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1. Introduction and statement of the result

Linear ordinary differential operators with polynomial coefficients play an important role in math-
ematics. On the one hand, they were source for the study of classes of special functions, with links all
around to Applied Sciences. On the other hand, the general study of Fuchs points, irregular singular
points and Stokes phenomena present deep connections with different branches of geometry.

We may write the generic operator in the form

pP= Z A pX’ D%, aqp €C, (11)
a+p<m
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where we use the notation D = —id/dx. In this paper we deal with the Fourier analysis of (1.1).
Namely, rather than analyzing the extension of the solution u of the corresponding equation in the
complex domain C, we shall address to their analysis in Ri , with respect to the phase-space vari-
ables x, & € R. Basic function space in this order of ideas is the space S(R) of L. Schwartz [17], defined
by imposing

sup|xfD¥u(x)| < co, Vo, eN. (1.2)
xeR

These functions are regular in R§ £ in the sense that both u(x) and its Fourier transform U(£) =

fRe""‘Eu(x) dx present a rapid decay at infinity, beside local regularity. As universal set for our study
we shall take the dual &’(R); note that this will exclude solutions which have exponential growth at
infinity.

Aim of this paper is to characterize the operators P in (1.1) which are globally regular, according
the following definition.

Definition 1.1. We say that P is globally regular if

ueS'@® and PueSR) = uecSR). (1.3)

In particular, if (1.3) is satisfied, the solutions u € §’'(R) of Pu = 0 belong to S(R). Global regularity
turns out to be basic information in many applications. So for example in connection with Quantum
Mechanics, assuming P in (1.1) is self-adjoint, we may deduce that the eigenfunctions, intended as
solutions u € L>(R) of Pu =0, are in S(R). In the Theory of Signals, where we may regard P in
(1.1) as a filter reproduced by electronic devices, we have that the globally regular P are exactly the
ineffective filters, i.e. filters which do not cancel any essential part of the signal.

The literature concerning global regularity, sometimes also called global hypoellipticity, in these
last 30 years is extremely large, taking also into account the same problem for operators with smooth
coefficients and pseudo-differential operators in R", with n > 1. We address to the recent monograph
of the authors [13] for a survey.

Let us begin with a simple example. The constant coefficient operator p(D) = Zagm caD%, cq €C,
is globally regular if and only if p(§) # 0 for all £ € R. In fact, if p(§) =0, then u(x) = exp[i&ox]
provides a solution of p(D)u = 0, whereas by Fourier transform one gets easily that p(D)u € S(R),
ueS'(R) imply u e S(R) if p(&) # 0 for all £ € R. The same result keeps valid for partial differential
operators with constant coefficients.

Passing to operators with polynomial coefficients, a characterization of globally regular operators
in R" is certainly out of reach at this moment. However for the ordinary differential operator (1.1)
a necessary and sufficient condition seems possible, and we shall give it in the following, under an
additional algebraic condition.

Consider first the standard left-symbol of P in (1.1):

ax. €)= Y aqpx’E”. (14)

a+p<m

In our approach, it will be convenient to argue on the Weyl symbol, see for example [10, Chapter
XVIII], given by

pr.E) = Y capxlE”

a+p<m

1 1\ .y
=Zﬁ<—5> 3! DY a(x, §). (1.5)

y =20
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We shall assume ¢y 0 =1 in (1.5), i.e. apo0=1 in (1.4). We have

m

px.&)=]](E-£®) (16)
j=1

where £;(x), j=1,...,m, are real-analytic functions defined for x € R, |x| large enough. Let us denote
by A1, ..., An the complex roots of the polynomial

m

o
Z Co,m—ar -
a=0

We have, possibly after relabeling,

Ejx)/x—> Lj asxeR, [x| - +oo. (1.7)

In fact, the roots have a Puiseaux expansion at infinity [9, Lemma A.1.3, p. 363], namely

Ej(x) = Ajx+ Z cjyk(xl/”)k for |x| large, (1.8)

—oo<k<p—1

for some integer p, where the function x!/P is the positive pth root of x for x > 0 and, say, x!/P =
|x|1/Pei™/P for x < 0 (by taking the lowest common multiple we can assume that the same integer p
occurs for every j).

We suppose that the roots which approach the real axis at infinity are asymptotically separated,
in the sense that

IfLj=A € R, with j#k, then

&) — & ()] Z max{|&j(x) — Ajx

Ee(x) — aex|, x| 71} (1.9)

’

for some & > 0.

Theorem 1.2. Assume (1.9). Then P is globally regular, i.e. (1.3) holds, if and only if

|xIm&;(x)| > 400 asxeR, [x] - +o0. (1.10)

For a better understanding of (1.9), (1.10), we may argue on the Puiseaux expansions (1.8). Let us
emphasize the first non-vanishing term after 1 x, namely write

£ =rjx+Cir(y(X2) P+ 3 cir(xP) (111)

—oo<k<r(j)

with c; r(j) # 0. Arguing for simplicity for x > 0, condition (1.9) states that, if 1; = A, € R, then one at
least between r(j) and r(k) is strictly larger than —1 and moreover, in the case r(j) =r(k) > —1, we
have ¢; r(j) # Cr.ri)-

As for (1.10), arguing again for x > 0, it means that for all j=1,...,m, we have ImA; # 0 or else
Imc;j # 0 for some k with k/p > —1. To be definite: (1.10) is not satisfied when for some j the
function
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N D DRI,
—p<k<p-—1

is real-valued.

In Section 2, we recall some notation for the pseudodifferential calculus and we reduce the prob-
lem to the analysis of a global wave-front set. The proof of Theorem 1.2 is given in Section 4, by
using the factorization of the operator presented in Section 3. In some sense, this factorization is the
counterpart in phase-space of the classical methods of the asymptotic integration. In fact, we think
that, in terms of classical asymptotic analysis, under condition (1.9), the proof of Theorem 1.2 would
be as well possible, but much more difficult. Section 5 is devoted to remarks and examples. In partic-
ular, we recapture some existing results on the global regularity for operators of the form (1.1), giving
corresponding references.

We finally observe that Theorem 1.2 keeps valid for relevant classes of operators of the form
(1.1), independently of the asymptotic separation (1.9). For example, (1.9) is not satisfied for constant
coefficients operators with a double root &;(x) = & (x) = &, whereas in this class (1.10) is necessary
and sufficient for the global regularity, as observed before. Regretfully, the assumption (1.9) will be
essential in our proof of Theorem 1.2 for operators with polynomial coefficients.

2. Microlocal reduction

We recall that a pseudodifferential operator in R, according to the standard quantization, is an
integral operator of the form

p(x, D)u(x) = 2m)~" / e™ p(x, £)u(£) d&,
R

for u € S(R), where the so-called symbol p(x, &) is a smooth function in R? which satisfies suitable
growth estimates at infinity, which will be detailed below. The corresponding operator p(x, D) will
define continuous maps S(R) — S(R) and S'(R) — S’ (R).

An important class of symbols is given by the space I'™(R) of smooth functions p(x, £) in R?
satisfying the estimates

80l p(x, &)| < Cap(1+ 11+ 16)" 7P, Va,BeN, (8 eR%,

for some m € R. This class arises, in particular, in the following definition of the global wave-front set
of a temperate distribution, as introduced in [11].
A point (xg, &) € R?\ {0} is called non-characteristic for p € I'™(R), if there are &, C > 0 such that

px.&)| = C(1+Ix+15)" for (X.£) € Vixgp).e (21)
where, for zg € R%, z9 # 0, V2. is the conic neighborhood

z 20

% ={zeR%*\ {0}
oF { VOF |~ 1z

<e&, |z| >s‘1}.

Let u € S'(R). We define its (global) wave-front set W F(u) C R?\ {0} by saying that (xg, &) € R?,
(%0, &) # (0, 0), does not belong to W F(u) if there exists ¥ € I"°(R) which is non-characteristic at
(0, &), such that ¥ (x, D)u € S(R). The set W F(u) is a conic closed subset of R? \ {0}.

Proposition 2.1. (See [11].) If the point (xg, &o) is non-characteristic for p, and (xo, &) ¢ W F(p(x, D)u), then
(%0, &0) ¢ WF(u).
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Proposition 2.2. (See [11].) For every p € I'™(R), and u € S’ (R), we have W F(p(x, D)u) C W F (u).
We will also use the following characterization of the Schwartz class.
Proposition 2.3. (See [11].) For u € S'(R) we have W F (u) =@ if and only ifu € S(R).
In fact, results similar to those in Proposition 2.1 hold for more general classes of operators. The

following case will be important in the following.
Consider the class I'J"(R) of symbols p(x, £) satisfying the following estimates:

|og A (X, )| < Cap &)™ ()" P Vo BeN, (x,£) e R?, (2.2)

for some meR, 0< 8 < 1. For t € R, we write (t) = (1 +t2)!/2. Notice that I'(R) ¢ I'%(R). These
classes are a special case of the Weyl-H6érmander classes S(M, g), with weight M(x, &) = (x)™ (&)™

2
and metric gy ¢ = % + mi%. The usual symbolic calculus with full asymptotic expansions works

for these classes (cf. [10, Chapter XVIII]), because the so-called Planck function h(x, &) = (&)~ 1(x)?~1
satisfies h(x,&) < C(1 + |x| + €D~ and 6 — 1 < 0.
A symbol p € I'T"(R) is called hypoelliptic at (xo, &) # (0, 0) if for some & > 0 it satisfies

|82 0f p(x, £)| < Cap|p(x. (&) (M) P, Vo, BN, (0,§) € Vixgto).e: (2.3)

and

[P O] = CO™E™, V(X €) € Vi g0.e0 (2.4)
for some m’' e R, C > 0.
Proposition 2.4. Let p(x, &) satisfy (2.2), (2.3) and (2.4). If (x0, &0) ¢ W F(p(x, D)u) then (xo, &) ¢ W F (u).
The proof is standard, since the assumptions imply the existence of a microlocal parametrix Q =
qx,D), qe Fs’m(R) (see e.g. [8, Lemma 3.1] and [13, Lemma 1.1.4 and Proposition 1.1.6]).

Finally, we will also make use of the class F]’% (R) of smooth functions p € C*°(R?) such that

)" Yo, BeN, (x,£) € R?, (2.5)

0208 p(x, £)| < Cap (1 + x| + €]
for some m € R, 0 <8 < 1. We have the following result.
Proposition 2.5. Let p € F{f’s (R). Then WF (p(x, D)u) Cc WF(u).

The proof is again standard and omitted for the sake of brevity.

Finally we define, for future references, the following class of functions in R. We set S™(R), m € R,
for the space of smooth functions satisfying the estimates

|F@®|<Ce)™®, VaeN, xeR. (2.6)

As already observed in the Introduction, it is also useful to deal with the Weyl quantization, defined
as

p¥(x,D) = 2m)"! / e!*~ ”Ep(— s>u(y>dyds
R
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For example, an operator with a symbol a(x, &) as in (1.4) in the standard quantization can be always
re-written as an operator with Weyl symbol p(x, £) given by the formula (1.5).

The main feature of Weyl quantization is its symplectic invariance: if x : R? — R? is a linear
symplectic map, there is a unitary operator U in L?>(R) which is also an isomorphism of S(R) into
itself and of S’(R) into itself (in fact a metaplectic operator), such that

(o) (x,D)=U""p"(x,D)U. (2.7)

Moreover, in the definition of the global wave-front set it would be equivalent to use the Weyl quan-
tization, which implies at once that

(x0,50) ¢ WF(u) <= x(x0,%0) ¢ WF(Uuw), (2.8)
where U is the operator associated to x as in (2.7).
3. Factorization of the operator
In this section we provide a convenient microlocal factorization of the operator P in Theorem 1.2,

which reduces the proof of that result to the case of first order operators.
Let j € N and consider the elementary symmetric functions defined by

oo(61,..., &) =1,

o1, E)=— D &
1<j<i

o &)= Y ik
1<j<k<j

0j(Er,... ) = (DI &)

Proposition 3.1. Letr1 > 0,1, > 0and aj(x), j=0,...,r, and §j(x), j =r1,...,11 + 2, be smooth func-
tions, defined in some open subset of R. Then we have

5! r+r2
> ad" T TT (D -£(x)
k=0 j=T1
r+r
= Z ( Z a;(x)op (§r1+1 (619 T T, (X)) + Rk(x)) pritr2—k
k=0 I+h=k

I<r1,h<r

where Ro = R1 =0and, fork > 2,

Rkespan(c{ag;?”'ué;fh), I+h+my+---+my=k 1<h<k-1,

my+-+mp>0,r+1<j1 < < ja<r+12}. (3.1)

Proof. Let us apply induction on r,. The conclusion obviously holds with Rj =0 for every j if r =0.
Suppose it holds for r,. Then we have
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A
> ajx)D" (D — &, 1) -+ (D = &y 11 (X))
k=0

ri+r;
=Y Y a®on(5100, ..., &) + Re0)D (D — &y 0), (32)
k=0 I+h=k

I<r1,h<r,

with Ry as in the statement. Let bj(x) =Y 14h=j @(X)0n(E41(), ..., & 11, (x)). By Leibniz’ for-
I<r1,h<nr
mula the expression in the right-hand side of (3.2) reads

ri+ry+1

> (bkoo — & rp+1 (01 (%) + Rie(x)

k=0
k—1

-y (” e +j1 k- ’) (B j1 () + Ric_j-1(0) DIy 41y 11 (x)) pritrtik - (33)
f

Now, we have

D) =& 1 b1 = D a®on(Er 1100, - Er 1 (),

I+h=k
I<rq,h<ry+1

whereas the terms Ry(x), bx_j_1 (x)DfSrlJrrzH (x) and Ry_j_4 (X)Dj§r1+r2+1(x) are admissible er-
rors. 0O

Proposition 3.2. Let r1 > 0,1, > 0 and aj(x), j=0,...,r1, and by(x), h =0, ..., be smooth functions
on R. Consider the operator P with Weyl symbol

P& = a;(0E" Ty bp(x)E™ " (34)

j=0 h=0
Then P in the standard quantization has symbol

r+r;

q(x,s>=Z<Rk+ > albh)§ﬁ+r2_k,

k=0 I+h=k
I<r1,h <,

where
Rk € spanc{(abp)”, 1< v <k, I+h=k—v}.

Proof. From (3.4) we have p(x,&) =Y ' '2 3", aibp&"+27%_On the other hand, for the standard
symbol q(x, &) we have the formula

ri+ry—k

1 i\"”
6= Y ;(—%) 0L p(x.§),

v=0

so that the desired result follows at once. O
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Lemma3.3.let&, €eC k=1,...,r1 +713,

ewr=  J] ¢-#&

ri+1<k<r+r2

and

Q® =[] ¢-#.
1<k<ry+r2
ke

forj=ri+1,...,r1+1.

Consider the square matrix A of size r1 + o, whose jth column for 1 < j < rq is made of the coefficients of
the polynomials £"1=1Q (&), whereas the jth column for r1 +1 < j < rq + ry is made of the coefficients of the
polynomial Q j (hence in the jth row there are the coefficients of X" ”H which appear in those polynomials).
Assume that &, # &j when j # k. Then the matrix A is invertible and its inverse Al=B= (Bji) is given by
the following formula:

Bf"‘zm

%_n +ry—k

i1 E1s e Bt Bty sy 35
Signn @ —&) 161 §h—1, Eh+1 &) (3.5)
I#

if1<j<ry, 1<k<ry +ry, whereas

En +rp—k

By = ] 36
Ik [Ti<i<r+n, € —&) G.8)

1]

ifri+1<j<ri+r,1<k<ri+r.

Proof. To compute the kth column of the inverse matrix, we have to solve the system AX =Y, where

=[0,...,0,1,0...,0] is the kth element of the canonical basis of C"1*"2~1. Now, the vector X =
[a1,...,ar4r,]" is a solution if and only if
ri+r2
REQE) + Y a;Qj&) ="k (37)
j=ri+1

with R(z;)_zrl ajen =i,
To solve (3. 7) we express the right-hand side in terms of the interpolating Lagrange polynomials
associated to the points &j, j=1,...,r1 +r2, which are

&= J] ¢-&., h=1,...1n+n

1<k +12
lsth

(hence Ly(x) = Qp(x) forh=r1+1,...,r1 +12). We have

ri+ra— 1£__r1+r2 —k

r1+r2—k 3.8
3 }; Ty @ (38)
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hence we are reduced to solve (3.7) when the right-hand side is replaced by each Lagrange polyno-
mial. On the other hand, one sees immediately that the equation

r+r
REQE) + Y a;Q (&) =Ly,

j=r1+1

when 1 <h <y has the solution R(§) =[]1<i<r, (€ — &), and aj =0 forevery j=r; +1,...,1r1 +12,

h
whereas when rq 4+ 1 < h <ry +r2 the solution is given by R(x) =0 and ap =1,a;=0ifr;1 +1<j <
r1 + 1y with j#h.

By linearity and (3.8) we obtain that the solution of (3.7) is given by

i§’:]+r2_k l_[
R(¢) = —_ & —-&,
st Ly (&r) 1<i<n
I£h

ri+ry—k
a Sj j=r1+1 rn+n
= > =n yeees 1 .
G

We can now come back to the original system AX =Y, and we obtain the desired form for the inverse
matrix. O

It follows from the proof of the following proposition that the result in Lemma 3.3 continues to
hold if one just require that &; # & for the indices j # k such that j >y or k> ryq. In fact, as we will
see, a simplification of the factors &, — &, with 1 <k #1<rq occurs in (3.6).

Lemma 3.4. Let £j(x), j=1,...,r1 + 12 be smooth functions for x large, such that £j(x) # &.(x) ifr1 +1 <
J#EkLT1+712,

§i =0, f1<j<r+n (39)
and

£ —&®| Zx if1<j<riandr +1<k<ri+1;2 (3.10)

as x — +oo. If we set &£ = &;(x) in Lemma 3.3, for the inverse matrix B j, = B j.(x) given there, the following
asymptotic formulae hold as x — +o0:

Bji(x) = 0(x)7¥) (3.11)
for 1< j<ry, 1<k<ry+ry, whereas
(X ri+ro—k
Bji(x) = O( /) ) (3.12)
X Tr+1<i<r+n 150 — &)
I#]

forri+1<j<ri+r, 1<k<r;+nr.



2880 E Nicola, L. Rodino / J. Differential Equations 255 (2013) 2871-2890

Proof. Consider first the entries with 1 < j < ry. With the notation of Lemma 3.3 we can re-write
(3.5) as

pA (—1)h*1.§;1+r27k0j—1 Gy bn-1,Engrs - ED T 1<i<n Q@& [Ti<ier<r, G =80
# 1I#h
[h<ar<n@@ =)l QED

(3.13)

We claim that the numerator of this fraction, as a polynomial in &i,..., &4, is divisible by the
product ]_[]<,<,,<r1 (& — &) which arises in the denominator. To this end, it is sufficient to show that
the numerator vanishes if &, = £,, for every 1 < < v <rq. It is clear that all the terms in the above
sum with h # w, v vanish if £, =§&,, because of the presence of the factor £, — &,. Let us prove that
also the sum of the two terms corresponding to h = w and h = v vanishes. Due to the symmetry of
0j_1, it suffices to show that

ot [T @-&ar+E=nt ] @-&a)=o0.
1<I<I'<ny 1<I<I'<ny
LU#pr LI'#v

This amounts to prove that

(—DE Y TT @ —&) + (D)t TT @ —g0 =0,
1<I<r 1<I<ny
I#u,v I#u,v

where we took into account that @ < v. But this is true, because the two products that arise in the
last formula coincide when &, =&,.

This proves the claim and shows, by a limiting argument, that the matrix A in Lemma 3.3 is still
invertible if one just require &; # & for the indices j #k such that j > ry or k > ry.

Now, by dividing the numerator of (3.13) by ]_[1<l<,,<r1 (& — &) we get a polynomial in

£1,...,&r 41, Of degree!

(-1 -2 nr-1

rM+rn-k+{G-—1D+01—Dr+ 2 2

=rirp —k+j.

Hence, when we compose such a polynomial with the functions &; = £;(x), by (3.9) we get a function
which is 0(x"1"27k+J) as x — +o00. On the other hand, using (3.10) we have |[T; /<, Q(E)] 2 X172,
so that we deduce (3.11).

Finally, let us prove (3.12). This follows at once from (3.6) taking into account that, if r; + 1 < j <
r+r2,

[T kEw-awlzxt ] lE®-aw]
1<IKr 41 r+1<I<r 4+
I#] I#j

which is a consequence of (3.10). O

; —1)(r -2 -1
1 Observe that the polynomials ]_[1<,<,<,1 (& — &) and nlgkl’gn (& — &) have degree (”)2# and no=D respec-

2
1I'#h
tively.
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Proposition 3.5. Let p(x, &) beasin (1.5). Let £1(X), ..., &, 4r, (X), 11 +12 =m, be its roots, defined for x large,
and assume (3.9), (3.10), as well as

&0 — &| 2 max{|&; )|, |6, x 1T}, forjk=r1+1,..r1 4712, (314)

3

for some € > 0, as x — +o0. Let P be the operator with Weyl symbol p(x, §). We can write, for x large,

m r+r
P=> D" * [T (D-nj®)+R, (3.15)
k=0 j=r1+1

where g € ST(R), k=1,...,r1,bo(®) = 1,1 € SIR), j=r1 +1,...11 + 12 (see (2.6)),

nj®) =0j(E1X), ..., &) +0(x72) forj=1,....r1 (3.16)

and

nj®) =&@+0(x71) forj=ri+1,....r1+12 (317)

as x — +oo, whereas R is a differential operator of order ry + ro whose coefficients are in S™(R) and rapidly
decreasing as x — 400, together with their derivatives.

Proof. The standard symbol of P is given in Proposition 3.2. On the other hand, the symbol of the first
operator in the right-hand side of (3.15) is computed in Proposition 3.1. By equating the coefficients
of the terms of the same order we deduce that, modulo rapidly decreasing functions as x — +o0, it
must be

ri+nr
DY aonGrgt o Enan) HRe= D ORI 1, - ) + R (318)
k=0  I+h=k I+h=Fk
I<r1,h<ry I<r1,h<ry
for k=1,...,r1 41z, where the 7;’s are unknown, a; = a;(x) = 01(§1 (%), ..., &, (X)),

Ry € spanC{(aloh(SHH,...,$r1+r2))(‘)), 1<v<k I+h=k-v},

and
Ry e spanc{an™ - ™ I+ h+my 4 +my=k 1<h<k—1,
my+-4my>0,r+1<j1 < <jp<r+r2}.
We set

{nj(X)zaj(X)Hj(X) forj=1,....m, (3.19)

njx) =&;x) —¢jx) forj=r1+1,...,11+r12,

in the right-hand side of (3.18). By isolating the terms which are of order 0 or 1 with respect to
¢ =1, ri4r,) We can write
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> MoRMntts M) = Y @O g1 Er ) + (ADK+ X

I+h=k I+h=k
lgrlahng lgrl,hgrz

where A is exactly the matrix described in Lemma 3.3. By multi-linearity we can also write R} =
Yi + Zy, where Z; is the term constant with respect to the ¢;’s. The system (3.18) hence becomes

(=—A"'X-AlYy—A'Z-A"TR. (3.20)

Let us prove that

G2y i
(A*lz).:{o(" 1) ifj=1,...n, (3.21)
J Ox=") ifj=r+1,....,r1+712,
as x — +o00. We have
Zkespan(c{aléﬁn‘)m ;;n"), l+h4+mi+---+mp=k, 1<h<k—1,
my+---+mp >0, r1+1<j1<-~-<jh<r1+r2}. (3.22)

Hence, if j <r7 and A~ = (Bjy), we have (A~'2); = ¥}'*/? BjxZ, and by (3.22), (3.9) and (3.11)

B]kzk — O (Xj—ka-h—m]—.--_mh) — O (x]_z(k_l_h)) — O (xj_z),

because k — [ —h > 1.
If j>r1+1, since £™ = 0(&,(0x™) and my + -+ my =k —k —1, by (3.22) it suffices to
prove that

X HHIE o ()85, (0)

X T 1<i<r 4, 160 — & (0|
]

o(x71). (3.23)

By (3.14) we have &;,(x) = 0(|§;, — &;1) if j, # j and &;(x) = 0 (|&§;(x) — & (x)]) and x|§;(x) — &(x)| —
+o0 if j#I, 1 >1r1 4+ 1. Hence we obtain

Crkehot | JE@INTRE 0 £ (0

HT1+1<1<T1+T2 |$](X) - %‘l(x)l B
]

X

0(1) (3.24)

(this is easily verified by considering separately the cases when the number of factors in the nu-
merator is less or greater than that of the denominator). On the other hand, by (3.9) we have
lag (x) |x K HkHx—kth+1 — g (x=2k=I=I+1y — o (x=1), which combined with (3.24) gives (3.23). This
proves (3.21).

Similarly one proves that

J=2y ifi—
(A_]R,):{O(x ) ?f]._l,.‘.,ﬁ, (3.25)
J ox 1l ifj=ri+1,....,r1+n

as X — 4o00.
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Now, (3.21) and (3.25) suggest to look for functions ¢; with asymptotic expansion

+00
gj(x) ~ chquxjfzfg, forj=1,...,r, (3.26)
n=0
—+00
gj(x) ~ ch,,lxq*%, forj=r1+1,...,r1 +19, (3.27)
n=0

where p is the integer for which (1.8) holds. In order for the system (3.20) to be solvable by an

iterative argument (in the sense of formal power series), it suffices to prove that the coefficient in
. k k

(A*‘X)j, respectively (A”Y)j, of X} 77 b, respectively x 17, depends only on the cj , with u <k.

To this end, consider first the term (A”X)j. By the definition of Xj, it belongs to the complex span

of

XV X) -y, %),

with [+h =k, [ <rq, h <12, where §; =g or §; = ¢, and yj, =§;, or yj, =¢j,, and the above product
contains at least two factors of type ¢.

Let 1< j<r. We have (A7'X); = > 2 By Xe. By (3.11), (3.9), (3.26) and (3.27) we get
Bk Xy = 0 (xI~kx!th=4y = 0 (xi=*). More generally, the same argument shows that for a fixed p >0
the coefficients ¢; ,, i=1,...,r1 + 1z, may appear in the asymptotic expansion of (A‘1X)j only in
the terms of degree < j —2 — % -2

Let now r1 +1 < j <rq +r;. Let us prove B j Xy = o(x~1). It suffices to prove that

SIIE QT2 Y5 ) -y, (0 —o(x7).

X [T rsi<i<nn 16X — 8@
I#]

(3.28)

if I+h =k, 1 <ry, h <r;. We can suppose that, say, y;, = ¢;j,. Assume furthermore that there exists
1< v <h—1such that y;, =¢;,. Then we have Sl(x)x*’“rhyjh (x)=0(x"1) and

&0 F2 7Ky (%) -y, ox kR

nT1+1<l<T1+T2 |§](X) - gl(x)|
)

=o(D),

where we used the same arguments as in the proof of (3.24) and the fact that ¢;, (x)/|£;(x) —&j,(X)| =
O(x—1/|.§j(x) —&;,()|) =o(1). This gives (3.28). If instead there is no such a v, it must be §;(x) = ¢;(x).
Hence & (x)x *th*1 = 0(x~ 1) and

1&; (x)|r1+rszyj] X Vi, (x)X*T]+k7h71

[Tr+i<i<r+m 1§ — ()]
I#j

=o(1),

which still gives (3.28). This proves that, if r1 +1 < j<rq + 1o, (A*1X)j =o(x"1) as x »> 4o0. More
generally, the same argument shows that for a fixed p > 0 the coefficients ¢; ,, i=1,...,r1 +712, may
appear in the asymptotic expansion of (A*‘X)j only in the terms of degree < —1 — %. Similarly one
sees that the same is true for (A~! Y);.

Hence, the system (3.20) has a formal power series solutions in the form (3.26), (3.27), as x — —+o0.
Now, by a classical Borel-type argument, see e.g. [10, Proposition 18.1.3], one can construct functions
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¢ eSIT2MR)if 1< j<ry, ¢ e STUR) if r+1< j <rq+r2, with the asymptotic expansions in (3.26)
and (3.27) respectively.

The functions 7;(x) defined in (3.19) for x large and extended smoothly to zero for x < 0 then
fulfill (3.15) for a convenient operator R having the desired properties. This concludes the proof. O

4. Proof of the main result (Theorem 1.2)
4.1. Sufficient condition

Let u be in S’(R) with Pu € S(R). Let us prove that, under the assumptions (1.9) and (1.10) we
have u € S(R), i.e. WF(u) =@ (Proposition 2.3).

We use the factorization (1.6) for the Weyl symbol p(x, &), valid for large |x|, and define the com-
plex constant Aj, j=1,...,m by (1.7). Let now (xg,&o) # (0, 0). If (xp, &) does not belong to any
of the rays {t(1,1j), t € R\ {0}}, with 1; € R, we see from (1.6), (1.7) that p is non-characteristic at
(%0, 0), i.e. it satisfies the estimate (2.1) for some ¢ > 0. Hence (xop, &) ¢ W F(u) by Proposition 2.1.

Let now (xo, &) lie on a ray {t(1,1j), t e R\ {0}}, for some 1; € R. We can suppose that (xo, &) =
(1, 1) or (xp,&) = (=1, —X;). We can further reduce to the case when (xo, &) = (1, 0). In fact, sup-
pose that (xo,&0) = (1, 4;), and consider the linear symplectic transformation y (x,&) = (x,& + A;X).
Let U be the operator associated to x via (2.7). By (2.8), in order to get (xo, &) ¢ W F(u) it suffices
to prove that (1,0) ¢ WF(U~'u). Now, we have (p o x)"(x,D)U~'u = U~1Pu € S(R), so that our
original problem is equivalent to a similar one with (xg, &) replaced by (1, 0) and the symbol p(x, &)
replaced by (p o x)(x, &). The same holds for (xg, &9) = (—1, —A) if we perform the preliminary sym-
plectic transformation x (x, ) = (—x, —§).

After these transformations we get a symbol, which we will continue to call p(x, &), which has a
factorization as in (1.6) for x large, where the new roots &;(x) satisfy (1.7) and (1.8) for other values
of X, as well as (1.9) and (1.10).

Suppose now Aj #0 for j=1,...,rq, and A; =0 for j=r1 +1,...,r1 + 12, with r{ + 2 =m.
Accordingly, by (1.7), (1.9) we have

60| =x for1<j<r, |§®I=0( forr+1<j<ri+ra, (41)

&%) — &®)| = max{|&;(0)], |&®)|.x 1} forr +1<j<r +12, (42)

)

as x — +oo. Let us verify that (1,0) ¢ WF(u) if Pue S(R).
We can apply Proposition 3.5 and use the factorization in (3.15). We claim that the symbol of the
first factor, namely Z?:o nk(x)EM K is non-characteristic at (1, 0). In fact by (4.1) we have

r
=[]lg-&w|zx". forx.€) eVao.e

j=1

Y oiE, .. E ))ETT
k=0

if £ is small enough. Now by (3.16) we deduce that

"

> mxE

k=0

Z X1, for (x,§) € Vao)e

which proves the claim. Hence, since Pu € S(R) and (1,0) ¢ W F(Ru), by Proposition 2.1 and (3.15)
we deduce that (1, 0) does not belong to the wave-front set of H?‘:t:i](D —nj(x))u. Hence, to finish
the proof it is sufficient to prove that, for every j=r; +1,...,r1 +12, if (1,0) ¢ WF((D — n;(x))u)

then (1,0) ¢ WF(u).
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Fix such a j. We have from (1.8) that

E= Y cjx/P forxlarge. (4.3)

—oo<k<p-—1

By (3.17) we have an asymptotic expansion

njx) = Z CjX/P 4 O(x7") forxlarge. (4.4)
—p<k<p-1

By (1.10), there exists k > —p such that cj, ¢ R. Let v < p — 1 be the greatest index for
which this holds. Let Q(x) be a smooth real-valued function, Q(x) =0 for x <0, and Q;(x) =
Jo Xv<kp1 Ckt*/P dt for x large. We can write

D —1nj(x)=e'U® (D —7;x) o e UM, (4.5)
where 77; € S1(R), and
70 =00 — Y cjx’P=cj ,x"P +o(x"/P) (4.6)
v<k<p—1

for large x.

Now, we can regard e 2i® a5 symbols (independent of &) in the class FR(S(R) with §=1—-1/p
(see (2.5)). Hence, if (1,0) ¢ WF((D — n;j(x))u), by Proposition 2.5 we get (1,0) ¢ WF((D — ij;(x))u).
On the other hand, the symbol & — 7};(x) belongs to fgl (R) (see (2.2)), and it is hypoelliptic at (1, 0)
(see (2.3), (2.4)). In fact, using (4.6) and the fact that c;, ¢ R we have

|0g0f (&8 — 11,(%))| < Caplt — ;0| (E) ()P Vo, peN, x>1, £€R,

with § = max{0, —v/p} <1—-1/p <1, and |§ — ;)| 2 |&] + x"/P for x large and £ € R. Hence, by
Proposition 2.4 we obtain (1, 0) ¢ W F (u), which concludes the proof.

4.2. Necessary condition

Let us assume (1.9) but suppose that (1.10) fails for some j. Let us prove that then there exists
ucS' R), ug¢ S(R) such that Pu € S(R). By the applying the same arguments as in the proof of the
sufficient condition we can assume that (1.10) fails, say, for x — 400 and j=rq +rp, with Ay 4, =0.
Hence (4.3) and therefore (4.4) hold with j=ry+r; and ¢y 4r, xk € R for every —p <k < p —1. Let us
set

X

Q (X) = [ nﬁ +1) (t) dt7

0

and let u € C*°(R) such that u(x) =0 for x <0, u(x) = e!2® for x > 1. Then, by (4.4) with j=r{ +1,
we have x7¢ < |u(x)| < x° when x > 1, for some ¢ > 1. Hence u € S'(R), u ¢ S(R). Moreover, Pu=0
for x < 0, whereas for x large we have (D — 1, 4r, (X))u = 0 and therefore, from (3.15), Pu = Ru. Now,
we also have |%u(x)| < x“t1®! when x > 1, because Nri+rp € S1(R), so that Ru is rapidly decreasing
as x — +oo together with its derivatives. This implies that Pu € S(R) and concludes the proof.
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5. Examples and remarks
We give in the following some examples and remarks.

Remark 5.1. The assumption ¢, 0 # 0 for the Weyl symbol of P can be eliminated, provided we submit
preliminarily P to the conjugation by a metaplectic operator U. Namely, let U be associated to the
symplectic map x (x, &) = (x— A&, &), A € R. In view of (2.7), the Weyl symbol of P = U~ PU is given
by

PoX)X &)= Y caplx+re)fe”

a+p<m

with new coefficient

Cm.0 = Z Ca,/g)»ﬂ#o

a+p=m
for a generic choice of A. On the other hand, the global regularity of P and P are equivalent, because

U, U T:SR)— SMR), U,U"1:S(R) — S’(R). We may correspondingly re-formulate condition (1.9)
and Theorem 1.2.

Example 5.2 (Globally elliptic operators). (Cf. Grushin [6], Shubin [18], Helffer [7].) Assume all the roots

Aj, j=1,...,m, in (1.5) satisfy ImA; # 0. This is equivalent to the so-called global ellipticity of the
symbol:

P, &) = e(1+IxI + 1€))" for |x| + 5] > R, (5.1)

for some € > 0, R > 0. In fact, if we write p(x, &) as a sum of homogeneous terms

P& = Y pixE),  pixE = Y caprlEY, (52)

o<jsm a+p=j

the condition (5.1) is equivalent to

Pm(x,§) #0 for (x,§) # (0,0). (5.3)

The corresponding operators are globally regular, since (1.10) is obviously satisfied. Basic example is
the harmonic oscillator of Quantum Mechanics:

P =D?+x%.

Example 5.3. Consider now the case when 1 € R for some j. Assume for the moment that all the real
roots A; are distinct, that is d¢ pm(x, AjX) # 0 for x # 0. We may apply Theorem 1.2. By factorization
we have

£j(0 =Ajx+cj+0(x")

with ¢j = pm—1(X, jX)/0: pm(x, A;jX). Then P is globally regular if and only if Imc; # 0 for every
real A;. Consider for example the elementary polynomial

p(x,§) =& —x+c.
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Limiting attention to the corresponding homogeneous equation, a classical solution of Du — xu +
cu =0 is given by u(x) = exp[ix?/2 —icx]. If Imc # 0, then u ¢ S’(R), whereas if c € R, then u € S’(R),
u ¢ S(R), contradicting the global regularity.

Example 5.4 (Quasi-elliptic operators). (Cf. Grushin [6], Boggiatto, Buzano, Rodino [2], Cappiello, Gram-
chev, Rodino [4].) We pass now to consider the case when two, or more, real roots coincide. For
simplicity we shall assume A; =0 for all j=1,...,m, that is ¢4 g =0 for all o, 8 with & + g =m,
apart from ¢y = 1. We may then consider the largest rational number g > 1 such that @ + g8 <m
for all (a, ) with cq g # 0, and write

px.E) = Y capx’E, (54)

a+qB<m
with ¢y g # 0 for some («, B) with o +¢qB =m, @ # m. For the moment, we understand q < oo, that

is a term with B # 0 actually exists. Note also that q > mmj This symbol in (5.4) is called (globally)
quasi-elliptic if

Pmg. &)= D capxPEY£0 for (x,£) #(0,0). (5.5)

a-+gp=m

This implies in particular com/q #0 and m/q is a positive integer. The corresponding operators are
globally regular, as proved for example in [6,2,4]. Computing the Puiseaux expansion (1.8), we have

£j(x) = r].i|x|1/q +o0(1x|"/9)  for x — %00, (5.6)

where rji are the roots in C of ppyq(+1,7) = 0. We deduce that (5.5) is satisfied if and only if

Im rji # 0 for all the roots.
We then recapture the global regularity from Theorem 1.2, provided condition (1.9) is satisfied, i.e.
the roots r;r, or equivalently rj_, are distinct, cf. (1.11). As example, consider the Airy-type operator

P = D? + cx,
which is globally regular if and only if Imc # 0.

Example 5.5. Let the symbol p(x, &) be of the form (5.4), with distinct roots rf in (5.6), but assume
now r;r e R, or r; € R, for some j. The condition (1.9) is satisfied, and we are led to determine

the subsequent terms in the Puiseaux expansion (1.11). We refer to Bliss [1] for general rules of
computations, and we limit ourselves here to the example

p(x. &) =¢&"— Ag" —x (5.7)
with 0 <r <m, A € R. The expansion in (5.6) reads in this case
£5(x) = ejx"/™ +o(|x|}/™)

where ej, j=1,...,m, are the mth roots of 1. To fix ideas, assume m even; then we have for x — 400
the two real roots =£1. It is easy to compute

EL(x) = x4 cux’ +0(x°), x— o0,
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with s=(r+1—-m)/m and c; = £A/m. Note that 1/m > s > —1. Hence if ImA # 0, the condition
(1.10) is satisfied and Theorem 1.2 gives global regularity. Let us test this result on the corresponding
homogeneous equation

D™u — AD"u —xu =0. (5.8)

Every solution u € S’(R), or u € S(R) of the equation can be regarded as inverse Fourier transform of
a solution v € §'(R), respectively v € S(R), of

Dv + (x™ — Ax")v =0,
having the (classical) solution

v(x) = eiAxr“/(r+1)7ix"'“/(m+l)

If ImA #0, then v ¢ S’(R) or v € S(R), depending on r and A, that agrees with the global regularity
of the operator. If A € R, then v € S'(R), v ¢ S(R), contradicting global regularity.

Example 5.6 (Multi-quasi-elliptic operators). (Cf. Boggiatto, Buzano, Rodino [2].) By conjugation with
Fourier transform, which we may consider as a metaplectic operator, we can treat operators with
symbol of the form (5.4) where the role of x and & is exchanged. Global regularity is granted by (5.5)
or (5.6) with lmr}t # 0 where we exchange again x with &; relevant examples of the corresponding
operators are

D + ix™, D? + x*m

for m > 1. Multi-quasi-elliptic symbols are products of the symbols of this form, the quasi-elliptic
symbols in Example 5.4 and the globally elliptic symbols in Example 5.2, possibly perturbed by terms
in the interior of the Newton polygon generated in this way, see [2] for details and equivalent defini-
tions. Under the condition (1.9), we recapture from Theorem 1.2 the result of global regularity in [2].
Limiting again to an example, consider the symbol

£3 +ixg? 4+ x%.

We have & (x) = —ix + 0(|x]), £&2(x) = +/ix1/2 + o(|x|1/2), &3(x) = —/ix'/2 + 0(|x|1/2), writing ++/i for
the two roots of i. Hence (1.10) is satisfied, and the corresponding operator is globally regular.

Example 5.7 (SG-elliptic operators). (Cf. Parenti [14], Cordes [5], Schrohe [15], Schulze [16, Section 1.4].)
The case ¢ = oo in Example 5.4 corresponds to the case of the operators with constant coefficients,
that we treated in Section 1. More generally, we can consider symbols of the following form, with
m=>0,n>0:

PXE) =) copxlE (59)

where we assume cp; ; = 1. We say that the symbol (5.9) is SG-elliptic if

Ip(x, )| =e(1+1x)" (1 + &)™, for x| +1&| > R, (5.10)

for some ¢ > 0, R > 0. In fact (5.10) is equivalent to the following couple of conditions:
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> cant®#0 forg #0, (5.11)
am
Zcm,ﬂxl3 #0 forx=#0. (5.12)
B<n

We know from [14,5,15,16] that SG-elliptic operators are globally regular. Willing to apply our Theo-
rem 1.2, we first observe that factorizing p(x, §) we obtain the roots

Eix)=rj+o), j=1,...,m, (5.13)

where r; are exactly the roots of (5.11). Since (5.11) is equivalent to Imr; # 0 for every j, (5.11)
implies (1.10) for (5.13). Similarly we can argue on the local ellipticity condition (5.12), by using
Remark 5.1. So we recapture global regularity, in the case when (1.9) is satisfied (i.e. the roots of
(5.11), (5.12) are distinct).

Example 5.8. When, for p(x, &) as in (5.9), the equations (5.11), (5.12) admit real roots, we are led to
study terms in the Puiseaux expansion with negative exponents. Consider for example the symbol

(14+x")€™+1, m>0andn > 0 even integers. (5.14)

The local ellipticity condition (5.12) is satisfied, whereas (5.11) reduces to £€™ = 0. We obtain

£ =ejlx ™™ +o(jx™™), j=1,...,n

where e are the mth roots of —1. Since m is even, Ime; # 0, and condition (1.10) is satisfied if
—n/m > —1, i.e. n <m. So we may conclude global regularity for the corresponding Weyl operator, in
this case. When n > m, both (1.9) and (1.10) fail. In fact, the operator is Fuchsian at co for m =n, and
regular at oo if n > m. Hence the solutions of the homogeneous equation belong to S’(R) and do not
belong to S(R). We address to Camperi [3] for a general class of symbols of the form (5.14).

Remark 5.9. According to the definition of Schwartz [17], a differential operator with polynomial
coefficients P is hypoelliptic in R if for every open subset 2 C R we have:

ueD'(2) and PueC®(R2) = ueC>®R). (5.15)

We observe first that every operator of the form (1.1) with a0 # 0 is obviously hypoelliptic. In the
general case, considered in Remark 5.1, we have to take into account the coefficient Q (x) of the
leading derivative, say of order p <m:

Q) = Z cp.pX.

B<m—p

Let us write xq,...,%,, r <m — p, for the real zeros of Q (x). The hypoellipticity of P is granted in
R\ {X1,...,%}. It is then easy to prove that the global regularity in (1.3) implies hypoellipticity in (5.15).

In fact, assume u € D’'(£2) and Pu € C*°(2). Let ¢ € C3°(£2), ¢(x) =1 in a neighborhood of the
points X1, ..., x, which belong to §£2. We know that sing-suppu C {x1,...,x-} N £2, hence (1 —¢)u €
C>°(£2). On the other hand ¢u € £'(2) C S'(R) and P(¢u) = Pu—P(1 —¢)u € C3°(£2) C S(R), hence
¢u € C3°(R) by the global regularity, and therefore u € C*°(£2).

Note that this argument cannot be extended to operators with polynomial coefficients in R", n > 1,
because the manifold where the local ellipticity fails is in general non-compact.
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Note also that Schwartz hypoellipticity does not imply global regularity. In dimension 1, consider
for example the operators P1 = Dy, P, = Dy + X", h > 2, which are obviously Schwartz hypoelliptic,
but not globally regular. In particular, P, keeps the Schwartz hypoellipticity after any possible meta-
plectic conjugation. For a study of the Schwartz hypoellipticity at xi,..., X, we address to Kannai
[12], where a necessary and sufficient condition was given under an asymptotic separation condition,
similar to (1.9).
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