期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:255
Global regularity for ordinary differential operators with polynomial coefficients
Article
Nicola, Fabio1,2  Rodino, Luigi1,2 
[1] Politecn Torino, Dipartimento Sci Matemat, I-10129 Turin, Italy
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词: Global regularity;    Puiseaux expansions;    Symmetric functions;    Elimination theory;   
DOI  :  10.1016/j.jde.2013.07.022
来源: Elsevier
PDF
【 摘 要 】

For a class of ordinary differential operators P with polynomial coefficients, we give a necessary and sufficient condition for P to be globally regular in R, i.e. u is an element of S'(R) and Pu is an element of S(R) imply u is an element of S(R) (this can be regarded as a global version of the Schwartz' hypoellipticity notion). The condition involves the asymptotic behavior, at infinity, of the roots xi = xi(j)(x) of the equation p(x, xi) = 0, where p(x,) is the (Weyl) symbol of P. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_07_022.pdf 358KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次