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1. Introduction

In this paper we study the existence, uniqueness and stability of entropy solutions to the quasilin-
ear parabolic-hyperbolic equation

du 4+ 0x[F(x, t,u)] =y inQr:=Rx (0,T),

) (1)
u(-,0)=u° inR,
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where 1 > 0 and the flux function F depends not only on u but also on x and t. When F is assumed
to be Lipschitz continuous in u and is independent of x and ¢, Eq. (1) becomes a classical problem
in scalar conservation laws (see for example [7,12,16,30]). More recently (1) has been studied in
full generality by many authors (see [2,3,11,17-19,29]) as it appears in several applications including
porous media flow [10,14], sedimentation-consolidation processes [8], traffic flow and blood flow. It
is also interesting to note that the scalar equation (1) can be used to analyze the following system of
equations:

3P + dx(pV) = 1350 inR x (0, T),
F*(pv) + d(pv?) = p(@dy® + B) + 1 (viyp) InR x (0,T), 2
32D =p inR,

p(,0)=peP,(R), v(,0)=v"eL%(po)

where o, 8 € R, A > 0 are given numbers and P, (R) is the set of all Borel probability measures on R
with finite quadratic moments. A special case of (2) is the pressureless Euler system (¢ =8 =1 =0)
which was first introduced by Zeldovich [31] to model the evolution of a sticky particle system. A sys-
tem of this type consists of a finite collection of particles that move freely along a given line in the
absence of forces. Moreover the particles stick to each other upon collision to form compound par-
ticles with masses equal to the total mass of particles involved in the collision and velocities are
determined by the conservation of momentum. The system (2) also includes the pressureless, at-
tractive/repulsive Euler-Poisson system with zero background charge (¢« = +1 and 8 =1 =0) used to
model gravitationally interacting particles that stick upon collision. Based on previous works [6,13,25],
we show in [24] that a solution (p, v) of (2) can be obtained from a solution u of the scalar con-
servation law (1) with u®(x) := po(—o0, x] and the flux function F : [0, 00) x [0,1] —> R is given
by

u

F(t,u):= / vO(No(w))da)—i-t/(aa)—i-ﬁ) dw. (3)
0 0

Here Ny is the generalized inverse of u° and coincides with the right-continuous optimal map pushing
the probability measure x,1)dx forward to pg. Notice that u+— F(t,u) is a function in w20, 1)
that is neither Lipschitz continuous nor non-degenerate.

One of the main purposes of this paper is to extend the uniqueness results in [17,19] to more gen-
eral flux functions. There are many works devoted to studying the uniqueness of entropy solutions
to Eq. (1) by using the celebrated doubling variables technique of Kruzhkov [20] and its extension by
Carrillo [9]. On one hand, Karlsen and Ohlberger in [17] and Karlsen and Risebro in [19] considered
the general flux F(x,t,u) and were able to prove the L!'-contraction property for entropy solutions
under some conditions on the flux function which imply, in particular, that F(x,t, u) has to be Lips-
chitz continuous in both x and u and bounded in t. On the other hand, it was shown by Panov [27]
and Maliki and Toure [23] that if F(x,t,u) = ¢(u) and ¢ is continuous then (1) has a unique entropy
solution (see also [1,4,5,21]). These authors actually considered the problem in R", however it is
known from the counterexample of Kruzhkov and Panov [21] that, when n > 1 and F(x,t, u) = ¢(u),
mere continuity of the flux in u is not sufficient to obtain L!-contractivity. For this reason and as we
are interested in results which include the specific flux (3), we restrict our study to the real line R
and consider flux functions of the form

F(x,t,u) = Ki(x,t) fi(u) + Ka(x,0) fo(w) + - + Kn(x, £) fn (). (4)

We then prove in Theorem 2.2 that if A >0, K; € L1(0, T; Wllo’cl (R)) and f; € C(R), then entropy solu-

tions of (1) have the L'-contraction property which yields uniqueness as a consequence. This is one
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of our main results and the conditions on K; and f; are very minimal in view of the well-definedness
of the definition of entropy solutions (see Definition 2.1). The result is obtained by carefully adapt-
ing the doubling of variables technique of Kruzhkov and through an approximation step. We also
use some ideas previously employed by the authors of [1,9,17,19,27,23]. We remark that it is pos-
sible to include a source term into Eq. (1) and allow for a more general diffusion function (i.e.
A(u) instead of Au) as in [17,19,23] but, for simplicity, we choose not to consider these generali-
ties here.

We also prove the existence of entropy solutions of (1) for flux functions of the form (4) and
for bounded initial data. There are scattering results about existence of solutions under different as-
sumptions and using different methods, beginning with the pioneering works of Oleinik [26] and
Kruzhkov [20]. The case A =0 and F(x,t, u) = ¢(u) with continuous ¢ was considered by Andreianov,
Benilan and Kruzhkov [1], and Panov [27]. Maliki and Toure established in [23] the existence result for
a general diffusion function and F(x,t,u) = @(u). In [18], Karlsen and Risebro studied the situation
where F(x,t,u) = f(k(x),u) and, by proving convergence of finite difference schemes, they obtained
the existence of an entropy solution when f satisfies strong smoothness assumptions (see Section 2.1
in [18]) and u®, k, k' are in BV N L' N L®. We note that the dependence on x makes the existence
problem more difficult as the equation is no longer translation invariant. Recently, Panov investigated
in [29] the hyperbolic case (i.e. A =0) for a very general flux function F(x,t,u) and he was able to
prove the existence of an entropy solution by taking appropriate smooth approximations Fp(x,t, u)
of F(x,t,u) and studying the limit via localization principle for H-measures of entropy solutions to
the equation 9;u™ + 9xFm(x,t, u™) = 0. Our existence result in the particular case A =0 can follow
from [29], however our proof is via the vanishing viscosity method which is of independent interest
because it shows in addition that solutions of the viscous problems converge to that of the inviscid
problem (Theorem 3.6). As a consequence, we are able to avoid imposing the non-degenerate con-
dition on F as in [29] when F(x,t,u) is independent of x (see Theorem 3.7); thus allows for flux
functions such as (3).

Besides the results about existence and uniqueness, in this work we also investigate the continuous
dependence of the unique entropy solution with respect to the flux function F(t, u) = Zf’:l Ai(t) fi(w)
and the bounded initial data u®. Our main stability result (Theorem 4.1) generalizes the result
by Maliki in [22] where F = @(u) was considered. We show that if F,(-,u) — F(-,u) in L1(0, T),
Fa(t,:) - F(t,-) in CR) and u) — u® in L} (R), then the corresponding entropy solutions u, con-
verge in C([0, T]; L}OC(]R)) to the entropy solution u of the initial-value problem 9:u + 9xF (t, ) = Alixy,
u(-,0) = u®. Moreover, the convergence is in C([0, T]; L'(R)) if u® converges to u® in L' (R).

We end the introduction by pointing out that there is some recent progress in studying the well-
posedness for inviscid scalar conservation laws when the flux depends discontinuously on the space
variable x. Chen, Even and Klingenberg considered in [11] flux functions of the form F(x,u) under
very special structural conditions, while Andreianov, Karlsen and Risebro studied in [3] the flux func-
tion defined by F(x,u) := X(—c0,0) ™) flw) + X(0,00) (%) fT(u). It would be interesting to know what
happen in the case F(x,t,u) is given by (6) with K; € L1(0, T; BVj,c(R)) and f; € C(R). One of the
main obstacles is to find a correct notion of solutions noticing that the second integral in Defini-
tion 2.1 does not make sense anymore due to the presence of the term er sign(u —k)pdF;(x,t, k),
where F; is the singular part of Fy. Panov introduced in [29] a notion of entropy solutions
for very general flux functions by replacing the undefined term by its well-defined upper bound
fQT ¢ d|F5|(x,t, k). This makes the existence of solutions plausible but one should not expect unique-
ness when Fy has a singular part.

The paper is organized as follows. In Section 2 we prove the Kato-type inequality and then use
it to establish the L'-contraction principle for entropy solutions. We study the existence of an en-
tropy solution for bounded initial data in Section 3: first for the viscous scalar conservation law in
Section 3.1 and then for the inviscid scalar conservation law in Section 3.2. Finally, Section 4 contains
results about continuous dependence of the entropy solution with respect to the flux function and
the initial data.
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2. Uniqueness of entropy solutions

We consider the quasilinear parabolic-hyperbolic equation

du 4+ 0x[F(x, t,u)] =Aupe inQr:=Rx (0,T),

] (5)
u(-,0)=u° inR,
where A > 0 and the flux function has the form
F(x,t,2) = K1(x,0) f1(2) + K2(x,0) f2(2) + - - + Kn(%,8) fn (2) (6)

with f;: R — R being continuous and K; € L'(0, T; W;O’Cl (R)). Let us recall the definition of entropy
solutions.

Definition 2.1. Let u® € L°(R). A function u € L°°(Qr) is an entropy solution of (5) if Au e
L%2(0,T; H' (R)) and

loc
/{|u — ki + sign(u — k)[F(x, t,u) — F(x, t,k)|¢x} dt dx — / sign(u — k)Fx(x, t, k)¢ dt dx
Qr Qr

+[|u°(x) —k|p(x, 0)dx2k/sign(u — k) uxeydt dx
R Qr

for all k € R and all nonnegative test functions ¢ € Cgo (R x [0, T)).

In this section we establish the following L!-contraction principle which yields in particular the
uniqueness of entropy solutions to Eq. (5).

Theorem 2.2. Assume 1 > 0, f; € C(R) and K; € L'(0, T; L°(R)) N L?(0, T: L2 (R)) N L' (0, T; W, (R)).

loc
Suppose u, v are entropy solutions of (5) with initial data u®, v° € L (R) respectively. Then

/(u(x, t) — v(x, t))+dx < /(uo(x) - vo(x))+dx forae.t e (0,T). (7)
R R
The proof of Theorem 2.2 is based on the Kato-type inequality discussed in the next subsection.
2.1. Kato-type inequality

For each 1 > 0, we define the continuous approximations to the sign™ and sign™ functions:

1 forz>n, 0 forz>0,
signy (2):= 1 & for0<z<n, and sign,(2):=1 7 for —n<z<0,
0 forz<O —1 forz< —.

We will need the following result about the entropy dissipation term which can be found in [15,19,23]
and originates from an important observation by Carrillo [9, Lemma 5].
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1,1
loc

Lemma 2.3. Assume 1 > 0, f; € C(R) and K; € L*(0, T; L} (R)) NL'(0, T; W
andu € L®°(Qr) NL2(0, T; HL (R)) satisfies

loc

(R)). Suppose u® € L®(R)

f(wpt + [F(x,t,u) — Aux]ox)dtdx=0 V¢ € C3°(Qr),
Qr (8)

esslim,_, o+ u(-, t) = u° in L,]OC(R)-

Then for any k € R and any nonnegative function ¢ € C°(R x [0, T)), we have

/{(u — k)" e + sign (u — k)[F(x, t,u) — F(x, t,k) — Ay |opx — signt (u — k) Fx(x, t, k)¢ } dt dx
Qr

- f (W00 — k) Tp(x, 0)dx = lim / |aux? (sign;y) (A(u — k))p dt dx
n
R Qr

and

/{(u — k)" +sign” (u — K)[F(x,t,u) — F(x,t, k) — Auix|px — sign™ (u — k)Fx(x, t, k)¢ } dt dx
Qr
+ f(uo(x) —k) ¢(x,0)dx = li%/ |Aux|2(sign;)/()\(u — k)¢ dt dx.
n
R Qr

It is well known that (see for example [27]) any entropy solution of (5) satisfies (8). Therefore by
combining with Lemma 2.3 we deduce that:

Remark 2.4. Assume A >0 and u € L>°(Q7) N L2(0, T; H;OC(R)). Then u is an entropy solution of (5)
if and only if (8) holds.

Lemma 2.3 together with the doubling of variables technique of Kruzhkov gives the following
Kato-type inequality.

Lemma 2.5. Assume f; : R — R are continuous and K; € L2(0, T; L2 (R)) N L1(0, T; whl (R)). Suppose

loc loc
u, v are entropy solutions of (5) with initial data u®, v® e L% (R) respectively. Then for any nonnegative test

function ¢ € Cg°(R x [0, T)), we have

/{(u — ) e+ signt (u — v)[F(x, t,u) — F(X, £, v) |y + (i — Av) Ty} dE dx
Qr

+ /(u0 —v9) Ty (x,0)dx > 0. (9)
R

Proof. Let ¢ € CSO(QT x071), ¢ >0, ¢=a¢xty,s), where Q1 :=Rx [0, T). We will write u = u(x, t)
and v =v(y,s). Assume for the moment that A > 0. Then it follows from Remark 2.4 and Lemma 2.3
that
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/ /{(u — )t +sign™ (u — v)[F(x,t,u) — F(x,t, v) — Aux |y} dt dxdsdy
Qr Qr

- //signﬂu — V)Fx(x, t, v)q)dtdxdsdy—i—//(uo(x) - v(y,s))+¢(x, 0,y,s)dxdsdy

Qr Qr Qr R
=lii13/ / |Aux|2(signf7r)/(k(u—v))¢dtdxdsdy.
1
Qr Qr

Moreover, integrating by parts in the y variable gives

- / / signt (u — v)(Auy)¢y dt dxdsdy = — li?g[ / sign,; (M(u — v)) (Aux) ¢y dt dxds dy
n
Qr Qr Qr Qr

= —li?(}/. /(Aux)()\vy)(sign;]")/(x(u —v))¢pdtdxdsdy.
n
Qr Qr

Therefore by adding together, we obtain

/ /{(u — )T +sign™ (w — V[(F(x, t,u) — F(x,t,v))px — Aux(dx + ¢y)]} dt dxdsdy
Qr Qr

- //sign+(u — V)Fx(x, t, v)¢dtdxdsdy+//(u°(x) - v(y,s))+¢(x, 0, y,s)dxdsdy

Qr Qr Qr R
= li%/ /(lkuxl2 - (kux)()\vy))(sign;)/(k(u —v))¢dtdxdsdy. (10)
n
Qr Qr

Using the second identity in Lemma 2.3 and arguing similarly as above, we also have

/ /{(v —u)" s +sign” (v —w)[(F(y.5,v) — F(y,5,u))dy — Avy(dx + dy)]} dt dxdsdy
Qr Qr

—//sign_(v—u)Fy(y,s,u)¢dtdxdsdy+//(vo(y)—u(x,t))_¢(x,t,y,0)dydtdx

Qr Qr Qr R
= li%[ /(|)Lvy|2 - (kux)(kvy))(sign;)/()\(v —u))¢dtdxdsdy. (11)
1
Qr Qr

As z~ = (—2)*, sign™(z) = —sign* (—z) and (sign;)’(z) = (sign;)/(—z), we obtain by adding (10) and
(11) that

/ / (U — V)" (J + d) dtdxdsdy
Qr Qr

+ //sign*(u —W[F&. t,u) — F(y,s,v)](¢x + ¢y) dt dxdsdy
Qr Qr
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+ / / sign™ (u — V){[F(y.,s,v) — F(x,t, v)|¢x — [F(x,t,u) — F(y,s,u)]¢y } dtdxdsdy

Qr Qr
+//{sign+(u—v)(kvy—Aux)(¢x+¢y)}dtdxdsdy
Qr Qr
+//sign*(u—v)[Fy(y,s,u)—Fx(x,t, v)]pdtdxdsdy
Qr Qr
+//(u0(x)—v(y,s))+¢(x, O,y,s)dxdsdy—i—//(u(x, £ — () ¢ (x t, y, 0)dydtdx
Qr R Qr R
=1i£18//|Aux—kvy|2(sign;)/()»(u—v))¢dtdxdsdy20.
n
Qr Qr

Also it follows from
sign® (u — v)(Avy — Auy) = signt (A(u — v))Av, —sign® (A(u — v))Auy
=—(\u—Av)) — (lu — Av)f
and integration by parts that

/ / {sign™ (u — v)(hvy — M) (¢x + ¢y) } dt dxdsdy
Qr Qr

=—//(Au—)Lv);,r(¢x+¢y)dtdxdsdy—//(Au—)\v);(¢x+¢y)dtdxdsdy

Qr Qr QrQr
= / / ()\.u — )\.V)+(¢XX + 2¢xy + ¢yy) dtdxdsdy
Qr Qr

Thus the above relation can be rewritten as

/ / (U —v)T (¢ + ¢s)dtdxdsdy

Qr Qr
+ / / signt(u — v)[F(x, t,u) — F(y,s,v)](¢x + ¢y) dt dxdsdy
Qr Qr
+ / / (Au — )¥V)+(¢xx + 2¢xy + ¢yy) dtdxdsdy
Qr Qr
+ / / signt(u — v)[Fy(y,s,u) — Fx(x,t, v)|pdtdxdsdy
Qr Qr

+ / / sign™ (u — V{[F(y,s,v) = Fx,t, v)]|¢x — [F(x,t,u) — F(y,s,u)]¢y } dtdxdsdy
Qr Qr
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+ f / (u0x) — v(y,s))+¢(x, O,y,s)dxdsdy—l—//(u(x, t) — vO(y))+¢(x, t,y,0)dydtdx
Qr R Qr R
>0. (12)

We derived (12) for A > 0. In the case A =0, Definition 2.1 implies that

O (u — k)T + ox[signt (u — k) (F(x, t,u) — F(x,t,k))] + sign™ (u — k) Fx(x,t,k) <0, and
d(u — k)~ + Ox[sign™ (u — k)(F(x,t,u) — F(x,t,k))] + sign™ (u — k) Fx(x, t, k) <0

in D’(Q7). Hence by inspecting the arguments leading to (12), we see that inequality (12) also holds
for 2 =0 as well.
Next for p > 0, set §,(2) := %8(%) where § € C3°(R) is given by

=
5(2) := Cer-22 if |z| <1, (13)
0 if]z] > 1

with C > 0 being chosen such that /RS(O')dO' = 1. Consider any nonnegative test function ¢ €
C°°(QT) and define ¢ € COO(QT x 01) by ¢p(x,t,y,s) i= 1//(X+y E38,(55)8,(552). 1f we let vy
and ¢t denote the derivatives of ¢ in its first and second varlables respectively, then a direct com-
putation yields

(¢t + ) (x,t,y,5) = )
de(x, L, y.5) = |:¢X(X+y,t+s)5h<x2y)+¢(x
by(x.t,7.9) = [WX<X+y’t+S>5h(X2y> (

(Px +dy)(x,t,y,5) = (X;y,HS)Sh(X;y)%(t;S),

(Pxx + 200y + Gyy) (XL Y, 5) = 1/fxx<“2ry’ HS)Sh(x_y)Bp(t_s)'

(x—l—y t+s

Using this test function, it follows from (12) that

//(10+I1+12+I3+I4)5h< 2y>5p( )dtdxdsdy

Qr Qr
1 X+y t+s\_,[(x—Yy t—s
v3 [ (5525 (T aeanasar
Qr Qr
T
+/[{(uO(x)—v(y,r))*+(u<x,t)—v"(y))*}w(x;y ;)ah<x zy) pG) dxdy dt
0 R2

>0, (14)
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where

X+y t+s
I = —_ + —_——
0:=(U-v) wr( 7 3 )

Iy i=sign* (u — v)[F(x.t.u) — F(y.5, v)]wx< ery “2”),

X+y t+s
A —Aav)T ,
= (Au v)¢x<2 , 2)

. X+y t+s
I3 :=sign™(u — v)[Fy(y,s, u) — Fx(x, t, v)]¢< : y’ T)

2 72
+[F@x.t,u)— F(y,s,w]}.

Ig:=signt(u — V){[F(y.5.v) = Fx.t, )] = [Fx t,u) — F(y. s, u)]}%wx(’“r y t+—5>
Is :=sign*(u — W){[F(y.s,v) — F(x.t,v)]

Using the change of variables X = *3¥, j = *5¥, we have

2 72 2
0 R2

T
o X+y t X—y t
E?gg%//{(uo(x)—v(y,t))++(u(x, t)—vo(y))Jr}w( —>8h( )%(5) dxdy dt

=2Lig3g%ff{(u°6«+9)—v(i—&,t>)++(u(i+y,t>—v°<>”<—9))+}
0 R2

.t N t -~
X w(x, E)Bh(y)5p<§> dxdydt

:251153/ {@WE+ 7 = VPG =) + WG+ ) —vO&— 1)}y & 0)8,(7) dRdy
RZ

=4/ (00 — v(0) Ty (x, 0) dx. (15)
R

Similarly, we now use the change of variables

x=%2 y=2) F=45 §= L5 which maps Qr x
Qr into R x R x {(£,5): 0<t+5<T, 0<t—35<T}). We employ this to obtam the following limits:

. X—y t—s
liml I8 8o —— )dtdxdsd
i [ o757 o (5 s
Qr Qr
t t—
_llmllm//(u—v)Jr x+y *s 8h —J 8p s dtdxdsdy
hi0 00 2 2 2 2

=4/ (U, t) — v(x, ) e (x, £ dedx, (16)
Qr

1349



1350 D. Golovaty, T. Nguyen / J. Differential Equations 253 (2012) 1341-1375

.y X—y t—s
liml 118 8o —— )dtdxdsd
it | [ 10 (*57 oo (57 aeaxesey
Qr Qr
= 4/ sign (u(x, t) — v(x, O)[F(x, t,u(x,t)) — F(x,t, v(x, 1)) J¥x(x, t) dt dx,
T
limlim//125h<x_y
hl0 pl0 2
Qr Qr Qr
limli 136 dtdxdsd
i [ (537 oo (5 s

:4/sign+(u(x, ) —v(x, ) [Fx(x. t,ux, 1)) — Fx(x.t, v(x, ) [ (x, t) dt dx,

Qr
limli 146 dtdxdsd 0
it [ [ 1200 (“52 ) (5 ) vanasay -

Qr Qr

>5p (t%s) dtdxdsdy = 4/ (Aux, t) — Av(x, t))+wxx(x, t)dtdx,

and

. Xty t+s\., (x—y t—s
liml I , k) ) dtdxdsd
h'?c}éi‘%//“/’<2 2>h<2)”<2) Sl

Qr Qr

_Ei]gllm//mgnﬂu—v){[F(y s, V) — F(x,t, )]+ [F(x,t,u) — F(y,s,w]}
010
Qr Qr

X+y t+s x—y t—s
x1ﬁ< R >5;1< > >5p< 5 )dtdxdsdy

= 2%}{8/ / sign*(u(x, D —vy, ON[F(y.t,v(y.0) = F(x,t,v(y,0D)]

R Qr

+[F(x t,ux,0)) — F(y, t, u(x, t))]}¢<x+y,t)a,;(x ; y) dtdxdy

2

_22:llm//51g1fr ux, t) — vy, 0)[fiux, 0) — fi(v(y. 0)][Kix, t) — Ki(y, )]

- R Qr

><1ﬁ<x—|2_y )5,,( . )dtdxdy

=8 / sign™ (u(x, t) — v(x, D) [Fx(x.t, v(x, 1)) — Fx(x, t, u(x,t)) [ (x, t) dt dx,
Qr

where we have employed Lemma 2.6 below to obtain the last identity.

(17)

(18)

(19)

(20)

(21)

By first letting o | 0 and then h | 0 in (14), we conclude from (15)-(21) that the inequality (9)

holds. O
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In the above proof, the following lemma was used to obtain (21). We prove it by approximating
the flux function and the entropy solution so that we can perform integration by parts to handle the
term §; .

h

Lemma 2.6. Assume f € C(R) and K € L(0, T; L°(R)) N L' (0, T; WL (R)). Let

loc

An :=//H(u(x,t),v(y,t))[l((x,t)—K(y,t)]w(x—;y,t>8;,<xgy)dtdxdy

R Qr
where H(u, v) :=sign™ (u — v)[ f (u) — f(v)]. Then we have
mgAh = —4/ H(u(x, t), v(x,0) (x, Ky (x, t) dt dx. (22)
Qr

Proof. Since f € C(R), there exists a sequence {f¢} of Lipschitz functions on R such that fe — f
uniformly on compact subsets of R. Let H¢ (u, v) :=sign* (u — v)[ fe (1) — fe(v)], and

A€ :://Hé(u(x, 0. v(y.0)[K(x, r)—1<(y,t)]w(x;y,t)a,;<xgy)dtdxdy.

R Qr
We claim that
%i{g A = —4/ HE (u(x, t), v(x, ) ¥ (x, ) Kx(x, t) dt dx. (23)
Qr

To see this, let {u"} be a sequence of smooth functions on Qr such that u" — u a.e. on Qr and
lu™loc@r) < llutllree(qqy for all n. Then we have

AS +4 / HE (u(x, ), v(x, ) ¥ (X, ) Kx(x, t) dt dx

Qr
://He(u"(x, r),v(y,t))[K(x,t)—K(y,t)]w(x;y,t)&,@(";y)drdxdy
R Qr

+4 / HE (u" (x, 1), v(x, )9 (x, ) Kx(x, t) dt dx
Qr

+4/ [HE (ux, ), v(x,t)) — HE (u" (x, 1), v(x, 1)) ¥ (x, ) Kx (x, t) dt dx
Qr

+//[H€(u(x, 0, v(y,0) —H (W', ), v(y,0)][K&x.t) — K(y, 0]

R Qr

xw(x+y,t>8;l<¥>dtdxdy. (24)

2



1352 D. Golovaty, T. Nguyen / J. Differential Equations 253 (2012) 1341-1375

Observe that |H€(uq,v) — H¢(uz, v)| < |l fellLplur — uz|. That is for each fixed v, the function
u > H€(u,v) is Lipschitz continuous. Therefore by using integration by parts and the chain rule
LHEW(x, 1), v(y. 1)) = HE(u™(x, £), v(y, ) ul(x, 1), we obtain

lim//He u"(x, ), v(y. D) [Kx, ) — K(y, t)]zﬂ(% t)8h< 5 )dtdxdy

hl0

R Qr
:—Zhin(}//H,j(u"(x, ), v(y, D) upx, D[ K(x, t)—K(y,t)]1ﬁ<x—’2_y,t>8h<x;y)dtdxdy
' R Qr
ol e (yn Xty X—y
2%//14 (u (x,t),v(y,t))l(x(x,t)l/f( > ,t)8h< 5 )dtdxdy
Qr
_E?S//Hf(u“(x,t),v(y,t))[K(x, t)—K(y,t)]tpx<x—i2_y,t>5h(xgy)dtdxdy
R Qr
=—4 / HE (u" (x, 1), v(x, 1)) Kx(x, D) (x, ) dt dx.
Qr

Thus by taking the limit h — 0 in (24) we arrive at

lim sup
h0

Aj + 4/ HE (u(x, t), v(x,0)) ¥ (x, O Kx(x, t) dt dx
Qr

T Ry
<||fe||up||w||oo{4/ [ 1m0 = e o] [y ) e
0 —R;
T R Ry

+1imsup/ / / [u(x, ) —ux, O||K(x,t) = K(y,0)|

hl0
4 0 Ry

5h< >‘dydxdt] (25)

for some constant Ry > 0 depending only on the support of . We have

T Ri Ry

/ / / [u(x, ) —ux, 0| |Kx, ) — K(y, 0| 5h< >‘dydxdt

0 —R; —
T Ry x+2h
// / [u"(x, ) —ux, 0| |K(x, t)—l((y,t)\hz ( T )’dydxdt
0 —Rq1x—2h

1 T Ry

=4/{f / |u”(x,t)—u(x,t)||ghz(x,t)|dxdt]|z||8’(z)|dz

-1 %0 —R4

where gp,(x,t) := %Mh“) Moreover, gn; —> Kx in LY((=R1, R1) x (0, T)) as h tends to zero
because gp,(x,t) —> Kx(x,t) for a.e. (x,t) in £2 :=(—R1, R1) x (0, T) and
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T Ry
l&nzlli (o) /[Zhl p / |K(x,t)—K(X—th,t)]dx:|dt
0 —Rq

|

T
/Tle K(-,t) dt_/HKx( t)HLl( Rykp 46 = 1K1 (o)
0

Here TVg (&) denotes the total variation of the function & on the interval (—R, R). Therefore, since

u™ —u e L*°(Qr) we infer that
(Sh< )‘dydxdt
T Ry

1
:4/!/ f yu"(x,t)—u(x,t)HKx(x,r)wxdt}|z|]5’(z)ydz.
-1

0 —Ry

T Ri Ry

lim///|u (x, 1) —ux, | |[K(x, t) — K(y,0)]

hi0
0 —Ry—

This together with (25) gives

limsup|A}, +4 / HE (u(x, ), v(x, ) ¥ (X, ) Kx(x, t) dt dx
o Qr
T Ry
<C||fe||up||wnoo/ / [u"(x,t) — u(x, 0)||Kx(x, )| dxdt.
0 —Ry

Since u™ — u almost everywhere on (—R1, R1) x (0, T) and |[u"|1=(q;) < lulle(qy). by letting n —
oo and using the dominated convergence theorem we then obtain (23) as desired.
Next we have

Ap +4fH(u(x, 1), v(x, )Y (x, )Kx(x, ) dt dx

Qr
<|An — A5 |+ | A +4/H€(u(x, £), v(x, ) ¥ (x, ) Kx(x, t) dt dx
Qr
+4/ |H(ux, ), v(x,t)) — HS (u(x, 1), v(x, 1) || (x, O)| | Kx (%, )] dt dx. (26)
Qr

=2z

To estimate |A; — Apl, note that as §(z) is given by (13) we get §;(2) = ﬁ
h

Sn(z). Hence

T Ri x+2h
A;—Ahlgff /\Hf(u(x,t),v(y,t))—H(u(x,t),v(y,t))HK(x,t)—1<(y,t)\1//<x+Ty,t>
0 —Ryx—2h

1% x—y
x[ ( )2]2811( 5 )dydxdt.
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It is easy to see that [HE(u(x,t), v(y,t)) — Hu(x, t), v(y, )| < 2| fe — fllLoo(=Ry.Ry), Where Rg >0
is a constant satisfying ||u|lco, |V]lco < Ro. It follows that

T Ry 1 =1
IK(x,t) — K(x — 2hz,t)| z%e1-22
45— An] <Clfe = s Wl [ [ f _ dzdxde

2h|z| (1—-22)
0 —Ry -1
T 1 zzeﬁ
<l = Pl Wl [ [ TV (KC0) 25 dear
0 -1
T Ry
<Cllfe = f||L°°(7R0,Ro)||¢||oo/ / |Kx(x, t)| dxdt,
0 —R]

1
where we have used the fact that e20-2) > 8(1_1—22)2. This together with (26) and (23) gives

limsup | Ay, +4/ H(u, t), v(x, ) ¥ (x, ) Kx(x, t) dt dx
hl0 o
T Ry
< Cllfe = fliLo(=Ro.Ro) ||1/f||oo/ / |Kx(x, )| dxdt Ve > 0.
0 —Ry

Letting € — 0, we conclude that

limsup
h|0

Ap +4/H(u(x, £), v(x, 1))y (x, ) Kx(x, t) dt dx| <O
Qr

yielding (22). O
2.2. Proof of the L!-contraction principle

We are now ready to prove the L!-contraction principle. The following well-known version of
Gronwall’s inequality will be needed.

Lemma 2.7 (Gronwall’s inequality). Let tg < T < 4o00. Assume x,h € L®(to, T) and k € L' (tg, T) are non-
negative functions satisfying
t
x(t) <h() + / k(s)x(s)ds forae.t e (to, T).
to

Then

t t
x(t) gh(t)—i—/h(s)k(s) exp|:/k(u)duj| ds forae.te(to,T).
to S
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In addition, if h(t) is nonincreasing on [tg, T), then

t

x(t) < h(tg) exp|:/k(s) dsi| forae.te(ty, T).
to
Proof of Theorem 2.2. Let M > 0 be such that |[u]l~(q,) <M and ||v|lreq;) < M. For each i, as f;

is uniformly continuous on [—M, M] there exists a nondecreasing subadditive function wj; : [0, 00) —
[0, 0c0) satisfying

|fi(z1) — fi(z2)| < wi(lz1 — 221) Vz1,22 €[-M, M].

wi(€)

Also by replacing w;(€) by wi(€) + /€ if necessary, we can assume further that lim._, g+ == =+o00
foralli=1,2,...,N. Then
N
|sign® (u — V)[F(x.t.u) — F(x.t ]| < D [Ki(x.0)|[sign™ @ — v)[ fiw) — fi(W)]]
i=1
N
<K t|oi(@—wv)h).
i=1
Let € > 0. Since w; is nondecreasing and subadditive, we have
w;i(€)
wi(r) < (r+e¢) c foranyr > 0.
Hence by setting w := (u — v)* and w® := u® — v%)*, we obtain from Lemma 2.5 that
3 i(€)
/ iwwt +(w+ e)(Z |Ki(x,0)] ‘6 )le + AW| Yy } dtdx>0 (27)
Qr i=1
for all € > 0 and all nonnegative test functions ¢ € Cg°(Qr). We claim that (27) yields
/w(x, r)dxé/wo(x)dx forae.t € (0, T). (28)

R R

To see this, let us consider a function g € C3°(R), spt(8) C [0, 1], B(s) >0 and [ B(s)ds = 1. For each

v €N, define §,(s) :=vB(vs) and 6,(t) := ffoo 8y (s)ds. It is clear that the sequence §,(s) converges
to the Dirac §-measure in D'(R) as v — oo. Since 0 < 6,(t) <1, 6,(t) =0 if t <0 and 6, (t) =1 if
t > 1/v, the sequence 6, (t) converges pointwise to the Heaviside function sign™(t) as v — oco. Now
for any nonnegative function £ € Cg°(R) and any o, T € (0, T) satisfying o < 7, by applying (27) for
the test function v (x,t) :=&(x)0, (Tt — )0, (t — o) we get

/ w(x, H)EX)S, (Tt —t)0,(t —o)dtdx — / w(x, H)EX)0, (T —t)é,(t —o)dtdx
Qr Qr
N

< / :(w + e)(Z |Ki(x, t)| wi(e)) | +xw|sxx|}9v(r — 06, (t — o) dtdx.

€
Qr i=1
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It follows by sending v — oo that

N

/w(x,ng(x)dxg/W(x,a)g<x)ax+ff(w+e><Z|K,( |24 )>|sx|dxdt

R R o R i=1

T
+//Aw|gxx|dxdt
o R

for ae. 0,7 €(0,T) with o < t. Hence by letting ¢ — 0% and using esslim,_, o+ [w(t) — w°] =0 in
(R), we conclude that

loc

N
/ W DEX) dx < / WO (x) dx + Z[‘“’
R R i=1

(6)//w‘](i(x,t)]|a§x|dxdt:|
0 R
N T T

+Z[w,»(e)/f|1<,-(x, t)||§x|dxdt:| +//Aw|§xx|dxdt (29)
i=1 0 R 0 R

for any nonnegative £ € C3°(R) and a.e. 7 € (0, T). But as K; € L1(0, T; L°°(R)), we infer from standard
approximations that (29) holds for all nonnegative & € Wé’l(]R) =W21(R).

Following [23], we take v € C2(R) NL(R) be such that 0 < ¢ <1, ¥ =1 in [-1,1], |¢¥/| < ¢ and
|¥"| <. For each € > 0, let £(x) := 1//(%) where R := R(¢) > 0 will be chosen later. Then

S()

£=1 inK:=[-R,R], x| < === and |Ex(®)| < (x).

Set K :=R\ K, then by (29) and since [z €dx=2R [{° ¥ (x)dx =: CoR, we have

R R

N Fwie) [ ol
+; - //]K,-(x,t)\sdxdt +ﬁ//w§dxdt
= 0 0

/w (x)E(X)dXJr—( +Zw1(e))//||M( 0| joo (i) W dxdt

0 g

N T
/w(x, r)&(x)dxg/wo(x)s(x)dx—i— Z[%/ﬂm(x, t)|w.§dxdt:|
i=1 0 %

N T
+ Cozwi(é)/ M. 0) HLw(f() dt
i=1 0
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where M(x, t) := max {|K1(x,t)|, ..., |Kn(x,0)|, 1}. We now choose R = R(€) > 0 such that L (%€ +
YN, wi(e)) = 1. It follows that

R— il @i(e) + \/[Z,N:] wi(€)]? + 4re?
B 2¢€ )

(30)

In particular, we get R — oo as € — 07 since lim_, o+ %

from the above inequality that

= +4o00. Using this choice of R we infer

N T
/W(x, r)é(X)dX</WO(X)S(X)dXJrConi(e)/ IMC. O] oo gy dt
R 0

& i=1

+/ HM(-,t)||Lm(R)</w§dx> dt (31)
0

K

for any € > 0 and a.e. 7 € (0, T). Hence Gronwall’s inequality (see Lemma 2.7) gives

N T
/w(x,r)x[,R,R](x)dxg {/wo(x)dx—f-Co Za)i(e)/ IMC O o gy dt}efOT IMC.Dleod
0

R H i=1

It follows by letting € — 01 and using Fatou’s lemma that

T
/w(x, T)dx < |w° HU(R)efo IMCDlle® A — 5o forae. T € (0, T).

R

We infer from this estimate that the functions he(t) := f,~< w(x, t) dx satisfy ||he |z, 1) < C uniformly
in € and lim._ g+ he(t) =0 for ae. t € (0, T). Therefore by letting € — 0% in (31) and using the
dominated convergence theorem, we obtain (28) as claimed. O

The following results are immediate consequences of Theorem 2.2.

Corollary 2.8. Assume A >0, f; € C(R) and K; € L'(0, T; L°(R)) N L%(0, T; L2 (R)) N L' (0, T; W}(;Cl (R)).
Let u® € L°(R) and suppose that u is an entropy solution of (5). Then

uc, t)||L1(R) < ”l‘OHU(R) forae.t e (0,T). (32)
In case K;(x, t) are independent of x, we also have
TV(u(-, 0)) <TV(u®) forae.te(0,T). (33)

Proof. Inequality (32) is obtained from Theorem 2.2 by taking v = 0. On the other hand, (33) follows
from Theorem 2.2 by taking v = u(x + h, t), where h > 0 is arbitrary. O
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Corollary 2.9. Assume % > 0, f; € C(R) and K; € L1 (0, T; L°°(R)) N L2(0, T; L2 (R))NL'(0, T; W}o*j (R)).

loc
Let u®, v0 e L°(R) satisfy u® — v® e L1 (R). Suppose that u and v are entropy solutions of (5) with initial
data u® and v° respectively. Then for almost every t € (0, T), we have u(t) — v(t) € L' (R) and

/ [u(x,t) —v(x,t)]dx = / [u®C0) — vO(x)]dx. (34)

R R

Proof. Theorem 2.2 gives u(t) — v(t) € L'(R) and [|u(t) — v() | ;1 gy < [[u® = vO||;1 g, for ae. t € (0, T).
Next we express that u and v are weak solutions of (5). Choosing a test function of the form ¢ (x, t) =
X ()0 (ex) where x € Cg°(—o0,T) and 6 € C°(R) with & =1 in a neighbourhood of the origin, we
have

/(u — V)3 e dxdt + f [F(x,t,u) — F(x,t,v)]oxpe dxdt
Qr Qr

+/(u0(x) —vO(%) e (x, 0) dx = —A/(u — )32, pe dxdt,
Qr

R

that is to say,

/ (u—v)x ()0 (ex)dxdt + € / [F(x,t,u) — F(x,t,v)] x ()6’ (€x) dxdt
Qr Qr

+ x(0) / (u®(x) — v0(%))0(ex) dx = —re? / (u —v)x (0" (ex)dxdt.
R Qr

Since [[u(t) = v(t)| 1) < u® = v |1 gy and u® — v0 € L1 (R), the theorem of dominated convergence
allows us to pass to the limit in each of the four integrals when € — 07 to obtain

/ (u—v)x'(t)dxdt + x(O)f () — v°(x))dx=0. (35)
Qr R

Indeed, to see the second term tends to zero observe that

N N
[Fx.t.u) — Fx. . v)| < D [Kix. 0| fiw) = fi(v)| < | Kix. )i (lu — v])

i=1 i=1
o wi(€)

< Z|Ki(x, Ol(lu—vli+ e)lT for any € > 0,
i—1

where w; are chosen as in the proof of Theorem 2.2. Therefore,
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limsupe
€e—07t

/ [F(x,t,u) — F(x,t,v)] x ()6’ (€X) dxdt‘

Qr

N T
S Zlimsoﬂp")i(e): ”9/”00/ | ki) HL"Q(R) lu® —v@© ”Ll(R)’X(t)|dt
0

i=1 €—
T

+e/ ||I<i(t)”Lm(R)])((t)|</|9’(ex)|dx> dt}
0 R

N T
< Zlieris;)lipw,-(e){||0’||oo||u° - VO“U(R) + ||0/||L1(R)}/ IKi©) ||L°°(R)|X(t)|dt =0
i=1 0

as desired.

Let h(t) := [p[u(x,t) — v(x,t)]dx for t € [0, T], which is a function in L*°(0, T). Then (35) can
be rewritten as fOTh(t)X’(t) dt + x(0) [ W® —vO)dx =0 for all x € C°(—oo, T). We deduce that
h(t) = [ @® —v%)dx for a.e. t € (0, T) and hence (34) is proved. O

3. Existence of entropy solutions

In this section we show that Eq. (5) with A > 0 admits an entropy solution for any given bounded
initial data. The flux function F(x,t, u) is assumed to be of the form (6).

3.1. Viscous scalar conservation law

We first consider the case A > 0 and for simplicity let us take A =1, that is,

[ du+ ox[Fx, t,u)] =uxx inQr:=Rx (0,T), (6)

u(-,0)=u° inR.

Let W(0, T) :={u € L2(0, T; H'(R)): u; € L2(0, T; H~'(R))}. Note that since W (0, T) c C(0, T; L2(R)),
we have lim;_, o+ [|u(t) — u(0)l|l 2, =0 for all u e W(0, T).

Proposition 3.1. Assume f; : R — R are Lipschitz continuous and K; € L°°(R x (0, T)). Then for each u® e
L2(R), the initial-value problem

{ du+ d[F(x,t,u) — F(x,1,0)] =uy in Qr, 37

u(-,0)=u° inR
has a unique solution u € W (0, T) with u(0) = u® in the L sense.
Proof. For v € L2(0, T; L2(R)), let h(x,t) := —e ®{[F(x,t,e® v (x,t)) — F(x,t,0)] where ® >0 is a

constant determined later. Then h € L2(0, T; L(R)) due to f; are Lipschitz continuous and K; are
bounded. It follows that there is exactly one solution w € W(0, T) of the equation

Wt_ﬁ/xx+@w:hx in QT7
w(,0)=ud inR.
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Moreover for a.e. t € (0, T), we have
(We(t), 2) + / (Wx(x, D)z + OW(x, 1)z) dx = —/h(x, Hzxdx VYze H'(R). (38)
R R
Here and what follows, (-,-) denotes the standard pairing between H~1(R) and H!(R).
Define To(v) := w. Then Tg : L2(0, T; L(R)) —> L2(0, T; L2(R)). We next show that Tg is a

contraction for ® large enough. Indeed, let w1 =Tg(v1) and wy = T (v2). If we set w := w1 — wy,
then it follows from (38) that

(wt(t),z>+/[wx(x, zy + Ow(x, t)z]dx

= e_@t/ [F(x.t.e”vi(x.0) — F(x.t,e”'va(x.0)]zcdx forallze H'(R).
R

By taking z(x) := w(x, t), this gives for a.e. t

Q.lQ_

(W(t) w()2 + [wx(®) ”LZ(R) +0[w® ”LZ(R)

N =

= —O‘/ZK,(X O[fi(e® vix, 0) — fi(e® va(x, ) Jwx(x, ) dx

Rzl

< / Clvix, t) — va(x, 0)||wx(x, )| dx,
R

where C := Zﬁvﬂ 1 Killzoo®x 0,7y |l fill Lip(r). Integrating with respect to t and noting that w(0) =0, we
obtain

T

1 2 2 2
S g+ [ 1w ey + 01w [ )
0
T
CZ
\Z//|v1(x t) — va(x, 0)| dxdt+//|wx(x t)| dxdt
0 0 R

yielding

T T

C2
/Hw(t)”iz(R)dtg4—H//]vl(x,t)—vz(x,t)yzdxdt.
0 0 R

Thus for ® > C2/4, the map Tg : L%(0, T; L%(R)) — L2(0, T; L2(R)) is a contraction. So there exists a
unique v € L2(0, T; L2(R)) such that T (v) = v. This implies that v € W (0, T) and u(x, t) := e®v(x, t)
is the desired unique solution to Eq. (37). O

The next result gives more information about the solution when the initial data is bounded.
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Proposition 3.2. Assume that the functions f; : R — R are locally Lipschitz continuous and K; € L*°(R x
(0, T)). Suppose there exist some a, b € R with a < 0 < b such that

W[F(x,t,a) — F(x,t,0)] = 0x[F(x,t,b) — F(x,t,0)] =0 fora.e. (x,t) e R x (0, T).

Then for any u® e L?(R) N L (R) satisfying a < u®(x) < b, Eq. (37) has a unique solution u € W (0, T) N
L®(R x [0, T1) with u(0) = u® in the L2 sense. Moreover for a.e. t € (0, T), we have a < u(-, t) <b.

Proof. Let ¥ (z) = ¥ (|z]) € C*°(R) be such that 0 < ¥ <1, ¥(z) =1 on [a,b], and ¥(z) =0 on
(—00,a—1]U[b+ 1, c0). Define

fi@) =¥ @ fi(z) and Fx,t,2):=Ki(x,0)f1(2) + -+ Kn&x t) fn(2).

Then f i :R — R are Lipschitz continuous. Therefore by Proposition 3.1, the equation

et + ox[F(x, t,u) = F(x,t,0)] =uxx in Qr,
u(-,0)=u° inR
has a unique solution u € W (0, T). We claim that a < u(-,t) <b for a.e. t > 0. This together with the

definitions of f; yields that u is also a solution to (37). In order to show the first inequality in the
claim, define v(x,t) := —u(x,t) +a. Let C := Zf\’:] IKillLoo®x 0,1 | fillLip)- Then for a.e. t, we have

—(ut(t),z>—/ux(x, t)zxdx=/[13(x,t,0) — F(x, t,u(x,0))]zxdx
R R

:/[F‘(x,t,a)—F(x,t,—v(x,t)+a)]zxdx<C/|v(x,t)||zx|dx
R R

for all z e H'(R) with compact support. Notice that since a <0, vt(t) € HY(R) for ae. t € (0,T)
where vt := max {v, 0}. Therefore, if we choose ¢ € C°(R) be such that 0 < ¢ <1, ¢(x) =11if [x] <1
and ¢(x) =0 if |x| > 2, then by taking z(x) := v*(x,t)¢(x/n) in the above inequality and letting n —
oo we obtain

(vt(t),v+(t)>+/vx(x, Hvi(x, t)dng/|v(x, D||vix, t)]dx forae.te(0,T).
R R

Hence it follows by integrating from 0 to t and using the facts ZfOt(vt,vﬂds = ||v+(~,t)\|f2 —

v, 0)||f2, vF(-,00=0 and [, vxvyidx= [, (vi)?dx that

/|v(x,s)||v§’(x,s)|dxds

t
1 2 5
SV Ol g, +/|| VG| ag ds<C
0 R

=C

ot °O—

/|v+(x,s)||v;’(x,s)|dxds
R

t t

C2

<5 [l s+ [1vd e ol
0 0

/
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Thus ||v+(~,t)||f2(R) < %zfot ||v+(~,s)||%2(R) ds for a.e. t € (0,T) and so we conclude from Gronwall’s
inequality (Lemma 2.7) that v*(.,t) =0 for ae. t € (0, T). That is, a < u(-,t) for a.e. t € (0,T). By
considering the function v(x,t) := u(x,t) — b and arguing as above, we also obtain u(-,t) < b for a.e.
t € (0, T). Therefore, the claim is proved.

To prove uniqueness, suppose that u1 and u; are two solutions in W (0, T)NL*(R x [0, T]) of (37).
Then by truncating f; outside the region |z| < max{|lu1|lr®x[o,1]), lU2ll1®x[0,7])} and using Propo-
sition 3.1, we see that u; =uy as desired. O

The following lemma shows that the weak solution obtained in Proposition 3.2 is indeed an en-
tropy solution.

Lemma 3.3. Assume f; : R — R are locally Lipschitz continuous and K; € L°(R x (0, T)) N L1(0, T;
W,lo’c1 (R)). Suppose there exist some a, b € R with a < 0 < b such that

Fx(x,t,a) = Fx(x,t,b) = Fx(x,t,00 =0 fora.e. (x,t) eR x (0, T). (39)

Then for any u® € L2(R) N L (R) satisfying a < u®(x) < b, the unique solution u € W (0, T)NL® (R x [0, T])
of (37) given by Proposition 3.2 is also an entropy solution of (36).

Proof. It follows from Proposition 3.2 and the assumptions that u € L°(Q1)NL2(0, T; H' (R)) satisfies
Eq. (36) in the sense of distributions. Therefore, u is an entropy solution of (36) by Remark 2.4. O

Using the above preliminary results, we obtain the following theorem which is the main result of
this subsection.

Theorem 3.4. Suppose A > 0, f; € C(R), Ki € L2 (R x (0, T))NL'(0, T; wlhl (R)) and condition (39) holds.

loc loc
Then for each u® e L(R) with a < u®(x) < b, the initial-value problem (5) admits an entropy solution u

satisfyinga < u(-,t) < b forae.t € (0,T).

Proof. For simplicity we can assume that A = 1. Let us fix T > T and consider K; as functions in
LY(R; wlh! (R)) by taking K;(t) =0 for t ¢ (0, T). For each i, choose a sequence {Kf} as follows:

loc

KE(x,t) := / KE(x, t —s)ne(s)ds,
R

where {7} is the standard sequence of mollifiers on R and x — kf (x,t) is the absolutely continuous
function given by

Ki(t,oy ifx>1
KEx, 0 =1 Kix,t)  if x| <
Ki(-L0 ifx<-1.

)

Clearly, Kf € C(R x R) and ||Kf e @x(0.7)) = IKf oo =1, 115 0,7y 1N fact, we have {Kf} C L®(R x
©,1)NL'O,T; W, (R) and Kf — K; in L'(0, T; W, (R)) as € — 0. Next observe that without

I
loss of generality wgc can assume fj(x) = fi(a) for x <a and fj(x) = fj(b) for x > b. Then select ff :
R — R be a sequence of locally Lipschitz continuous functions such that ff (a —€) = fi(a), ff 0) =

fi(0), ff (b + €)= fi(b) and ff —> fi uniformly on compact subsets of R. This can be achieved by
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taking f7(x) := fi(x) if x <0, fI(x):= f;(0) if x>0 and f!(x):= fi(x) if x>0, fl(x) := fi(0) if x<0,
and defining

&+ fHk ifx<0

TEO=0 s o ifxso.

Here &!(x) := e~ 1&!(x/€), £l (x) := € 1£"(x/€) where &' and &' are nonnegative functions in C3°(R)
satisfying [&'(x)dx = [&"(x)dx =1, spt(¢!) = [—1,0] and spt(¢") = [0, 1].

Define F€(x,t,z) := Z,N:] K (x,0) ff (2). Then it follows from the above construction and the as-
sumption (39) that

Fi(x,t,a—€)=Fi(x,t,b+€)=F5(x,t,00=0 forae.(x,t) e R x (0, T).
For € > 0, let ug = ”0X<71,1) and u€ € W(0,T) N L®(R x [0, T]) be the unique solution given by

Proposition 3.2 of the equation

[ du€ + [ FE(x.t,u€) — FE(x,t,0)] =uf, inQz:=Rx(0,T), (40)

u€(-,0)=ul inR.
Notice that a — € < e( t) <b+e€ for ae. t € (0,T). Let K C R be an arbitrary compact set and
choose ¢ € C5°(R x [0, T)) such that 0< ¢ <1 and ¢ =1 on K x [0, T]. Multiplying (40) by u€¢ and
integrating over R x (0, T), we obtain
1 €)\2 1 0\2 € €\,,€
3 (u€) qbfdtdx—i—i (ug)"@p(x,0)dx+ [ F€(x,t,u)ugxdtdx
Q7 R Q5

—Z/(/ff(z)dz) (Kf (x. 1)), dtdx—/ ug (uge + uox) dtdx.
i 1QT Q;
Consequently,

1 1
/(u§)2¢dtdx= 5 /(ué)z(qﬁt—i-q)xx)dtdx—i— E/(ug)qu(x, 0) dx
Q; Qs R

+Z/{<u ff(u [ff(z)dz>1<f¢x (fff(z)dz)(xf) ¢>}dtdx.

As =1 on K x [0, T], ||u ||oc < u®loor 1€, 8)|loo < max{—a, b} + € for ae. t € (0,T) and {KF)
converges to K; in L'(0, T; wkh (R)) we infer that

loc

T
/f(u;)zdtdx <C(p,Ki, fi,a,b) foralle > 0. (41)
K 0
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This together with the boundedness of {u€} implies that there exists a subsequence {u€} converging

weakly to some function u in L?(0, T; H}OC(R)). We next show that up to a further subsequence

u€(x,t) - u(x,t) for a.e. (x,t) € R x (0, T). For any k € R, define

Le =0 (u€ — k)Jr + Ox[sign™ (u€ — k) (F (x, t,u€) — F(x,t, k)] — ox[sign™ (u€ — k)ug]

= A€+B€1

where

Ac =0 (u€ — k)Jr + 0x[sign™ (u€ — k) (F€(x, t,u) — F€(x,t,k))] — ox[sign™ (u® — k)ug].,

Be := 0x{sign™ (u€ —k)[F(x,t,u€) — F(x,t,u€) — F(x,t,k) + F*(x,t,k)]}.
Since K; € L2 (Qr), we get K€ — K in L2 (Qr) as € — 0. This implies that sign™ (u€ —k)[F (x, t, u¢) —
Fe€(x,t,u€) — F(x,t,k) + F€(x, t, k)] converges to zero in Lﬁ)c(QT) because

|F(x,t,u€) — F€(x, t,u€) — F(x, t,k) + FE(x,t,k)|

N
< |[Kitx 0 = Kf (. 0][ fi(u€) = fitk)] + Kf (x. O fi(u€) = £ (u€) = fitk) + f£ 0]
i=1
N
< IRt = KE O]+ (L7 = Fill s s, + 100 — O |KE 0]} Ve >0

i=1

Consequently,

Be — 0 inW,"*(Qr). (42)
We know from Lemma 3.3 that u€ is the entropy solution of d:u€ + 9x[F€(x,t,u€)] = ug,. Thus by
following the proof of Lemma 3.5 below and using (41), the fact that {F€(x,t,u€) — F€(x,t,k)} and

{F{(x,t,k)} are bounded in L}OC(QT), we see that {A¢} lies in a compact set of ngcl'p(QT) for any

1 < p < 2. This and (42) imply that the sequence {L¢} lies in a compact set of Wl;cl’p(QT) for any
1 < p < 2. Hence we can apply [28, Corollary 27] with n =2, @(x, t, u) = (F(x,t, u),u), A(x,t) = (ég)
and g(u) = u to obtain a further subsequence {u€} satisfying u€(x,t) — u(x,t) for a.e. (x,t) in Qr.
In particular, u € L*°(Qr) and a < u(-, t) <b for a.e. t > 0. Note that in our case the non-degenerate
condition required in [28, Corollary 27] is always satisfied since for almost all (x,t) € Qr and for
all nonzero vectors (&1, &) € R?, the functions A — F(x,t, 1)& + A& and A — }Léf are not constant
simultaneously on non-degenerate intervals.

Since u€ is the entropy solution, we have for any k € R and any nonnegative test function ¢ €
C°(R x [0,T)) that

f {|u€ — k|gr + sign(u€ —k)[F€ (x, t,u€) — F€(x, t, k) oy} dt dx
Qr

—/‘sign(u6 —k)F,f(x,t,k)¢>dtdx+/|u8(x)—k{q0(x, O)dx}/‘sign(u6 — k)uSoxdtdx.
Qr R Qr
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In addition, for almost all k € R the Lebesgue measure of the level set {(x,t) € Qr: u(x,t) =k} is
zero, whence

sign(u€(x, t) — k) —> sign(u(x,t) —k) a.e.on Qr.

Therefore, by letting € — 0" and using the pointwise convergence of u¢ together with the fact that

ug — uy weakly in L%(0, T; Lﬁ)C(R)), we conclude that u is an entropy solution of (36). Notice that it

is sufficient to verify the inequality in the definition of entropy solution (Definition 2.1) for all k in a
dense subset of R. O

3.2. Inviscid scalar conservation law via vanishing viscosity limit

We next show that Eq. (5) with A =0 admits an entropy solution which is the limit in L}OC(QT) of
entropy solutions u€ to the viscous conservation laws

oru€ + x| F(x, t,u¢)| =€us, inQr,
{t W[ F( )] =e€us, inQr )

ué(-,0)=ud inR.

To achieve this we need the following compactness lemma whose proof is an adaptation of the argu-
ments by Panov [28,29].

Lemma 3.5. Suppose f; € C(R), K; € L2(0, T: L (R)) N L(0, T; W' (R)) and condition (39) holds. Let

u% e L°°(R) be such that a < u®(x) < b and for each € > 0 let u€ be an entropy solution of (43). Then for any
k € R, the sequence

Ie =0 (u€ — k)+ + dx[sign™ (u€ — k) (F(x,t,u€) — F(x,t, k)]
lies in a compact set of ngcl‘p(QT)for anyl<p<2.
Proof. As a consequence of Lemma 2.3, we have
3 (u€ — k)+ + ax[sign™ (u€ — k) (F(x,t,u€) — F(x,t,k))]
+ sign™ (u€ — k) Fx(x, t, k) — €dx[sign* (u —k)ug] <0 inD'(Qp).

Therefore by the Riesz representation theorem, there exist locally finite and positive Borel mea-
sures ¢ on Qr such that

le = —p€ —sign™ (u€ — k) Fx(x, t, k) + €dx[sign* (u® —k)ug] inD'(Qr). (44)
Let H C Q7 be a compact set. Then (44) gives
WEH) < /q)d;f(x, t) = / sign™ (u€ — k) (F (x,t,u€) — F(x, t,k))px dt dx
Qr Qr

+/ (u€ - k)+¢t dtdx — / sign™ (u€ — k) Fx(x, t, k)¢ dt dx
Qr Qr

—€ f sign™ (u€ — k)ugpxdt dx
Qr
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for any nonnegative ¢ € C3°(Qr) satisfying ¢ =1 on H. Notice that by the same arguments leading
to (41), we have

6/ (uf()2 dtdx < Cy uniformly in € > 0. (45)
H

Hence it follows from the above inequality and the fact a < u€(x, t) <b by Theorem 3.4 that u€(H) <
Cy uniformly in €. This together with K; € L1(0, T; W]’](R)) and f; € C(R) yields

loc
—u€ —signt (u€ —k)Fx(x,t,k) is bounded in Mj,c(Q7), (46)

where M,(Qr) is the space of locally finite Borel measures on Q7. Also (45) implies that

€d[sign™ (u€ —k)ug] — 0 in ngcl’z(QT). (47)

By using (44), (46), (47) and the fact that M,,.(Qr) is compactly embedded in ngcl’p(QT) for any
1 < p < 2, we obtain the conclusion of the lemma. O

Theorem 3.6. Suppose f; € C(R), K; € L2(0, T; L2 (R)) N L' (0, T; W, (R)) and condition (39) holds. As-
sume in addition that F (x, t, u) is non-degenerate in the sense that for almost every (x,t) € Qr the function
u > F(x,t,u) is not affine on non-degenerate intervals. Let u® € L°(R) be such that a < u®(x) < b and u¢
be an entropy solution of (43). Then there exists a subsequence {u€} converging in L,]OC(QT) to some function
u satisfying a < u(-,t) < b for a.e. t € (0, T). Moreover, u is an entropy solution for the initial-value prob-
lem (5) with A = 0. If we also have K; € L1(0, T; L°°(R)), then u is the unique entropy solution and the whole

sequence {u€} converges to u in L}OC(QT).

Proof. Since a < u€(x,t) <b and F(x,t,u) is non-degenerate, the existence of a convergent subse-
quence {u€} in L;OC(QT) follows from Lemma 3.5 and [28, Corollary 27] (see also [29, Corollary 2] for
a similar result). By standard arguments, we then conclude that the limit function u is an entropy
solution of (5) with A = 0. If we assume in addition that K; € L1(0, T; L°°(R)), then u is unique by
Theorem 2.2 and hence we infer that the whole sequence {u€} converges to u in L}OC(QT). a

The requirement in Theorem 3.6 that F(x,t,u) is non-degenerate excludes some interesting flux
functions such as the one given by (4) corresponding to the pressureless Euler-Poisson system. This
restriction is common in using the compensated compactness method. However when F is indepen-
dent of x as (4), by employing a different method we are able to remove the non-degenerate condition
in the next theorem.

Theorem 3.7. Assume A > 0 and F(t,z) = Y"1, A(t) fi(z) with A; € L?(0, T), fi € C(R). Then for any u® e
L°°(R), the problem (5) has a unique entropy solution u € C([0, T]; L}OC(]R)) satisfying ||u|lre(qq) < 10| so-

Ifin addition u® € L1 (R), then u € C([0, T]; L1(R)).

Proof. The uniqueness is guaranteed by Theorem 2.2, so we only need to show the existence of an
entropy solution. Also it remains to consider the case A =0 since Theorem 3.4 and similar arguments
as below yield the desired results for any A > 0.

We first assume u® € L°(R) N L'(R) and notice that condition (39) is satisfied for any a < 0 < b.
For each € > 0, let u€ be the unique entropy solution given by Theorem 3.4 of

du€ + 0x[F(t,u¢)] = €eus, inQr,

(48)
ué(-,0)=ud inR.
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By Theorem 3.4, Corollary 2.8 and Theorem 2.2, we have for all € > 0 and for a.e. t € (0, T)

Jucc.o) ”oo < HuO”oo and H”e("t)HU(R) < H”O”U(R); (49)
f |u€(x+h,t) — u€(x, )] dx < / [ul(x+h) —u’(x)|dx VheR. (50)
R R
For each ¢ € C3°(By) and any ty, tz € [0, T] with t1 < t, we have
t
‘/[ue(x, t1) — u(x, t2) | () dx| = f(uf(t),¢)dt
By f
ty t
= //F(t, ué)qudxdt—i—e//ue(pxxdxdt‘
it R t1 R
< MIBr|(llpxlloo + lldxxllo)(t1, £2) (51)

where M := [|u®|| + max; | fill oo (— uO)o. 101y @D @(E1, E2) := ttlz Z,N:] |Ai(t)|dt + |tz — t1]. Hence
by a simple variation of Kruzhkov’s interpolation lemma (see [16, Lemma 4.10]) we get for all r > 0
and all t1,t; € [0, T] with t1 < tp that

/ |u€(x, t1) — u€(x, t2)] dx < Cr[a)(ﬁ,tz)% + v(a)(ﬁ,tz)%)] uniformly in €. (52)
Br

Here v(-) is a spatial modulus continuity given by (50). It follows from (49), (50), (52) and the L}DC

compactness lemma (see [18,16]) that there exist a function u € L'(Q1) NL®(Q1) N C([0, TT; L} (R))

loc

and a subsequence still denoted by {u€} such that u¢ converges to u in C([0, T]; L}OC(R)) and also a.e.

on Qr. Now let ¢ € CSO(R x [0, T)) be a nonnegative test function. Since u€ is an entropy solution
of (48), we have

T
//{]ue — kg + sign(u€ — k)[F(¢t,u€) — F(, I<)]¢x}dtdx+f|u0(x) — k|p(x, 0)dx
R 0 R
T T
26//|u€—l<|x¢xdtdx=—e/ |u€ — k|pux dt dx.
R0 R 0

Hence by letting € — 01 and using the fact [|u€ (-, t)]loo < |u°||oo, We obtain as in the proof of Theo-
rem 3.4 that

T
//{lu—I<|q>t+sign(u—k)[F(t, u) — F(t,k)]¢>x}dtdx+/|u0(x)—k|¢>(x, 0)dx >0
R 0 R

for almost all k € R implying that u is an entropy solution of (5). Moreover, the uniqueness of entropy

solutions for (5) yields that the whole sequence u¢ converges to u in C([0, T]; LI]OC(R)).
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Now suppose that u% € L°(R). For each (n, m) € N?, set
+ —_
up = () xx<n — ©°) xim<m € L'R) NLP(R).

Let upm € L1(Qr) NL®(QT1) NC([0, T]; L. (R)) be the unique entropy solution of (5) with A =0

loc
corresponding to initial data u3 . Since —(u%~ < ”2,m+1 <ud, < ”2+1,m < W9*, Theorem 2.2

implies that —[|u%s < Unm+1 S Unm < Unpim < [u®lls a.e. on Qr. Hence for each positive inte-
ger m, there exists i, € L°°(Qr) such that u;, 1 Uy ae. on Qr as n — oo. Of course, we have
— 1 oo < limy1 < fim < |u®)loo a.e. on Q7. Thus there exists u € L(Q 1) with —[|u°]|leo <u <[]0
a.e. on Qr such that i, | u as m — oco. We claim that u is an entropy solution of (5) with A = 0.
Indeed, by the above almost everywhere convergence and since

/ {lun,m — kigpe + sign(un,m — K)[F(t, un.m) — F(t, k)]« } dt dx +/ |u (%) — k| (x,0)dx >0
Qr R

for all k € R and all nonnegative test functions ¢ € C§°(R x [0, T)), we conclude by first letting n — oo
and then letting m — oo that u is an entropy solution. By arguing similarly and using the uniqueness
of entropy solutions of (5), we also have u,n, | i, a.e. on Qr as m — oo and i, t u a.e. on Qr as
n — oo. Now let uj(x,t) :=uj j(x,t) and u?(x) = u?,j(x). Then for each n > 1, by the monotonicity
we have

lujx,0) —ux, O] < |ujjx0) — 0, 0] + |@(x, 1) — u(x, t)|

<[ajxt) —up jx, O] + |Ujx,0) —ux,t)] Vj=n

giving limsup;_, o [uj(x, ) —u(x, )| < u(x,t) — tin(x,t) for a.e. (x,t) € Qr. Therefore we obtain that
uj — u almost everywhere on Qr as j — oo.

Next we show that u € C([0, T]; L,]OC(]R)). Lemma 2.5 together with the translation invariance of
the equation gives

T

—//|uj(x+h,t)—uj(x,t)|1m(x,t)dxdt
0 R

T
</|u§’(x+h)—u?(x)\¢(x,0)dx+//|F(t,uj(x+h,r))—F(t,uj(x,t))\|¢x(x,t)|dxdt
R 0 R

(53)

for any v (x,t) € Cg°(R x [0, T)), ¥ > 0. Consider functions 8, (t) and 6, (t) := ffoo 8y(s)ds as in the
proof of Theorem 2.2. Let £ € C5°(R) be an arbitrary nonnegative function. Using inequality (53) with
Yx,t) :=EX)0y(to — t) € C°(R x [0, T)), to € (0, T), we obtain

T

/SV(to—t)/|uj(x+h,t)—uj(x, £)|&(x) dxdt
0 R
to

g/|u§?(x+h)—u§?(x)|g(x)dx+//|F(t,uj(x+h,t))—F(t, uj(x,0)||&x ()| dxde.
R 0 R



D. Golovaty, T. Nguyen / J. Differential Equations 253 (2012) 1341-1375 1369

It then follows by letting v — oo that

sup /|uj(x+h,t)—u;(x,t)|§(x)dx< /\u?(x+h)—u?(x)]§(x)dx
te[0,T]
R R

T

+//’F(s,uj(x+h,s))—F(s,uj(x,s))‘|§x(x)|dxds
R

0

for all £ € C°(R), & > 0. Observe that the last term tends to fOTfR |F(s,u(x+h,s)) — F(s, u(x,s))| x
|Ex(x)| dxds and f]R |u?(x+h) —u?(x)|§(x) dx tends to fR [u®(x + h) — u®(x)|& (x) dx uniformly in |h| < 1.
Therefore we infer that for any r > 0,

/ |uj(X +h, t) — Uj(X, t)| dx < UF,UO,r(h)
Br

uniformly in j € N and ¢ € [0, T], where vp 0, is a modulus of continuity. Moreover, as u; are limits
of solutions u€¢ of (48) with initial data u? it follows from (51) that

5]
//F(t,Uj)¢dedt
t1 R

for any ¢ € C3°(By) and any t; < t;. Thus we obtain from Kruzhkov's interpolation lemma that
fBr luj(x,t1) —uj(x, t2)|dx < Cr[a)(t1,t2)% + vF’uo.r(a)(ﬁ,tz)%)] for all j. This gives u € C([0,T];
L} (R)) as desired.

It remains to prove that u € C([0, T]; L'(R)) if u® € L (R) N L' (R). We first claim that if v0, w0 e

L®°@®R) N L' (R) satisfy v > w0 ae. in R and v, w are entropy solutions of (5) with initial data v°
and w? respectively, then

< M|By|llxll oo (B @(t1, t2)

l/[Uj(X,t])—Uj(X, t2)] (x) dx
Br

v—weC([0,T]; L' (R)). (54)

Observe that by the L! contraction we have h(t) := v(t) — w(t) > 0 for all t € [0, T]. Also,

/|h(x, t)|dx=/h(x, t)dx:/[vo(x)—wo(x)]dx vt €[0,T]. (55)
R R R
To see (55), let us fix t € [0, T). By Theorem 2.2 and Corollary 2.9, there exists a set E C (t,T) of

full measure such that [ h(x,s)dx = [ [vO(x) — wo(x)]dx and [, |h(x,s)|dx < [ [h(x,t)|dx for all

s € E. Moreover as h € C([0, T]; L}OC(R)). we can choose a sequence {t,} in E satisfying t, — t and

h(x, t;) — h(x,t) for a.e. x € R. Then

/[vo(x)—wo(x)]dx=/|h(x, tn)|dx</|h(x, t)| dx

R R R

glﬂgfﬂh(x, tn)|dx:/[v°(x)—w0(x)]dx,
R R
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where the last inequality is due to Fatou’s lemma. Thus flR lh(x, t)|dx = fR [vo(x) — wO(x)1dx and (55)
holds for all t € [0, T). But then by extending A; to be functions in L%(0, T’) for some T’ > T and
using the uniqueness of entropy solutions together with the above arguments, we see that h has
an extension in C([0, T']; L}OC(R)) satisfying (55) for any t < T’. In particular, we deduce that (55)
also holds at t = T. Next let t € [0, T] and {t,} € [0, T] be such that t, — t. Since h(-,t;) — h(-,t)
in L}OC(R), there exists a subsequence {t; } such that h(x, t,,) — h(x,t) for a.e. x € R. This and the
fact [[h(-, ty )1y — IRC, Dl gy from (55) give jR |h(x, t,) —h(x,t)|dx — 0 as k — oco. We then
infer that h(-,t;) — h(-,t) in L'(R) as n — oo, and so h € C([0, T]; L' (R)) yielding claim (54). Now
for u® e L°(R) N L1(R), we take vO(x) := (u®*(x) and let v be the entropy solution of (5) with
initial data v°. Then since u = —(v —u) + v, v® > u® and v® > 0, it follows from claim (54) that
ueC(0,TI; LY (R)). O

4. Stability of entropy solutions
Estimate (7) in Theorem 2.2 gives an explicit dependence estimate for the entropy solution u
upon the initial data u®. In this section, we consider also the dependence of u with respect to the

flux function F(t,z) and obtain results which generalize and strengthen those considered by Maliki
in [22]. Fix Ne N, T > 0 and define

X :={(Afu’): A;€L*0,T), fie C(R)and u’ € L®(R)}
where A:=(A1,...,Ay) and f:=(f1,..., fn).
Theorem 4.1. Assume ). > 0 and let (A, f, u®) € X. Suppose {(A", ", u?l)}n is a sequence in X such that:

A? — A; in L! 0,7, fin — fi inC(R) and ug —u® in L}OC(R)’
(56)
{ul} is bounded in L>°(R).

Let Fp(t, 2) := ZIN:] A7 (t) f{(2) and uy be the unique entropy solution of

{ detn + e[ Fa(t, un)] = A(un)xx in Qr, 57)
Un(-, 0) =u? inR.
1

Then u;, converges to u in C([0, T]; Lioe

F(t,2):= YN Ait) fi(2).

(R)), where u is the unique entropy solution of (5) with flux function

Proof. Let M > 0 be such that ||u2||Loo(R) < M for all n. For each € > 0, define

Wl(€) = e + sup |0 = ).
X, yE[—M,M], |x—y|<€
wi(€) = /e + sup | i) — fi)]-

X, ye[-M,M], |x—y|<e€

Then o, w; : [0, 00) — [0,00) are nondecreasing subadditive functions satisfying lim,_, ¢+ ! (€) =

lim_, g+ wi(€) =0 and lim,_, g+ w"f) = 400 uniformly in n. Moreover, |@(€) — w;(€)| < 2||f]' —

fillLeo(—m,my for all € > 0 giving w} (€) — wj(€) uniformly on [0, c0) as n — oo.
Let K C R be a compact set and we need to show that

lim sup /|un(x,t)—u(x,t)|dx:0.
K

=0 ¢te[0,T]
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Take ©i° be an arbitrary function in L'(R) N L°(R). Let i denote the entropy solution of (5) With
initial data #i°. Also for each n, let ii, be the entropy solution to (57) corresponding to initial data #i°
Then i, i, € L%°(Q7) N C([0, T]; LY(R)) by Theorem 3.7. We have

/|un(x, ) —u(x, t)|dx

K

</|un(x,t)—ﬁn(x,t)|dx+/ i / i

K K K

As fl' — fi on compact subsets of R and there exist a subsequence {n} and functions B; € L0, T)
such that A"" — Aj a.e.in (0,T) and |A"“ )| < Bj(t) for ae. t € (0, T), it follows from the proof of
Theorem 3. 7 that i, converges to i in C([0, T]; L! (R)). Therefore, the above inequality yields

loc

limsup sup /|un(x £) — u(x, t)|dx

n—o0o te[0,T]

n—oo tel0,T]

< limsup sup /|un(x,t)—ﬁn(x,t)|dx~l— sup /|ft(x,t)—u(x,t)|dx. (58)
te[0,T]
K

From Lemma 2.5, we can deduce that

T

—//|un(x,t)—ﬁn(x,t)|1/ft(x,t)dxdt</|u2(x)—ﬁo(x)W(x,O)dx
R

0 R

+//sign(un — Q) [Fn(t, up) — Fa(t, i) J¥xdxdt

T

+//A|un — fip | Y dxdt

0 R

for any nonnegative test function ¥ (x, t) € Cg°(R x [0, T)). Hence by arguing as in the proof of Theo-
rem 3.7 we obtain for each t € [0, T]

/!uno« £) — fn(x, t)|s<x>dx</!u2<x>—ﬁ°(x)|s<x)dx
R R
t

+//|Fn<s,un>—Fn(s,ﬁn)||sx|dxds
0 R
t

+/fx|un—an||sxx|dxds VE € C(R). £ >0

0 R

Define wy(x, ) := |un(x, t) — Gy (x, £)| and wl(x) := [ud(x) — 4°(x)|. Then from the above inequality
and by the subadditive property of w}', we get for any t € [0, T] that
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t
//‘An(3)|wn|§x|d?€d5:|
0
N t t
+Z[w?(e)//!A'}(s)||§x|dxds:| +//Awn|.§xx|dxds (59)
1 0 R 0 R

/Wn(x»t)é;'(X)dX / gdx+z|:

R

for all € > 0 and all § € Ci°(R), & > 0.

For each € > 0, let R = R(¢) be given by (30) and &(x) := w(%) as in the proof of Theorem 2.2. By
using a),” instead of w;, we similarly define R, = R,(€) and &, (x) := 1//(%). Set Kp := R\ [—Ryu, Ry
and E,(t):=1+ ZIN:1 |A7(t)|, then it follows from (59) and the calculations after (29) that

[ wixogwax< [ wisider €0y i f En(9)ds

R R i=1

eRn (Rn +,§w (e))//E (S)Wnén dxds

OKn

t

N
g/wgg‘ndx—i— CoZa)?(e)/EH(s)ds—i—fEn(s)</wnéndx> ds
i—1

R = 0 0 [

for all € > 0 and all t € [0, T]. Using Gronwall’s inequality, this implies that

fwn(x, t)gn(x)dxgefoT En(s)ds{f Ogndx—i-CoZa) (e)/E (s)ds}

R R i=1

But as x[—gr,,r,](X) < & (x) and lim,_, ¢+ Ry = +oo uniformly in n, we obtain for all 0 <€ < €p (€9 >0
depends only on the compact set K) that

N

sup /wn(x t)dx<efo En(s)ds:/w Endx+Con (e)/En(s)ds} vneN.

te[0,T] 5 i—1

Since {w9} is bounded in L*(R), wd — |u® — 1) in L}
that

(R), R, — R and ¢ € L (R), it is easy to see

loc

lim [ widx= lim /ngp(m)dx:/|u0—ﬁ0|1ﬁ<m)d><=/|U0—ﬁ0|§dx-
n—o0 n—00 R, R
R R R R

This together with E, — E:=1+ vazl |Ai| in L1(0, T) allows us to pass to the limit as n — oo in the
above inequality to conclude that

N
limsup sup /|un(x t) — fin(x, t)|dx<ef0 E(S)ds{/}u O|§dx+COZa),(e)/E(s)ds}

n—oo tel0,T % i



D. Golovaty, T. Nguyen / J. Differential Equations 253 (2012) 1341-1375 1373
Similarly, we also get

N T
sup /|u(X,t)_ﬂ(X,t)|dxgef0TE(S)dS:/|u0_a0|%‘dX+COZa)i(E)/E(S)dS}.
R i=1 0

te[0,T]
K

Thus by combining these with (58), we deduce for all 0 < € < € that

N T
limsup sup /}un(x,t)—u(x,t)\dngefOTE(s)dS:/|u°—ﬁ0|§dx+COZwi(e)/E(s)ds}.
5 i=1

n—oo tel0,T]
K

0

Because 410 is an arbitrary function in L1(R) N L (R), by an approximation this yields

limsup sup /|un(x t) — u(x, t)|dx<2Cgef0 E(S)d5<2a) (e)/E(s)ds) V0 < € < €.
e

n—oo tel0,T i—1

The result then follows by letting € tend to 0. O

If the sequence of initial data {ul} converges to u® in L!(R) instead of LIOC(R), then we not only
can simplify the conditions in Theorem 4.1 but also obtain a stronger conclusion as stated in the next
proposition.

Proposition 4.2. Let ). > 0 and let (A, f, u®) € X. Assume in addition that u® e L' (R). Suppose {(A", f*, ud)},
is a sequence in X such that:

Al > A; inL'0,T), f'—fi inCR), and ud—u® inLl'(R).

Let uy, be the entropy solution of (57) and u be the entropy solution of (5), where Fy(t, z) := Z,N:] ANt fT(2)
and F(t, z) := Zf\’:1 A;(t) fi(2). Then u,, converges to u in C([0, T]; L' (R)).

Proof. Note that uy,u € C([0, T]; L'(R)) by Theorem 3.7. For each n, let i, be the entropy solution
to (57) corresponding to initial data u®. Then by using Theorem 2.2, we get

/|un(x,t)—u(x,t)|dx</|un(x,t)—ﬁn(x,t)|dx~l—/ 7

R R R

</|u2(x)—u°(x)|dx+/|ﬁn(x,t)—u(x,t)|dx.
R R

Therefore, the proposition follows if we can show that fi, converges to u in C([0, T]; L'(R)). In order
to prove this, we first claim that if v0, w® e L%°(R) N LY (R) satisfy v° > w® a.e. in R and v,, w, are
entropy solutions of (57) with initial data v° and w° respectively, then

Vn—wp — v—w inC([0, T]; L' (R)) (60)
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where v and w are entropy solutions of (5) with initial data v® and w?. Indeed, let hy,(t) := vu(t) —
wy(t) and h(t) := v(t) — w(t). Then hy, h € L°(Q1) N C([0, T]; L'(R)) by Theorem 3.7, and they are
all nonnegative by Theorem 2.2. Hence by combining with Corollary 2.9, we obtain

a0 1 gy =BG O] y1 gy = / [0 — wO(o]dx forallt e 0, T]. (61)
R

Since AT — A; in L'(0,T) and f' = fi in C(R), we have as in the proof of Theorem 4.1 that v, and

wy converge in C([0, T]; L}OC(R)) to v and w respectively. Thus

=00 te(0,T]

lim sup / |hn(x,t) — h(x,t)|dx=0 for all compact sets K C R. (62)
Kk
Define

ap = sup []hn(x,t)—h(x,t)]dx:/|hn(x,tn)—h(x,tn)\dx, t, €0, T].
t€[0,T]
R R

Select a subsequence {t,,} of {t,} such that t,, — to €[0,T] as k — co. As
”hnk(" tny) — h(-, to) ”Ll(K) < Hh”k(" tn) — h(, t”k)”Ll(K) + Hh(" tny) — h(., tO)HLl(K)’

we conclude from (62) and the fact h € C([0, T]; L'(R)) that hy, (-, tn,) — h(-,to) = 0 in L} (R). Thus
by taking a further subsequence still labelled as {n;} we can assume that hy, (x, tp,) — h(x, tg) for
almost every x in R. This together with (61) yields

/|hnk(x,tnk)—h(x,to)|dx—>0 ask — oo
R

implying limy_, a5, = 0. Consequently, we infer that a, — 0 as n — oo and hence claim (60) is
proved.

We are ready to prove that i, converges to u in C([0, T]; LI (R)). For this, let ii, be the entropy
solution of (57) with initial data (u®)* and @i be the entropy solutions of (5) with initial data (u%*.
Then by claim (60), we have i, — i, —> &t — u in C([0, T]; L'(R)) and i, —> @i in C([0, T]; L1(R)).
Therefore, i, converges to u in C([0, T]; L1(R)) as desired. O
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