-,t) is the
support function of the convex body £2;. Denote by h the restriction of H to S™! x [0, 1].

In the rest of this section, we will derive the p-Laplace equation by means of h. Before doing that,
we should reformulate the first and second derivatives of u using h and its derivatives (see [6,16,20]).
For convenience of the reader, we sketch out the main steps here.

Note that h is the restriction of H to S"~! x [0, 1]. It follows that h(9,t) = H(Y(6),t), where
Y eS™ ! and 6 = (64,...,0,—1) is a local coordinate system on S"!. Since the level sets of u are
strictly convex, we can define the map

x(X, ) =xg,(X),

which for every (X, t) € R"\ {0} x (0, 1) assigns the unique point x € £2 on the level set {u =t} where
the gradient of u is parallel to X (and orientation reversed).
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If we define
oY
Ti=_—,
d6;
then {T1,..., Tn_1} is a tangent frame field on S"~!. Furthermore, we assume that {T1,..., Tn_1, Y}

is an orthonormal frame positively oriented. It is easy to see that

aT;

—L =Y, 21
26, ij (21)

where §;; is the standard Kronecker delta symbol.
We denote

X(0.t) =xg,(Y ().
Since Y is orthogonal to 952 at x(6,t), by differentiating the equality
h(,t) = (x(0,1), Y (©)), (2.2)
we obtain
hi = (x, Tj). (2.3)
Here, (-,-) is the usual inner product on R". By (2.2) and (2.3), we have

n—1
x:hY—i—Zh,-Ti. (2.4)
i=1

Henceforth we will omit the ranges of the summation indices if they run from 1 to n — 1. With (2.1)
in hand, by differentiating (2.4), we obtain

ax
py =hY + Zj:htiTﬁ

0x .
%; _hT,+Zh,]T,, j=1,...,n—1.

The inverse of the above Jacobian matrix is

ot
0Xy

30 »
o Zb‘f hi'hgY],. a=1.....n, (2.5)

=h Y]y, a=1,...,n;

where [-]o denotes the a-coordinate of the vector in the bracket and (b) denotes the inverse matrix
of the inverse second fundamental form

ox adY
ij=

héij + hi 2.6
89, 891> ij + hij (2.6)
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of the level set 952; at x(6, t). The eigenvalues of (b'/) are the principal curvatures k1, ..., ky,_1 of 382
at x(0,t) (see Schneider [20]).
The first equation of (2.5) can be rewritten as

Vu—Y
=

where the left hand side is computed at x(@, t) and the right hand side is computed at (0, t). It follows
that

Vi = —
--L

By chain rule and (2.5), the second derivatives of u in terms of h and its derivatives can be com-
puted as

Uap =y _[—hi Y +he ' T bY[Tj — b "heY ] — b helY1alY g,
ij

fora,8=1,...,n.
Thus the p-Laplace equation becomes

1 5 .
htt:Z(pTlhtBij"f'htihtj)b]]v (2.7)
ij
and the associated linear elliptic operator is

1 Lo 92 92 92
L= —— W28y, + hephyg |bPHIY —2 hib—— 4+ —. 2.8
i%:q(p_] Opa + iy tq) 06;36 12]: RRETXT: MET? (28)

Let u € C*@S™1). The following commutation formulas for covariant derivatives of u are well-
known

Ujjk — Ujkj = —UkSij + UjSik,
Uijki — Wijik = UikS j1 — Uitd jk + UkjSit — Uljdik- (2.9)
3. Principal curvature estimates
In this section, we will prove Theorem 1.1. Our proof involves complicated and subtle calculation.
For clarity, we divide this section into three subsections. In Section 3.1, we give a refined maximum
principle. In Section 3.2, we derive the formula of L(¢). In Section 3.3, we complete the proof of
Theorem 1.1.

Since the level sets of u are strictly convex with respect to the normal direction Vu, the inverse
second fundamental form (b;;) is positive definite in £2. Set

¢ = alog(—ht) +loghy1,
where by is the largest principal radius of the level sets. For « = —1 and g =1, it follows that

eP¥ = |Vu|k1’1,
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where k; is the smallest principal curvature of the level sets. We will derive the following differential
inequality (in the sense modulo the terms involving Vy¢ with locally bounded coefficients)

L(eﬂ‘/’)>0 mod Vy¢ in £2, (3.1)

where the elliptic operator L is given in (2.8). By a maximum principle argument, we can obtain the
desired result.

3.1. Arefined maximum principle

We first state a lemma which appeared in Hérmander [9]. It characterizes continuous convex func-
tions in terms of the second differences.

Lemma 3.1. (See Hormander [9].) (1) If f is continuous but not convex in the open interval I, then one can
findy el, ceRand ¢ > 0 such that

f(y+h) < f(y)+ch—eh® when |h|issmall. (3.2)

(2) For a continuous real-valued function f defined in the interval I, we define its generalized second derivative
at any interior point x € I as

h—0 h

(3.3)

Then f is convex if and only if for any interior point x € I, there holds
D?f(x) > 0.

Proof. (1) Let | =[a,b] C I be an interval such that for some affine g we have f < g on 9] but
sup;(f — &) > 0. Then

fe) =f® —-gx) +ex—a)(x—Db)

is <0 on 9] but sup; fe > 0 if ¢ is small enough. The maximum is then taken at an interior point
ye], so

f®-g+ex—ax—-b=f < feW=fY)—-gy)+ely—a)(y—>b),
when x € J. With x =y + h it follows that
FO+nN<fW + (g +e@+b—2y)h—eh? ify+he],

which proves (3.2).
(2) To obtain the sufficiency, we replace h by —h in (3.2), then add the two inequalities. The
necessity is obvious for the second difference is > 0 if f is convex. O

The following lemma was first proved by Longinetti for the case n =2 in the appendix of [15].
Here, we will need its general form.
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Lemma 3.2. Let Q =S""! x (0, 1) and G (8, t) be a smooth function in Q such that
Z(GO,0) >0 for(6,t)€Q, (3.4)

where £ is an elliptic operator of the form

<= Za”ae,aaf’? 6ot at2+zcael

with smooth coefficients a’l, b, ci. Set
¢(t) =max{G(0,t) |0 S}
Then ¢ satisfies the following differential inequality
D%¢ > 0.

Proof. The proof is almost the same as in [15]. For completeness, we still sketch out the proof. It is
clear that ¢ is continuous in the interval (0, 1). Let us set the function

P0O,t)=¢1), O,t)eqQ.
So by definitions, we have
G@O,t) <PO,t), (0O,t)€Q. (3.5)
Now let t € (0, 1) be fixed. At any point (8, t) € Q such that
GO.t)=2(0,1), (3.6)
we have
VoG(©O,t)=0

Let us consider the generalized second order elliptic operator

. 92
L= al b'—— ct—
IZI: 36;00; +2,~: 360t "+Z 3491

where for any function v on Q, D¢ v is the generalized second derivative of v (6, -) with respect to t,
6 € S"! fixed (see the definition (3.3)).
By (3.5) and (3.6), we have

LGCO,t) < L0, ) =D%*¢p(t). (3.7)

Since G is smooth, we have .ZG = .ZG. So the conclusion follows from (34) and (3.7). O
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3.2. Computation of the formula of L(¢)

In order to prove (3.1) at an arbitrary point xg € £2, we assume that the matrix (bj;(xo)) is diagonal.
This can be realized by choosing suitable orthonormal frame. From now on, all the calculation will be
performed at the fixed point xg.

Since

¢ =alog(—hy) +logb11,

taking first derivatives of ¢, we have

dg

-1 11
a_ej:aht h[]+b b]]’j, (38)
a
_Bgf :Olht_1htt +bnb11,t. (3.9)

Taking second derivatives of ¢, we have

82;) . » 1 1 .
891801 ht htih[j “ht htfi ;S b rbrs,ibs bl],j +b b]l,ji»

: he *hiihee + ey e — § b brsib* 11 + b b1 4,

00;0t , . ,

rs

2 _ _
5 = —ahi 2h - ahy The — Y BV brs b by + bV by

r,S
hence
1 T »
L(p) = —ah;? [Z(Fhﬁaij + ht,-htj)b“bﬂhﬁhtj —2) hibthy + hft]
i,j i
1 N iy
+ah;! [Z <Fh?5,-,- + ht,-htj>b“b”htj,- —2 heb"hy + hm]
ij i
2 1 . .
- (") [Z(pjhfs,«,« + htihq)b”b”bn,ibn, j =2 hiib"b1y b1 +b%u]
ij i
+ b L(b1y)
Sh+h+13+1a (3.10)

In the rest of this subsection, we will deal with the four terms above respectively. By (2.7), at the
point xg, we have

1 .
hee = mhf(ﬁ + Y _hZb", (311)
i

where o1 =) ; bil is the mean curvature of the level sets. For the term I, we have
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1 N .
I = —ah;? [Z(—p — hZs;j + htihtj>b”b“ht,-htj —2) hibMhy + hft]
i.j i

L[ 1
:—ahtz[pjhfz (hib™)? (th,b“ hn>]
1

o . o

Let us deal with the term I,. Differentiating (2.7) with respect to t, we have

httt =

iy 1 N
iheib' — Z(—p — 1h§5i,- + ht,-ht,->b“bﬂbij,t. (313)
i.j

By inserting (3.13) into I, we get

1 L .
I, = ath; ! [Z<—p — 28 + hﬁhq)b“bUhtﬁ =2 heb™hy + hm]
i

ij

B 1 G
=ah;! [Z(pjhfs,, + h“-h[j>b“b” (heji — bijie)

ij

]

Recalling the definition of the inverse second fundamental form, i.e. (2.6), together with Eq. (3.11), we
obtain
L=ah 'Y S P heihg; |bibI (—
t oy p—1"t ij ifltj

Combining (3.12) and (3.14),

___bx B2, % o 5 Oy ii\2
Ih+1= p_]Xi:(h“b) + oo p_]htZ(b)

i

o .
— o1 thib“. (3.15)
1

In the following, we shall compute L(bq1). By differentiating (2.7) twice with respect to 01, we
have

1 iy 1 . :
hier = ;(pjhféij + htihtj>1bu + | %:q(pjhf% + htihtj> (=b¥bpg.1b),

and
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1 A
hee11 :Z<Fh?8ij+htihtj>] bl 42 Z (p—h 8ij +hnhu> (=b"Pbpq

ij 1 i.j.p.q

+ ) ( chisij + h“hu> (2b"bys 16 b pg, 1bY)
i ] p.q.,r,s

+ > ( h2s +ht,ht]>(—bfpbpq,anf)

i.j.p.q

2+ ]2+ I3+ Ja

For the term J{, we have

1 y
Ji= Z(—p — he s + htihtj>“bu

SEn

2 p
p—1"

ij + heithe + ht,hm) b
1

b +2) " hZ; bt
i
By (2.9),

bij1 =bi1,j,
htit = h1je = b1y ¢ — hebui,

heit1 = hitie = bin1e — h1edin = b11,ie — h1edin.

Hence we obtain

3 3 2
Ji=2 thib”bll,it +2 Zi:b”b%i,t + pjhtalbll,t — 4hebMbyy g

2p4

-1
p i>2 i>2

For the term J, we have

2
Jz=22(
ij P~

1 hehe16ij + heithe + htihtjl) (—biibij,lbjj)

Z(bii)zbﬁ,] - 42 hein ;bbb

i ij

i ij

2 i, 4-2p .
=——nZp' - p_lh[sz” = h?]b“—i——p hy Y b

Z(b“)zbim - 4thjbiibjjbij,lb1i,t + 4hh" X htjbjjbn

1b%)

(3.16)

(3.17)

(3.18)
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We also have

I3 _2Z< h2s;; +ht,ht])b”b“bkkblk1bﬂ<1. (3.19)
i,j,k

Using (2.9) again, we have the following commutation rule
bpg,11 =b11,pg +bpg = b118pg +b1gd1p —b1pdig-
For the term J4, we have
1 o
Ja== ) (—_ lh?&j +hrihrj>b'pb”(bn,pq +bpg — b118pq)
i,j.p.q

1 .
=— Z<—p — hi sij + htihrj>b”b“bn,ij —hee
ij

1 " .
+ Fhfbn 30" b Y (hab)’. (3.20)
i i

Note that hy1s = b11,¢t — hee. By putting (3.17)-(3.20) into (3.16), and recalling the definition of the
operator L, we obtain

2 2p—4 2 i
L(bn)_ZZb” 2 p_1h[albn,t—4htb”bn,f+ — hfb“—pjhbe”

i>2
4 — .
+— hf]bl1 + —h > b — 3 (6") b
p-1 i>2 i
— 4> hyjb"bUbyj 1byi ¢ + 4heb! Zhub”bn i
i,j j

+22( hza,, +hf,hq>b“b”b""b k1D k1

+ mh?bn Z(bﬁ)z + b1q Z(htib”)z
i i

Therefore,

4 t(b“)z

3 2
Iy =2b" Zb“b%i,t + pjhtmb“bn,t - 4ht(b“)2b11,t +

hzbll Zbu 4 _2Ph§1 (b“) ht21b“ Zbu
i>2 i>2

)biit —4b™ > bbby b
il
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2 . 1 ik
+4he(b') Xj:h[jb“bn,j +2p"! ;(Fhfaij +ht,-htj>b”b“b bik.1b k1

+ p]jhf S0 Y (b, (3.21)
i i

By putting (3.15) and (3.21) into (3.10), we obtain

1 L 3
L) = (")’ [Z(pjh?&‘j + htihtj>b”b“b11,ib11,j ~2) habbinbine+ b%l,t]
i

ij

+2b“Zb”[Z<—h 81]+ht,ht]>b b“b”,b]l;—zzhnb b111b11t+b1,t]
>2 i,j
11 Z(bii)zbii,l
i

lhtmb“blu — 4h(b")?

+4he(b)? Y heibi'bi i +q1(@h? + g2 (@)h% + Y gz i(@)h?, (322)
i i>2
where
o 2p—3—0a\, 112 20 11 ii
(@) = ( + ) b)) + (7 >b b
" -2 o1 )0 G ;

1—« N2 o .. 2
ey o (),
o1 20 oo
(2—p)a+3_p(b11)2 2(1+a)bllzbll

q2() = b1

i>2
p—1- pa(bu).

2o i
q3,i(@) = ——o1b" +
p—1 p—1

3.3. Completion of the proof of Theorem 1.1

In this subsection, we shall calculate L(e#?) and obtain the formula (3.29), thus complete the proof
of Theorem 1.1. Note that

dp dp

L(eP?) = peP?{L(p) + By} )} + p*eP? Z(—h28,1+h“ht])b“b”89 v
i 0Uj

L]

¢ g
— By § ii
2,8 e h“b 891 PY: .

For $ =1, « = —1, in order to prove

L(eﬂ‘p)>o mod Vg in £2,
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it suffices to prove
L(p) +,B<pt2 >0 mod Vyp inS2.

Now we compute ﬂ(pf. By (3.9) and Eq. (3.11), we have
B@? = BaPh72h2 + 2Bah; b byy ¢ + (b b1 )
o 2B’ 2 pii 2 2
=5 ])zht 1+ mZh b 4 Ba®h? Zh il

2Ba _ iy 5
+p/ilhta1b“bn,t+2;3aht 1(Zhﬁb“)b“bn,[+ﬁ(b“b11,t) ) (3.23)
i

Collecting (3.22) and (3.23), we regroup the terms in L(¢) + /Sgotz as follows

L(¢) + Bo? £ Py + Py + P3 + Py, (3.24)

where

Py =2b" Zb“(ZhnhU "bibyy b, j —ZZhnb buzbm-i-b”t)

1>2 i,j

Py=(1+8)(b"b11,)’ — 2(2 heib b by i — Theon + 2hb!! — Theon
i

_ ﬁaht—l thzibii>b1]b]]’[
i

1+
>— h blleb _
1+/3<Z ti 110 p—

1 L 2 3
P3 = (b“)z Z(thfsij + htihrj)b“b“bn,ibn,j + ﬁhrzbn Zbll Z(b”)zb%,i

i,j I>2 i

ﬂa 1 2\ 2
: heor + 2heb™ — Barh; thib” ,
1

2bii1 + 4ht(bll)2 > heibbyy i,
i

2
o
p h2o? +

P4 =q1()h} +q2(c)h? + Z%,i(a)h?i + (p—12"

i>2

2
+ Ba®h? (th,.b“) .
i

2Ba? ~
— o Xi:hfib“

In the following, we will make use of the first order condition, i.e. (3.8), to calculate the terms P;
and Ps. By (3.8), we have

0
bllb]],j:%—aht_lhtj, forj=1,2,...,n—1,
J
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hence

2
1 1+ﬂoe
Py>— 1 ho 1§:h2b“ h 2h,b1 Ra(V,
2 1+ﬁ< a(1+8) pe P t01 + + R2(Vy)

_ 2 2 pi 1 A+’ , , 4 50112
=—a?(1+p)h; (Zhb) G-I 147 h2o? — 1+ﬂht(b)

20((1+ﬂ0£) 2 1 2 1 40+ Ba) 5 14
1Zhnb”+4(xb Zh b+ —1Wh b o1+ Ra(Veg),

(3.25)

where
2
Rz(Vmp)———(E heib “8<p> 2 ( a(1+ p)hy 1§:h2b“
1+ e 1+8
1+ﬂ 11 11
2 E
- hto1 + 2hb )( h¢ib" — 89,

In a similar way, one can check that

az "
Pa — h 'b” Zh hZ bll bl] h2 pii
3 p—1 : ( ti + o <Z ) + — Z

i>2

4

+ Fhl?b'll Z b”(b”)zb%]’i htzl (b“) — hthﬂb“ Z(b”)zbii,l
i1>2 i22

—4ab" > "hZb" + R3(Vee), (3.26)
i
where

1 i j( 09 9¢ 1 ‘/)
R3(Vgop) = Z(—h?ﬁ,‘j + ht,‘htj>b”b” (—— —2ah, ht]
oy p—1 00; 90

a
thllsz(( > —2ah[1ht1—¢>
1>2 9

d¢ ii 09
b2 ST o anb'y hgbf L
t t]( ) 20, + 4h; i ti

a6;

For the fourth term and sixth term in (3.26), we have
2 2 4 2
jhfb“ > b (b")b3, ;- jhthﬂb” > (b") by
p i,1>2 p i>2

%b“ > b [(hebibis.1)* — 2hebfbis 1 - her
i>2

WV
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——h p1! Zb“ (3.27)
i>2

By (3.26) and (3.27),

2
Py > “_12(}:“1)“ )2 +a2h; (th,b“) n b“thlb“
p i i>2
——h2 b1y b4 h?l b'1)? 4ab“2h2b“+R3(v9¢). (3.28)
i>2

Combining (3.24), (3.25) and (3.28), we obtain

L(@) + Bgf = ri(a, B)hE +ra(er, B)hgy + Y r3.i(, B+ R2 (Vo)
i>2

+ R3(Vo@) + q1(Ohf + qa(@)hfy + Y qs.i(@)hg,
i>2

where

Ba? —2Ba —1 4ﬂ0{—4p+8:|(b“)2 |:Zﬂoz2_4/3a—2
(P—1D20+p) (@-DA+H) (r—12(1+8)

40+ Ba) 7.4 i Ba?—2Ba—1 ( ii>2
S G D R A pil 2= P2 b,
+(p—1)(1+ﬂ)] 2 AR ;

i>2

r1(a,,3)=[

2 21
p= i>2
2

o ii\2
fs,i(a,ﬂ)ZP ](b )+

2a? plipii _ %Y o1bil,
p—1 p—1

Thus, we finally obtain

Ba? —Ba+a—1 3pa—a+QR2p—3)B—2p+5 1122
L) +poi > t[( P—12(1+5) CESGEY) >(b )
2Ba? —2Ba + 200 — 2 4ﬂa—2ﬂ+2> 11 ii
b b
( eoarh To-narn) X

i>2
ﬂaz—ﬂa~|—a—1< ,-,-)2 1-«a iin2
+ ; 2 o= 2.0

P-170+p \& P14y
a’+@—-pa+3-—
+ ( pli)] p(hﬂb]1)2

2
207 pnpii ¥ PEAP T2

-I-Zh( b &)

i>2
+ R2(Vgp) + R3(Vy@). (3.29)
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For « = —1 and S =1, we have
L(p) + ¢t > p—h2 > bbb + Zh b (b + pb™) + R2(Vog) + R3(Vog)
i>2 1>2

>0 mod Vpop.
Combining Lemma 3.1 and Lemma 3.2, we complete the proof of Theorem 1.1. O
Remark 3.3. For the case of 3-dimensional harmonic function, the function of one variable

f@ = »'?2}2 logkq (x)

is a concave function for t € (0, 1). In fact, for n =3 and p =2, by setting « = 8 =0 in (3.29), we
have

2 2
L(p) = (hab'")” + (h2b*®)” + R2(Ve@) + R3(Vo9) >0 mod Vye.
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