期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:263
Eigenvalue asymptotics for the damped wave equation on metric graphs
Article
Freitas, Pedro1,2  Lipovsky, Jiri3 
[1] Univ Lisbon, Fac Human Kinet, Dept Math, Lisbon, Portugal
[2] Univ Lisbon, Fac Sci, Grp Math Phys, Edificio C6, P-1749016 Lisbon, Portugal
[3] Univ Hradec Kralove, Fac Sci, Dept Phys, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
关键词: Damped wave equation;    Metric graphs;    Spectrum;   
DOI  :  10.1016/j.jde.2017.04.012
来源: Elsevier
PDF
【 摘 要 】

We consider the linear damped wave equation on finite metric graphs and analyse its spectral properties with an emphasis on the asymptotic behaviour of eigenvalues. In the case of equilateral graphs and standard coupling conditions we show that there is only a finite number of high-frequency abscissas, whose location is solely determined by the averages of the damping terms on each edge. We further describe some of the possible behaviour when the edge lengths are no longer necessarily equal but remain commensurate. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_04_012.pdf 1496KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次