期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:253
On the existence, uniqueness and stability of entropy solutions to scalar conservation laws
Article
Golovaty, Dmitry1  Truyen Nguyen1 
[1] Univ Akron, Dept Math, Akron, OH 44325 USA
关键词: Scalar conservation law;    Entropy solution;    Contraction principle;    Existence and uniqueness;    Continuous dependence;   
DOI  :  10.1016/j.jde.2012.04.024
来源: Elsevier
PDF
【 摘 要 】

We consider one-dimensional scalar conservation laws with and without viscosity where the flux function F (x, t, u) is only assumed to be absolutely continuous in x, locally integrable in t and continuous in u. The existence and uniqueness of entropy solutions for the associated initial-value problem are obtained through the vanishing viscosity method and the doubling variables technique. We also prove the stability of entropy solutions in C(inverted right perpendicular0, Tinverted left perpendicular; L-loc(1)(R)) and in C(inverted right perpendicular0, Tinverted left perpendicular; L-1(R)) with respect to both initial data and flux functions. Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2012_04_024.pdf 385KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:2次