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Abstract

We consider the linear damped wave equation on finite metric graphs and analyse its spectral properties 
with an emphasis on the asymptotic behaviour of eigenvalues. In the case of equilateral graphs and standard 
coupling conditions we show that there is only a finite number of high-frequency abscissas, whose location 
is solely determined by the averages of the damping terms on each edge. We further describe some of the 
possible behaviour when the edge lengths are no longer necessarily equal but remain commensurate.
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1. Introduction

The simplest model for an inhomogeneous damped vibrating string is given by the equation
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∂ttu(t, x) + 2a(x)∂tu(t, x) = ∂xxu(t, x) + b(x)u(t, x), (1)

complemented with initial and boundary conditions at the end points. Although quite simple, 
the explicit dependence of the damping on the space variable makes the problem genuinely 
non-selfadjoint and is responsible for several interesting properties which have received much 
attention in the literature within the last twenty years – see [9,20] and the references therein. 
One particular aspect which is of interest is the characterisation of the spectrum and, within that 
scope, the behaviour of the high frequencies. In the case of equation (1) with vanishing b, it 
was first suggested by the formal calculations in [11] that the real part of these high frequencies 
would cluster around minus the average of the damping term as the corresponding imaginary 
parts converge to infinity. This was proven rigorously in [13] where the first two terms in the 
asymptotic expansion of the eigenvalues were computed, while the complete asymptotic expan-
sion was obtained in [9] for the first time, including the explicit determination of its first four 
terms. Other models for the linear damped wave equation include, for instance, imposing the 
damping on the boundary [14,3]. Our approach may, in principle, also be extended to such prob-
lems.

In the case of more complex structures involving several segments which are joined at the 
endpoints, it makes sense to model each component by an equation of the form (1) with corre-
sponding potentials and damping functions and have either a coupling at the common vertices 
or some boundary condition such as Dirichlet at the isolated endpoints. Indeed, there is a vast 
literature on the topic of waves on networks of strings as may be seen in the review [28]. How-
ever, most of this work revolves around the observability and controllability of such problems 
and, in particular, this means that in most cases the problem may still be reduced to the study of 
a self-adjoint (vector) operator. One exception to this is given by [4], where the wave equation 
with indefinite sign damping is considered on a star graph, generalising the results in [18].

A different starting point which is also connected to the undamped case comes from the quan-
tum graph literature where the resulting problem, although including the explicit dependence on 
the spatial variable via a potential playing a similar role to b in equation (1) above, is still re-
ducible to a self-adjoint operator for a wide variety of coupling conditions (see e.g. [5,24,22,25]). 
Note that, due to the fact that the damping will not, in general, be continuous across vertices, the 
asymptotic behaviour of the eigenfunctions is not necessarily the same as that of the undamped 
problem – see Remark 3.8.

The main object of study in the present paper is the wave equation on graphs with potential 
and damping functions depending explicitly on the space variable and with coupling conditions 
at the vertices. We are interested in understanding the asymptotic behaviour of the associated 
spectrum and, in particular, the counterpart for the case of graphs of the result on the spectral 
abscissa mentioned above for one segment. This is related to the rate of decay of high-frequency 
modes on such structures and is therefore an important issue in applications. We remark that, as 
already noted in [28], this behaviour depends in a subtle way on topological and number theoretic 
properties of the network, without it being possible to understand the global dynamics by simply 
studying each component in isolation from the rest.

Our main contribution here is to describe the possible asymptotic distributions of the high 
frequencies and show that, under certain conditions on the edge lengths and the coupling condi-
tions, there exists at most a finite number of values around which the real parts of the eigenvalues 
may cluster, as the imaginary parts grow to infinity – see Theorems 3.5 and 4.3, the results in 
Section 6 (in particular, Theorem 6.4) and the examples in the last section. In particular, we show 
that under such conditions these high-frequency spectral abscissas are the same as those ob-
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tained for the same graph where the damping terms are replaced by their averages on each edge 
and with zero potentials. Furthermore, they may be computed by solving a polynomial equation 
(see Remark 6.5 and the examples in Section 7).

While in the case of N equilateral edges we show that the number of such abscissas is at most 
2N and that, if the graph is bipartite (does not have cycles of odd length), this number cannot 
be larger than N , we also show that these results are sharp in the sense that for certain classes 
of graphs there exist damping terms yielding these maximal number of abscissas. If we drop the 
assumption that all edges have equal lengths and assume instead that they are commensurate, we 
give examples which indicate that the number of these abscissas may now be as large as desired.

The damped wave equation on metric graphs may thus be viewed as a bridge in complexity 
between the scalar damped wave equation in one and two spatial dimensions. While in the former 
case there is only one high-frequency spectral abscissa corresponding to the averaging of the 
damping on a segment, in the two-dimensional case there are several different behaviours for the 
high frequencies corresponding to the different trajectories on the domain [6,2,26]. On a metric 
graph, these trajectories are restricted to the edges, with the damping being averaged along each 
edge and these averages then being combined via the topology of the graph. While the structure 
of the spectrum for equilateral graphs is still fairly simple as described above, we see that this is 
no longer the case in general.

The paper is structured as follows. In the next section we describe the model and the corre-
sponding notation. The third section presents some basic asymptotic properties of the secular 
equation and vertex scattering matrix for eigenvalues with high imaginary part, essentially fol-
lowing the approach in [9] for a single interval. The number and location of high-frequency 
abscissas are studied in Sections 4 and 6. It turns out that to obtain the results in this last sec-
tion it is more convenient to use the method of pseudo-orbit expansions to handle the secular 
equation and we describe this approach in Section 5. In Section 7 several examples are provided 
illustrating the previous results.

2. Description of the model

We consider a compact metric graph � with N < ∞ finite edges {ej }Nj=1 of lengths {lj }Nj=1. 
On each edge ej a linear damped wave equation of the form

∂ttwj (t, x) + 2aj (x)∂twj (t, x) = ∂xxwj (t, x) + bj (x)wj (t, x) (2)

is considered, with both the damping functions aj (x) and the potentials bj (x) real and bounded. 
The above set of partial differential equations can be rewritten in a more elegant way

∂t

( �w0(t, x)

�w1(t, x)

)
=
(

0 I

I d2

dx2 + B −2A

)( �w0(t, x)

�w1(t, x)

)
,

where I is the N × N identity matrix, A and B are diagonal N × N matrices with entries aj

and bj , respectively, �w0 is the vector of functions wj and �w1 its time derivative.
The Ansatz wj(t, x) = eλtuj (x) allows us to rewrite equation (2) as

∂xxuj (x) − (λ2 + 2λaj (x) − bj (x))uj (x) = 0 (3)
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and therefore reformulate the time dependent problem as a spectral problem. More precisely, in 
this way we are led to the operator

H =
(

0 I

I d2

dx2 + B −2A

)
,

with domain consisting of functions (ψ1(x), ψ2(x))T with components of both ψ1 and ψ2 in 
W 2,2(ej ) for the corresponding edge and satisfying suitable coupling conditions at the vertices.

Now we clarify the term “suitable coupling conditions”; we construct all operators H sat-
isfying the above properties, for which iHA=0 is self-adjoint. Although we shall not impose 
any restrictions on the sign of the potentials in the paper, to motivate the coupling conditions, 
we start in this section with all potentials bj (x) being non-positive. We define ψ = (ψ1, ψ2)

T, 
φ = (φ1, φ2)

T, denote by (·, ·) the L2(�) scalar product linear in the second argument and an-
tilinear in the first one and by ((·, ·)) the L2(�) ⊕ L2(�) scalar product. For the condition for 
self-adjointness of iH we obtain

0 = ((ψ, iHA=0φ)) − ((iHA=0ψ,φ)) = i
[
((ψ,HA=0φ)) + ((HA=0ψ,φ))

]
and hence

0 = (ψ1, φ2) + (ψ2, φ
′′
1 ) + (ψ2,Bφ1) + (ψ2, φ1) + (ψ ′′

1 , φ2) + (Bψ1, φ2) .

With use of φ2 = λφ1 with λ purely imaginary and the fact that B is real and diagonal one 
rewrites the above equation to

0 = (ψ1, φ1) − (ψ1, φ
′′
1 ) − (ψ1,Bφ1) − (ψ1, φ1) + (ψ ′′

1 , φ1) + (ψ1,Bφ1) ,

now integrating by parts we obtain

∑
e

[
ψ̄1

′
φ1 − ψ̄1φ

′
1

]le
0

= 0 . (4)

Denoting the vectors of functional values and the outgoing derivatives at the vertices by �
and � ′, respectively, and choosing � = �, the above condition implies � ′ ∗� − �∗� ′ = 0
for all � , where ∗ stands for hermitian conjugation. It is straightforward to check that this is 
equivalent to ‖� + i� ′‖ = ‖� − i� ′‖, leading to the general coupling condition

(U − I )� + i(U + I )� ′ = 0 , (5)

for any N × N unitary matrix U and where I is the N × N identity matrix. Specific examples 
of unitary matrices U are given below and in Section 7. Let us note that the more general choice 
� ± il� ′ instead of � ± i� ′ with any real l is possible; however, this leads to the condition 
(Ul − I )� + il(Ul + I )� ′ = 0 and the simple transformation between Ul and U

Ul = [(U + I ) − l(U − I )]−1[(U + I ) + l(U − I )]
shows that this equation is, in fact, equivalent to (5).
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The reverse implication that any pair of vectors (�T, �′T)T and (�T, � ′T)T satisfying the 
coupling condition (5) (if their components are substituted for � and � ′), also satisfies (4), 
follows from properties of unitary matrices. For more details on the above construction we refer 
e.g. to [19] or Proposition 17.1.2 in the book [8].

In agreement with the notation for quantum graphs we shall denote the coupling for which 
functional values are equal at each vertex and the sum of outward derivatives vanishes by stan-
dard coupling (the terms Kirchhoff’s, Neumann or free coupling may also be found in the 
literature). The corresponding unitary coupling matrix is U = 2/d J − I , with d being the degree 
of the given vertex, I the d × d identity matrix and J the d × d matrix with all entries equal to 1. 
For instance, the forms of the coupling matrices for standard coupling are for d = 2 and d = 3
the following

Ud=2 =
(

0 1
1 0

)
, Ud=3 = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠ .

Moreover, we define coupling conditions for the boundary vertices. The Dirichlet coupling 
denotes the situation when the functional value vanishes at the vertex, while in the case of Neu-
mann coupling the derivative at the vertex is zero. The general condition is called Robin and it is 
described by equation (5) with U being a complex number of modulus one. This condition also 
includes the Dirichlet (U = −1) and Neumann (U = 1) conditions.

3. The secular equation and asymptotic properties of eigenvalues and eigenfunctions

In this section we establish the asymptotic properties of the fundamental system of solutions 
and eigenvalues of H . Let us first consider a graph with all edges of length one.

Theorem 3.1. Consider an equilateral graph with N edges of unit length with the coupling be-
tween vertices given by a matrix U as above. Denote the damping and potential on each edge by 
aj and bj , respectively, and assume aj ∈ C1([0, 1]) and bj ∈ C0([0, 1]). Then there exists a posi-
tive real number K0 such that for K > K0 if λ = r + iK is an eigenvalue, then λ +2πi+O(1/K)

is also an eigenvalue. Similarly, if λ = r − iK is an eigenvalue, then λ − 2πi +O(1/K) is also 
an eigenvalue. This means that there exist sequences of eigenvalues λsn satisfying

λsn = 2πin + c
(s)
0 +O

(
1

n

)
(6)

as n goes to infinity, where the complex constants c(s)
0 are, in general, different for each se-

quence s.

The proof of this theorem relies partially on the results in [9] for a single segment. Of partic-
ular interest to us here is the following result giving a fundamental system of solutions on the 
interval [0, 1] which we reproduce here for completeness.

Lemma 3.2 ([9]). Let a ∈ Cm+1[0, 1] and b ∈ Cm[0, 1]. Then there exist two linearly indepen-
dent solutions u±(x, λ) of equation (3) satisfying the initial condition u±(0, λ) = 1 having the 
asymptotics
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u±(x,λ) = e±λx±∫ x
0 φ±(ξ,λ) dξ (7)

in the C2[0, 1] norm as Imλ → ∞ with

φ±(x,λ) =
m∑

i=0

φ±
i (x)

λi
+O(λ−m−1) (8)

and

φ
(±)
0 (x) = a(x) , φ

(±)
1 (x) = −1

2
(±a′(x) + a2(x) + b(x)) ,

φ
(±)
i (x) = −1

2

(
±φ′(±)

i−1 +
i−1∑
s=0

φ(±)
s φ

(±)
i−s−1

)
.

Definition 3.3. We denote by āj the average of the damping function aj(x) on the j -th edge, 
that is

āj = 1

lj

lj∫
0

aj (x)dx .

Proof of Theorem 3.1. Now we find a secular equation for a graph with edges of length one 
with coupling given by (5). We construct a flower-like model which is similar to the case studied 
for quantum graphs [24,17,15]. The main idea, which we shall now describe, is very simple. For 
a general graph with N edges of unit length, one considers a one-vertex model with N loops, 
also of unit length; the coupling matrix U is, in a suitably chosen basis, block diagonal with 
blocks corresponding to the vertex coupling matrices. The Hamiltonian on the original graph is 
unitarily equivalent to the Hamiltonian on the flower-like graph and hence every such graph can 
be described by this model. On each of the edges of the graph we take linear combinations of 
solutions of the form (7) as described below; the indices j denoting a particular edge are added 
where needed.

From Lemma 3.2 we have that on each edge there exist two linearly independent solutions 
u±(x, λ). The general solution on each edge is thus given by uj(x) = αju+(x, λ) + βju−(x, λ)

while, using the fact that the entries of � are uj (0) and uj (1) and those of � ′ are u′
j (0) and 

−u′
j (1), the coupling condition (5) then becomes

0 = (U − I )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 + β1

α1eλ+φ̄
(1)
+ + β1e−λ−φ̄

(1)
−

α2 + β2

...

α eλ+φ̄
(N)
+ + β e−λ−φ̄

(N)
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

N N
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+ i(U + I )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1(λ + φ
(1)
+ (0)) − β1(λ + φ

(1)
− (0))

−α1(λ + φ
(1)
+ (1))eλ+φ̄

(1)
+ + β1(λ + φ

(1)
− (1))e−λ−φ̄

(1)
−

α2(λ + φ
(2)
+ (0)) − β2(λ + φ

(2)
− (0))

...

−αN(λ + φ
(N)
+ (1))eλ+φ̄

(N)
+ + βN(λ + φ

(N)
− (1))e−λ−φ̄

(N)
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here the superscript of j in φ(j)
± distinguishes the edge (i.e. it is not the index of the expansion 

in Lemma 3.2), while φ̄(j)
± = ∫ 1

0 φ
(j)
± (ξ, λ) dξ denotes the average of φ± on the j -th edge.

Therefore, the secular equation may be written as

det [(U − I )M1(λ) + i(U + I )M2(λ)] = 0 , (9)

where M1 is a block-diagonalizable matrix consisting of blocks of the form

(
1 1

eλ+φ̄
(j)
+ e−λ−φ̄

(j)
−

)

and similarly M2 consists of blocks of the form

(
λ + φ

(j)
+ (0) −(λ + φ

(j)
− (0))

−(λ + φ
(j)
+ (1))eλ+φ̄

(j)
+ (λ + φ

(j)
− (1))e−λ−φ̄

(j)
−

)
.

Since we assume aj ∈ C1([0, 1]), by Lemma 3.2 φ
(±)(j)

1 is uniformly bounded and we have 

φ̄
(j)
± = āj +O(1/λ). The form of the secular equation is thus

P1eλ+ā1+λ+ā2+···+λ+āN+O(1/λ) + P2e−λ−ā1+λ+ā2+···+λ+āN+O(1/λ)+
P3eλ+ā1−λ−ā2+···+λ+āN+O(1/λ) + P4e−λ−ā1−λ−ā2+···+λ+āN+O(1/λ)+

· · · + P2N e−λ−ā1−λ−ā2−···−λ−āN+O(1/λ) = 0 ,

where each Pq is a polynomial in λ of degree 2N . Since in the equation we must account for all 
possible combinations of signs of the terms (λ + aj ) in the exponents, there are 2N terms.

For nontrivial A the operator H is a bounded perturbation of the operator HA=0 for A equal to 
zero. Thus according to Theorem 3.17 in [21], H has infinitely many eigenvalues with no finite 
accumulation point. Let us assume λ = r + iK with big K . We have

1

λ
= r − Ki

r2 + K2
=O
(

1

K

)
.

The secular equation can be written using the leading term of asymptotics in K
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F(λ) = K2N
(
c1eλ+ā1+λ+ā2+···+λ+āN + c2e−λ−ā1+λ+ā2+···+λ+āN + . . .

cQe−λ−ā1−λ−ā2−···−λ−āN

)(
1 +O

(
1

K

))
= 0. (10)

Let F(λ) = K2NF1(λ) + K2N−1F2(λ) and F(λ0) = 0, F1(λ
′
0) = 0. Since aj ∈ C1([0, 1]) we 

know that φ(±)(j)

1 (x), and hence also the second term of the secular equation are uniformly 
bounded, say, |F2(λ)| < K̃ . Hence |F1(λ0)| < K̃/K and since F1(λ) is continuous, λ′

0 ap-
proaches λ0 as K → ∞. From (10) we have that F1 is equal to zero for λ′

0 + 2πi. Hence there 
exists such λ = λ0 + 2πi + O(1/λ0) for which F(λ) = 0 and there exists a sequence of eigen-
values of the form (6). For λ = r − iK the proof is similar. �

Another approach to constructing the secular equation based on pseudo-orbit expansions will 
be given in Section 5 below.

The real parts of the coefficients c(s)
0 are the subject of the following definition.

Definition 3.4. We say that ω0 is a high-frequency abscissa of the operator H if there exists a 
sequence of eigenvalues of H , say {λsn}∞n=1, such that

lim
n→∞ Imλsn = ±∞ and lim

n→∞ Reλsn = ω0.

The number of distinct high-frequency abscissas of H will be called its abscissa count αc.

Now we present a theorem which generalises previous results for the localisation of the high-
frequency abscissa on a single segment (see [13,11], for instance) to the case of equilateral 
graphs. More precisely, it states that in order to determine the localisation of high-frequency 
abscissas of such graphs, it is enough to consider the average of the damping coefficients on each 
edge.

Theorem 3.5. Let � be an equilateral graph with N edges of lengths lj = l0, j = 1, . . . , N , 
with the coupling conditions given by the coupling matrix U . Let the damping and potential 
functions aj (x) and bj (x) be bounded and continuous on each edge. Let λsn be eigenvalues of 
the corresponding problem (3) and μsn eigenvalues for aj replaced by its average on each edge 
and bj = 0. Then the constant terms c(s)

0 in the asymptotic expansion (6) for each of the sequences 
λsn coincide with the corresponding constant terms in the asymptotic expansion of μsn.

Before proving the above theorem we state a result relating the eigenvalues of an equilateral 
graph with edges of unit length to those of an equilateral graph with scaled lengths of the edges.

Lemma 3.6. Let λ be an eigenvalue of an equilateral graph � with edges of unit length, damp-
ing coefficients aj (x), potentials bj (x), x ∈ (0, 1) and the coupling given by U . Then λ/l0
is eigenvalue of the same graph with damping coefficients ãj (y) = aj (y/l0)/ l0, potentials 
b̃j (y) = bj (y/l0)/ l2

0 , y ∈ (0, l0), all edges of length l0 and coupling given by

Ul0 = [(l0 − 1)U + (l0 + 1)I ]−1[(l0 + 1)U + (l0 − 1)I ].
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Proof. The wavefunction component on j -th edge of the first graph satisfies

∂xxuj (x,λ) − (λ2 + 2λaj (x) − bj (x))uj (x,λ) = 0 , x ∈ (0,1) .

Substituting x = y/l0, rewriting the damped wave equation for vj (y) = uj (y/l0) and using 
∂xxuj (x, λ) = l2

0∂yyuj (y/l0, λ) we obtain

∂yyuj (y/l0, λ) − 1

l2
0

(λ2 + 2λaj (y/l0) − bj (y/l0))uj (y/ l0, λ) = 0 , y ∈ (0, l0)

from which one finds the eigenvalues, damping and potential. Since vj(l0) = uj (1) and v′
j (l0) =

u′
j (1)/ l0 one finds

Ul0 − I = C(U − I ) , Ul0 + I = l0C(U + I )

with C being regular square matrix and hence one finds corresponding coupling matrix Ul0 . �
Remark 3.7. Note that Theorem 3.5 and Lemma 3.6 can be used also for graphs with commen-
surate lengths. We may introduce vertices of degree 2 at the distance l0 and obtain an equilateral 
graph. The averaging is done only on the sub-edges.

Proof of Theorem 3.5. Let us first consider the case where all lengths are equal to 1. We shall 
now separate the spectrum of the unitary matrix U into −1, +1 and the remaining non-real 
eigenvalues on the unit circle. Denoting by n− and n+ the number of −1’s and +1’s in the 
spectrum of U , respectively, we may write

U = V −1

⎛
⎝−In− 0 0

0 In+ 0
0 0 D

⎞
⎠V (11)

with V being a unitary matrix and Ik being the k × k identity matrix and with the diagonal 
matrix D = diag (eiϕ1 , . . . , eiϕ2N−n−−n+ ) containing the eigenvalues of U other than ±1. The 
leading term of the high-frequency asymptotics of the secular equation, obtained by substituting 
(6) to (9), is given by

(2πin)2N−n− det

⎡
⎣
⎛
⎝−2I 0 0

0 0 0
0 0 0

⎞
⎠M3 + i

⎛
⎝0 0 0

0 2I 0
0 0 D + I

⎞
⎠M4

⎤
⎦ (1 +O(1/n))

with the diagonal blocks being successively n− × n−, n+ × n+ and (2N − n− − n+) ×
(2N − n− − n+) matrices. M3 and M4 consist in the basis given by V of blocks

(
1 1

ec
(s)
0 +āj e−c

(s)
0 −āj

)
and

(
1 −1

−ec
(s)
0 +āj e−c

(s)
0 −āj

)
,

respectively. Note that there is a zero instead of D − I in the lower-right block of the matrix 
which multiplies M3, because only the first n− rows of the first matrix contribute to the term 
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by n2N−n− . The values of c(s)
0 are hence given only by the averages of the damping functions. 

The potentials bj (x) do not play any role in the leading term of the asymptotics of the secular 
equation, hence they do not influence the coefficients c(s)

0 . Using Lemma 3.6 the claim can be 
generalized for equilateral graphs with lengths l0. �
Remark 3.8. Let us remark that unlike the case of a segment with continuous damping, the 
eigenfunctions of a graph do not in general converge for high n to the eigenfunctions of a quan-
tum graph (the undamped case), as the damping need not be continuous on the whole graph. 
The simplest counterexample is a segment of length 2 with constant damping a1 on the first half 
and constant damping a2 
= a1 on the second half, with Dirichlet boundary conditions at the end 
points and standard coupling in the middle.

Defining λ̃j (λ) =
√

λ2 + 2ajλ − bj and using the equation (3) we find the wavefunction on 
the edges of the graph as

uj (x) = αj sinh
(
λ̃j (λ)x

)
, j = 1,2

with x = 0 corresponding to the end vertices (cosh
(
λ̃j (λ)x

)
is excluded because of the Dirichlet 

conditions). Using the high-frequency asymptotics of λ̃j (λ) and the coupling conditions at the 
middle vertex we find the leading term of the asymptotics, which gives the equation for c(s)

0 to be

0 = cosh (a1 + c
(s)
0 ) sinh (a2 + c

(s)
0 ) + cosh (a2 + c

(s)
0 ) sinh (a1 + c

(s)
0 ) = sinh (a1 + a2 + 2c

(s)
0 ) .

Hence one obtains the values c(1)
0 = − a1+a2

2 and c(2)
0 = − a1+a2

2 + i. Let us without loss of gen-

erality study only the eigenvalues with c(1)
0 = − a1+a2

2 . For the eigenfunction components we 

obtain, using λ̃j = 2πin + c
(s)
0 + aj +O (1/n),

u1(x)
n→∞−→ α1

[
sin (2πnx) cosh

1

2
(a1 − a2)x − i cos (2πnx) sinh

1

2
(a1 − a2)x

]
,

u2(x)
n→∞−→ α1

sinh a1−a2
2

sinh a2−a1
2

[
sin (2πnx) cosh

1

2
(a2 − a1)x − i cos (2πnx) sinh

1

2
(a2 − a1)x

]

= α1

[
− sin (2πnx) cosh

1

2
(a1 − a2)x − i cos (2πnx) sinh

1

2
(a1 − a2)x

]
.

On the other hand, in the case where there is no damping we have leading eigenfunction 
components given by

v1(x)
n→∞−→ α1 sin (2πnx) ,

v2(x)
n→∞−→ −α1 sin (2πnx) .

Clearly, for a1 
= a2 the leading eigenfunction components u1 and u2 for the damped case are 
different from their counterparts for the undamped case v1 and v2.
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Remark 3.9. As a by-product, Theorem 3.1 gives that for the undamped case with N edges of 
unit lengths with general coupling conditions there exist at most 2N sequences of eigenvalues 
with kn satisfying asymptotics (6) with purely imaginary c(s)

0 . Here k2
n = En are the eigenvalues 

of the Schrödinger operator. Note that, as we stated in the Introduction and in Section 2, the 
operator iHA=0 is self-adjoint if all bj (x) are positive, and hence the eigenvalues of HA=0 are 
on the imaginary axis. Under these conditions, the operator iHA=0 corresponds to an equilateral 
quantum graph. This generalizes the results of [27] for star graphs with standard coupling and 
[12] for general graphs with standard coupling.

4. Location of high-frequency abscissas

We begin with a simple result stating that the real part of an eigenvalue is given by minus the 
average of the damping coefficients on each edge with weights taken as square absolute values of 
the eigenfunctions. A similar claim can be stated also for the damped wave equation on manifolds 
(see e.g. [2,26]).

Theorem 4.1. Let us consider a damped wave equation on a graph with N edges of lengths lj , 
bounded damping coefficients aj (x) and potentials bj (x), and the coupling conditions given 
by (5). Then, given a non-real eigenvalue λ of the operator H defined in Section 2, its real part 
satisfies

Re(λ) = −
∑N

j=1

∫ lj
0 aj (x)|uj (x)|2 dx∑N
j=1 ‖uj (x)‖2

2

,

where uj (x) denotes the corresponding wavefunction components.

Proof. Multiplying (3) by ūj (x) and integrating over the j -th edge yields

0 =
lj∫

0

ūj (x)u′′
j (x)dx −

lj∫
0

[λ2 + 2aj (x)λ − bj (x)]|uj (x)|2 dx =

= −
lj∫

0

|u′
j (x)|2 dx +

[
ūj (x)u′

j (x)
]lj

0
−

lj∫
0

[λ2 + 2aj (x)λ − bj (x)] |uj (x)|2 dx . (12)

Now we sum this term over all edges. We show that the contribution of the term given by coupling 
conditions is real. Let U be the coupling matrix of the corresponding flower-like graph with N
edges of the form (11) with V being unitary and denote V � = (�1, �2, �3)

T and by V � ′ =
(� ′

1, �
′
2, �

′
3)

T vectors of functional values and outward derivatives at a given vertex written in a 
suitable basis. Trivially, the subspaces corresponding to eigenvalues ±1 do not contribute to the 
second term of the above equation since either the functional value or the derivative is equal to 
zero. Hence we have

N∑[
ūj (x)u′

j (x)
]lj

0
=

2N−n−−n+∑
tan
(ϕs

2

)
|�3s |2
j=1 s=1
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with �3s being the components of �3. The boundary terms correspond to the boundary terms in 
a quadratic form of the Hamiltonian in quantum graphs (see e.g. [24], Definition 15).

For the imaginary part of (12) we have

0 = 2i Im(λ)

N∑
j=1

lj∫
0

(aj (x) + Re(λ)) |uj (x)|2 dx (13)

and hence the claim of the theorem follows. �
Corollary 4.2. Let us consider a damped wave equation on the graph � with damping functions 
on the edges aj (x) and potentials bj (x). Then the real part of nonreal eigenvalues of H lie in 
the interval [

− sup
j

ess sup
x∈(0,lj )

aj (x),− inf
j

ess inf
x∈(0,lj )

aj (x)

]
,

and all high-frequency abscissas lie in the interval [− maxj āj , − minj āj ].

Proof. We have

Re(λ) ≥ −

N∑
j=1

ess sup
x∈(0,lj )

aj (x)‖uj (x)‖2
2

N∑
j=1

‖uj (x)‖2
2

≥ −sup
j

ess sup
x∈(0,lj )

aj (x)

N∑
j=1

‖uj (x)‖2
2

N∑
j=1

‖uj (x)‖2
2

and similarly for the infimum. The claim about the high-frequency abscissas follows by a similar 
construction from Theorems 4.1 and 3.5. �

For certain types of graphs with standard coupling, some of the high-frequency abscissas have 
a simple explicit form.

Theorem 4.3. Let � be an equilateral graph with standard coupling which contains a cycle C of 
N edges of length one with averages of damping coefficients on all of the edges of C equal to a. 
Then there is a high-frequency abscissa at −a.

Proof. Due to Theorem 3.5 one can assume all damping coefficients on C equal to a and take 
bj = 0 without loss of generality. Our aim is to construct an eigenfunction of H with support 
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only on C and with zeros at the vertices. Using the Ansatz fj (x) = αj (eλ̃(λ)x − e−λ̃(λ)x) with 
λ̃(λ) = √

λ2 + 2aλ on the j -th edge one finds

fj (0) = 0 , fj (1) = αj (e
λ̃(λ) − e−λ̃(λ)) ,

f ′
j (0) = 2αj λ̃(λ) , f ′

j (1) = αj λ̃(λ)(eλ̃(λ) + e−λ̃(λ)) .

Requiring the functional values to be zero at the vertices of the C one finds λ̃(λ) = nπi, the 
continuity of the derivatives leads to αj+1 − αj (−1)n = 0 and thus (−1)nN = 0. Hence for N
even one has two sequences with c(1)

0 = −a and c(2)
0 = −a + πi while for N odd there is a 

sequence with c(1)
0 = −a. �

Remark 4.4. A similar claim can be made if a graph contains a chain of edges of the same length 
and same averages of damping functions with standard coupling in the middle vertices and the 
end vertices belonging to the boundary and having e.g. Dirichlet coupling. On the other hand, an 
edge without damping does not by itself ensure a sequence of eigenvalues with their real parts 
approaching zero. This can be shown for instance for an equilateral three-edge star graph with 
constant dampings on each edge a, a, and 0; the leading term of the large n asymptotics of the 
corresponding secular equation gives the polynomial equation

3e4az3 − (e4a + 2e2a)z2 − (2e2a + 1)z + 3 = 0

with z = e2c
(s)
0 . It has solutions z1 = e−2a , z2,3 = 1

6 e−2a(e2a − 1 ± √
e4a + 34 e2a + 1) which 

lead to sequences of eigenvalues with coefficients c(1)
0 = −a, c(2,3)

0 = 1
2 ln z2,3.

Remark 4.5. Theorem 4.3 can be generalized to a larger class of coupling conditions with the 
matrix U satisfying

(U + I )(1,−1,1,−1, . . . ,1,−1,0, . . . ,0)T = 0 ,

where the columns multiplied by ±1 correspond to the edges of the cycle. For these graphs the 
term with the derivative in the coupling conditions disappears for eigenfunctions constructed as 
in the proof of the Theorem; the term with the functional values disappears due to the fact that 
these vanish at the vertices.

For instance, for one loop starting and ending in the same vertex connected to a segment the 
unitary matrix in the central vertex must be of the form

U =
⎛
⎝ p p + 1 q̄

p + 1 p q̄

q q r

⎞
⎠

with p, q , r being complex and satisfying

r = −2p − 1 , 2|p|2 + |q|2 + 2 Rep = 0 .
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Hence we have a 3-parametre set of the whole family of 9-parametre set of unitary matrices 
3 × 3. From the last equation it also follows that Rep ∈ (−1, 0). The choice p = −1/3, q = 2/3, 
r = −1/3 gives standard conditions.

5. Studying the secular equation via pseudo-orbit expansions

In what follows we shall use the approach based on the vertex scattering matrices and its 
pseudo-orbit expansion to construct the secular equation. We refer to the pioneering articles in the 
case of quantum graphs by Kottos and Smilansky [23] and Akkermans et al. [1], the publication 
by Band, Harrison and Joyner [10] or the paper by Bolte and Endres where the case of general 
coupling was worked out [7].

In the case of the damped wave equation similar techniques can be used and, in a similar 
way to the cited works above, the orbit expansion can help finding the secular equation. From 
the secular equation, one can then find the leading term of its high-frequency asymptotics (i.e. 
the expansion in n). In this section this expansion is done in terms of scattering matrices. Fur-
thermore, we show how it is possible to obtain particular coefficients in the first term of this 
expansion using the orbit expansion.

We shall first briefly describe the method of orbit expansion. Let us replace the graph �
by the directed graph �2, where the j -th edge of � is replaced by two directed edges (which, 
following [10], we will call bonds) ej and êj , both of length lj . Using the Ansatz

fej
(x) = αin

ej
eλ̃j x + αout

ej
e−λ̃j x ,

fêj
(x) = αin

êj
eλ̃j x + αout

êj
e−λ̃j x

and the relation fej
(x) = fêj

(lj − x) one has

αout
êj

= eλ̃j lj αin
ej

, αout
ej

= eλ̃j lj αin
êj

.

The interpretation of the incoming and outgoing waves for this choice corresponds to λ̃j as the 
positive square root of λ2 + 2aeλ − be. It can be compared to the case of quantum graphs, where 
one has eikx and e−ikx with k2 = E being the spectral parameter. Here k corresponds to − Im(λ). 
We define the vertex scattering matrix σv(λ) by �αout

v = σv(λ)�αin
v with �αin

v = (αin
ev1

, . . . , αin
evd

)T and 
�αout
v = (αout

ev1
, . . . , αout

evd
)T.

The matrix �(λ) is defined by the equation

�αout = �(λ)�αin ,

where

�αout = (αout
e1

, . . . , αout
eN

,αout
ê1

, . . . , αout
êN

)T ,

�αin = (αin
e1

, . . . , αin
eN

,αin
ê1

, . . . , αin
êN

)T .

The matrix �(λ) is block-diagonalizable via the similarity transformation W�(λ)W−1. Here the 
matrix W maps the vector �αin to the vector
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[
(�αin

v1
)T, (�αin

v2
)T, . . . , (�αin

v|V|)
T
]T

,

where |V| is the number of vertices in the graph. This similarity transformation only rearranges 
rows and columns of �(λ) and the blocks of the matrix W�(λ)W−1 are σvj

(λ).
Finally, we define

J =
(

0 I

I 0

)
and L = exp

(
diag (−λ̃1l1, . . . ,−λ̃N lN ,−λ̃1l1, . . . ,−λ̃N lN )

)

and obtain (
�αin
e

�αin
ê

)
= L

( �αout
ê

�αout
e

)
= LJ

( �αout
e

�αout
ê

)
= LJ�(λ)

(
�αin
e

�αin
ê

)
.

Hence the secular equation is

det (LJ�(λ) − I2N×2N) = 0 . (14)

We further denote S(λ) = J�(λ).
The following proposition compares the vertex scattering matrix behaviour in 1/n expansion 

with the coupling matrix for this particular vertex.

Proposition 5.1 (Vertex scattering matrix behaviour). Let us assume a vertex with coupling given 
by a unitary matrix U . If U is of the form (11), then

σ(λsn) = V −1

⎛
⎝−In− 0 0

0 In+ 0
0 0 Id−n−−n+

⎞
⎠V +O(1/n)

where d is the vertex degree.

Proof. The coupling condition becomes

(U − I )(�αin + �αout) + i(U + I )(2πinI + �2)(�αin − �αout) = 0 ,

with �2 being the diagonal matrix with entries c(s)
0 +aj +O(1/n) and with U being the coupling 

matrix defined in Section 2. This is due to the high-frequency asymptotics of λ̃j (λ). The previous 
equation leads to the relation

[(U − I ) + 2πn(U + I ) − i(U + I )�2]σ(λsn) = −[(U − I ) − 2πn(U + I ) + i(U + I )�2].
(15)

Using the expansion of σ(λ) = σ0 + 1
n
σ1 + 1

n2 σ2 + O(1/n3) in n one finds from the first two 
terms

2πn(U + I )(σ0 − I ) = 0 , (16)

(U − I )(σ0 + I ) + 2π(U + I )σ1 + i(U + I )�2(I − σ0) = 0 . (17)
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For simplicity, we study the whole problem in the basis in which U is diagonal. Equation (16)
implies the following form for the constant (in λsn) part of σ

σ0 =
⎛
⎝σ 1

0 σ 2
0 σ 3

0

0 I 0
0 0 I

⎞
⎠ .

The fact that σ0 is unitary yields σ 2
0 = σ 3

0 = 0 and since all upper blocks of the second and third 
terms in (17) vanish, we have σ 1

0 = −In− . Rewriting σ(λ) into the appropriate basis we obtain 
the claim. �

We use the same terminology as in [10].

Definition 5.2. A periodic orbit is a closed trajectory on the graph �2. An irreducible pseudo 
orbit γ̄ is a collection of periodic orbits where none of the directed bonds is contained more than 
once. Let mγ̄ denote the number of periodic orbits in γ̄ , Lγ̄ =∑e∈γ̄ λ̃ele where the sum is over 

all directed bonds in γ̄ and λ̃e =√λ2 + 2aeλ − be. The coefficients Aγ̄ = �γj ∈γ̄ Aγj
with Aγj

given as multiplication of entries of S(λ) along the trajectory γj .

Theorem 5.3. The secular equation for the damped wave equation on a metric graph is given by

∑
γ̄

(−1)mγ̄ Aγ̄ (λ) exp(−Lγ̄ (λ)) = 0

with Lγ̄ being the sum of the lengths of all directed bonds along a particular irreducible pseudo 
orbit γ̄ .

Proof. The proof is similar to that of Theorem 1 in [10], except that the role of exp(iklγ̄ ) is 
replaced by exp(−Lγ̄ (λ)). Its main essence is that nontrivial contributions to the determinant 
of (14) are given by such permutations which correspond to irreducible pseudo orbits. Each 
pseudo orbit of length s corresponds to taking s entries of the matrix S(λ) and 2N − s entries 
of −I . Since the number of −1’s coming from the entries of this last matrix cancels with a 
part of the sign contribution of the permutation coming from the first term, the sign of a given 
contribution is given by the number of periodic orbits in γ̄ . �
Theorem 5.4. Let � be a graph with given damping coefficients aj (x) and potentials bj (x). 
At a fixed vertex v we assume a general coupling given by the matrix U .

i) If −1 /∈ σ(U) then the abscissa count and high-frequency abscissas will not change if U is 
replaced by UN = I , i.e. we separate all edges with Neumann coupling.

ii) If there is δ-coupling of strength α ∈ R (U = 2
d+iα

J − I ) then the abscissa count and 
high-frequency abscissas will not change if U is replaced by standard coupling (α = 0). 
We emphasize that the case α = ∞, i.e. fully separated case, is not included.

Proof. i) According to Proposition 5.1 the first term of the asymptotics of the vertex scattering 
matrix equals the identity matrix. Hence the first term of the secular equation is the same as 
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in the case of Neumann coupling. It is straightforward to verify that the δ′
s-coupling matrix 

does not have −1 in its spectrum.
ii) The δ-coupling matrix has one eigenvalue equal to d−iα

d+iα
and an eigenvalue −1 with mul-

tiplicity d − 1. Hence, according to Proposition 5.1, the first term in the expansion of the 
vertex scattering matrix is the same as that in the expansion of the vertex scattering matrix 
for the case of the standard coupling. �

The cases considered in i) include e.g. δ′
s-condition (U = I − 2

d−iβ
) with strength β ∈R\{0}.

6. Number of distinct high-frequency abscissas

Our next aim is to bound the number of sequences of eigenvalues corresponding to different 
high-frequency abscissas. We begin by stating the main theorem of this section, whose proof is 
based on several lemmata and given at the end of the section.

To describe the distribution of eigenvalues and compare it with the two-dimensional results 
we define the following probability measure (see also e.g. [2,26]).

Definition 6.1. Let I be an open interval in R and R > 0. Then we define the probability distri-
bution μR(I) by

μR(I) = #{λ : Reλ ∈ I, |Imλ| < R}
#{λ : |Imλ| < R} .

We define μ∞(I ) by lim
R→∞μR(I).

We define a bipartite graph and state its main property. For more details see e.g. [16].

Definition 6.2. A graph is bipartite if it admits partition into two classes such that every edge 
ends in different classes.

Proposition 6.3. A graph is bipartite iff it does not have any closed cycle of odd length.

The main result of the paper can be written in terms of μ∞(I ) in the following way.

Theorem 6.4. Let � be an equilateral graph with N edges of length one, with coupling given 
by (5) and with damping and potential functions aj(x) ∈ C1[0, 1], bj (x) ∈ C0[0, 1], possibly 
discontinuous at the vertices.

i) The measure μ∞ is atomic with atoms with measures given by mi

2N
with mi being a positive 

integer. The number of atoms is at most 2N and 
αc∑
i=1

mi = 2N .

ii) If the graph is bipartite with Robin coupling on the boundary and standard coupling other-
wise, then all mi ’s are even.

iii) For a tree graph with Robin coupling on the boundary and standard coupling otherwise, 
having all vertices of odd degree, there always exists a damping for which the maximum 
possible number of N atoms allowed by i) and ii) is achieved.
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Remark 6.5. We present a systematic procedure to determine the polynomial whose solutions 
yield the high-frequency abscissas.

(1) Given a graph with commensurate edges, introduce new vertices of degree two to make the 
graph equilateral;

(2) For an equilateral graph with edges of length l0 use the construction of Lemma 3.6 to obtain 
an equilateral graph with unit lengths;

(3) Replace the damping on each edge by its average and make all potentials equal to zero (using 
Theorem 3.5);

(4) Construct a secular equation by first constructing two independent solutions sinh (λ̃j (λ)x)

and cosh (λ̃j (λ)x) on each edge and then use the coupling conditions (5);

(5) Determine the leading term of the secular equation and replace λ̃j (λ) by c(s)
0 + āj in the 

arguments of the hyperbolic functions;

(6) Determine the roots zi of the corresponding polynomial equation in z = ec
(s)
0 and ω0, the real 

parts of c(s)
0 , as ln |zi |.

For the proof of the Theorem 6.4 we will use the following lemmata. First, we give an upper 
bound on the number of these sequences for an equilateral graph with general coupling condi-
tions.

Lemma 6.6. Let � be an equilateral graph with N edges of the length 1. Let us assume a damped 
wave equation on � with damping and potential functions constant on each edge aj(x) ≡ aj , 
bj (x) ≡ bj and with general coupling given by (5) for a given unitary matrix U . Then there exist 
numbers n0 ∈ N, c(s)

0 ∈ C, s = 1, . . . , 2N and c1 ∈ R such that for every n ≥ n0 all eigenvalues 
of H are within the following set

{λ, |Imλ| ≤ 2πn0} ∪
2N⋃
s=1

∞⋃
n=n0

B
(

2πni + c
(s)
0 ,

c1

n

)
,

where B(x0, r) denotes the disc in the complex plane with centre x0 and radius r .

Proof. As follows from the construction in Section 3, high n asymptotics of the eigenvalues are 
given by equation (6). We choose c1 as twice the maximum of modulæ of the coefficients by 
the O(1/n) for particular sequences and n0 large enough for the O(1/n2) term to be smaller 
than c1/n. It remains to prove that there are at most 2N different coefficients c(s)

0 . Since the 

first term of the n asymptotics of the secular equation uniquely determines the coefficients c(s)
0 , 

one can use the pseudo-orbit expansion with the first term of n asymptotics of vertex scattering 
matrices. Each pseudo orbit γ̄ of length lγ̄ corresponds to a term by ylγ̄ . Since the directed graph 

corresponding to � has 2N edges, we obtain a polynomial equation in y = ec
(s)
0 of 2N -th order, 

which has 2N roots uniquely determining the values of c(s)
0 . �

We shall now consider some particular cases for which it is possible to be more specific 
regarding the possible number of high-frequency abscissas. In the first example, we show that 
for bipartite graphs with N edges there are at most N high-frequency abscissas.
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Lemma 6.7. Let � be an equilateral graph with N edges of unit length, (general) Robin coupling 
at the boundary and standard coupling otherwise. Let us suppose that the graph is bipartite. Then 
for any damping functions bounded and C1 on each edge there are at most N high-frequency 
abscissas.

Proof. With the construction of the previous section in mind, one can see that all closed orbits 
have an even number of edges. Hence in the first term of the n asymptotics of the secular equation 

there are only terms with e2c
(s)
0 . The corresponding polynomial equation in e2c

(s)
0 has only N roots 

which give at most N different values of ω0 = Re c
(s)
0 . �

To obtain a lower bound on the number of high-frequency abscissas we shall first prove the 
following technical lemma.

Lemma 6.8. Let � be a tree graph with standard coupling and all edges of length one, �2 the 
corresponding oriented graph. Let {e1, . . . , e2N } be a set of edges on �, γ̄ a pseudo orbit on 
{e1, . . . , e2N, ê1, . . . , ˆe2N } ⊂ �2 and X be a vertex of � of degree d and let there be v edges 
emanating from X denoted by {e1, . . . , ev}. Let s1 = 2

d
− 1, s2 = 2

d
be on-diagonal and off-

diagonal elements of the scattering matrix at X , respectively. For a particular pseudo orbit γ̄ ′
let �3(γ̄

′) be a collection of all pseudo orbits which can be obtained from γ̄ ′ by all possi-
ble changes at X . Then the coefficient in 

∑
γ̄∈�3(γ̄

′) Aγ̄ (λ) corresponding to the vertex X is 

AX = sv
1 (s − 1)v−1[(v − 1)s + 1] with s = s2

s1
= 2

2−d
.

Proof. First, we prove by induction that if one sums up the contribution of all paths with no 
reflection coefficients at X one obtains (1 − v)sv

2 . Let us assume a star graph of v edges and its 
corresponding directed counterpart. Let us denote by g(v) the (−1)mγ̄ multiple of the number 
of different pseudo orbits γ̄ on it which do not have any reflection at the central vertex and 
let us assume g(v) = 1 − v. This clearly holds true for v = 2, 3, since g(2) = −1 (pseudo orbit 
e1ê2e2ê1) and g(3) = −2 (pseudo orbits e1ê2e2ê3e3ê1 and e1ê3e3ê2e2ê1). Furthermore, we prove 
that g(v + 1) = vg(v) − vg(v − 1). One considers the set of all pseudo orbits without reflection 
on v edges. The first term corresponds to adding the (v + 1)-th edge to one of the pseudo orbits 
(for each pseudo orbit on r edges one has r possibilities and hence g(v) is multiplied by v). The 
second term corresponds to a pseudo orbit on two edges – the (v+1)-th one and one of the others 
and any possible combination of nonreflection pseudo orbits on the other edges, i.e. g(v − 1). By 
induction we have g(v + 1) = v(1 − v) − v(1 − v + 1) = −v.

As the second step we use this result to prove the lemma. Then the coefficient obtained from 
the pseudo-orbit expansion by X is given by

AX =
v∑

n=0

(
v

n

)
(−s1)

nsv−n
2 (1 − v + n) = (−s1)

v
v∑

n=0

(1 − n)

(
v

n

)
(−s)n =

= −(−s1)
v

v∑
n=0

[(
v − 1

n − 1

)
(v − 1) −

(
v − 1

n

)]
(−s)n =

= sv
1

v−1∑
n=0

(
v − 1

n

)
sn(−1)v−n[(v − 1)s + 1] = −sv

1 (s − 1)v−1[(v − 1)s + 1] ,

where in the middle term the expressions 
(
v−1) and 

(
v−1) are taken to be zero. �
−1 v
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We may now show that under certain conditions it is always possible to have at least a number 
of high-frequency abscissas which is equal to the number of edges in the graph.

Lemma 6.9. Let � be a tree graph with N edges all with unit length, Robin coupling at the 
boundary and standard coupling otherwise. Let us suppose that all vertices have odd degree. 
Then there always exists such a damping for which the number of high-frequency abscissas is 
greater than or equal to N .

Proof. Let us assume a given set of the edges of the graph � and all pseudo orbits which go 
through every edge of this set twice. Then the contribution of all these pseudo orbits cancels (see 
e.g. [1]) if and only if there is a vertex of � of degree d = 2v and the above set of edges contains 
v edges emanating from this vertex. This follows from the previous lemma, since d = 2 − 2

s
=

2 + 2(v − 1) = 2v for s = − 1
v−1 .

We will prove the lemma by explicitly constructing the damping function for which this max-
imum of the number of sequences is attained. The idea is to choose the damping in a way that 
its average on each edge differs significantly. In the virtue of Theorem 3.5 we choose constant 
damping on each edge, i.e. 0 � aN � aN−1 � · · · � a1. The first term of the n expansion of the 
secular equation can be written as (for simplicity we omit n to the corresponding power).

CN e2a1+2a2+···+2aN yN + CN−1e2a1+2a2+···+2aN−1
[
1 +O

(
e−2(aN−1−aN )

)]
yN−1+

+ · · · + C2e2a1+2a2
[
1 +O

(
e−2(a2−a3)

)]
y2 + C1e2a1

[
1 +O

(
e−2(a1−a2)

)]
y + C0 = 0 ,

where y = e2c
(s)
0 and the coefficients Cj are given by the orbit expansion. Since there are no 

vertices of degree two and standard conditions are considered, none of them is trivial. For y
being close to e−2a1 the last two terms are dominant, for y close to e−2a2 the last-but-one and 
last-but-two terms, etc. Hence for the roots of the previous polynomial equation of the N -th order 
we get

yj = −Cj−1

Cj

e−2aj

[
1 +O

(
e−2(aj −aj+1)

)]
, (18)

which gives

c
(j)

0 = −aj + 1

2
ln

(
−Cj−1

Cj

)
+ ln
[
1 +O

(
e−2(aj −aj+1)

)]
.

The above result can be generalized for all equilateral graphs without vertices of degree two. 
The proof is very similar. Let us choose the damping coefficients again as 0 � aN � aN−1 �
· · · � a1. Then the difference of the term of the pseudo-orbit expansion of the secular equa-
tion corresponding to 2j + 1 edges and the term corresponding to 2j or 2j + 2 edges is 
O(e−aj +aj+1+aj+2), since the term with odd number of edges must contain at least three edges 
only once. Hence the secular equation for a graph with cycles can be viewed as a small perturba-
tion of a tree graph for this choice of the damping. Each of the roots (18) gives rise to two roots 
(in general not with distinct real parts)
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Fig. 1. Graph with two cycles (Example 7.1).

zj1,2 =
√

−Cj−1

Cj

e−aj

[
1 +O

(
e−2(aj −aj+1)

)
+O
(

e−(aj −aj+1−aj+2)
)]

(with zj = ec
(j)
0 ) which are still far away from the other roots. �

Proof of Theorem 6.4. i) The claim follows from Lemma 6.6. The number mi is an integer 
since the difference between the imaginary parts of two consecutive eigenvalues in each 
sequence λsn is asymptotically 2π . Hence each c(s)

0 corresponding to one root of polynomial 
equation of the 2N -th order gives a sequence of eigenvalues with the counting function 
Nj(R) = R/2π +O(1) and therefore

lim
R→∞μR((Re c

(s)
0 − ε,Re c

(s)
0 + ε)) = lim

R→∞

miR
2π

+O(1)

NR
π

+O(1)
= mi

2N
,

proving i).
ii) The claim follows from Lemma 6.7.

iii) The claim follows from Lemma 6.9. �
7. Examples

Now, we present several simple examples to illustrate the asymptotic behaviour of high-
frequency eigenvalues.

Example 7.1 (Two cycles with different damping coefficients). Let us study an example of a graph 
with six edges of length one consisting of two cycles joined at one vertex and thus not having 
any boundary vertices (see Fig. 1). Direct consideration of these six edges would yield a 12 × 12
coupling matrix. Since in the vertices connecting only two edges both the functional value and 
the derivative are continuous, these vertices may be deleted to obtain a graph with two cycles 
joined at the central vertex. We thus obtain the 4 × 4 coupling matrix

U = 1

2

⎛
⎜⎜⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞
⎟⎟⎠ .

This corresponds to a coupling matrix at the middle vertex for standard coupling connecting 
four edges. Let the damping coefficients a1 and a2 be different on each cycle and let us as-
sume standard coupling at each of the vertices. We use the Ansatz fj(x) = αj sinh (λ̃j (λ)x) +
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βj cosh (λ̃j (λ)x) on both cycles of the graph with x = 0 at their centres. Then from continuity 
conditions in the central vertex one has

αj sinh

(
3

2
λ̃j (λ)

)
+ βj cosh

(
3

2
λ̃j (λ)

)
= −αj sinh

(
3

2
λ̃j (λ)

)
+ βj cosh

(
3

2
λ̃j (λ)

)

and hence either α1 = α2 = 0, or sinh
(

3
2 λ̃1(λ)

)
= 0 or sinh

(
3
2 λ̃2(λ)

)
= 0. Under the first as-

sumption (α1 = α2 = 0) one has for standard conditions

β1 cosh
3λ̃1(λ)

2
= β2 cosh

3λ̃2(λ)

2
,

β1λ̃1(λ) sinh
3λ̃1(λ)

2
+ β2λ̃2(λ) sinh

3λ̃2(λ)

2
= 0

with

λ̃j ≡ λ̃j (λ) =
√

λ2 + 2ajλ − bj .

Hence

(
cosh 3λ̃1

2 − cosh 3λ̃2
2

λ̃1 sinh 3λ̃1
2 λ̃2 sinh 3λ̃2

2

)(
β1
β2

)
= 0

and

λ̃2 sinh
3λ̃2

2
cosh

3λ̃1

2
+ λ̃1 sinh

3λ̃1

2
cosh

3λ̃2

2
= 0 ,

which can be written as

(λ̃1 + λ̃2) sinh
3(λ̃1 + λ̃2)

2
+ (λ̃1 − λ̃2) sinh

3(λ̃1 − λ̃2)

2
= 0 .

Using the asymptotic expansion (6) one obtains

4πin
[
e6πin+ 3

2 (a1+a2+2c
(s)
0 ) − e−6πin− 3

2 (a1+a2+2c
(s)
0 )
]
+O(1) = 0 .

Therefore, from the leading term of the asymptotics one obtains a polynomial equation

e3(a1+a2)z6 − 1 = 0

in z = ec
(s)
0 , from which one can find the coefficients c(s)

0 and hence the high-frequency abscissas. 
We have

z = exp

(
−a1 + a2 + π is

)

2 3
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Fig. 2. Spectrum of the graph in Fig. 1 for a1 = 2, a2 = 1, b1 = 0, b2 = 0 in Example 7.1.

and hence

c
(s)
0 = −a1 + a2

2
+ πis

3
, s ∈ {0, . . . ,5}. (19)

On the other hand, the equation sinh
(

3
2 λ̃j (λsn)

)
= 0 gives, in the leading term of the asymp-

totics, the equation

e3aj z3 − 1 = 0 (20)

with z = ec
(s)
0 . Hence

cs
0 = −aj + 2πis

3
, s ∈ {0,1,2}.

The location of the eigenvalues for a particular choice of the damping coefficients a1 and a2 is 
shown in Fig. 2, there are in general three sequences of eigenvalues with real parts given by the 
previous relation and (19): −a1, −a2 and − a1+a2

2 . The eigenfunctions corresponding to the first 
two of them are supported at each of the cycles, the third one is supported on both of them and 
is symmetric on each of the cycles. Since one can consider only two edges of length three, the 
upper bound on the number of distinct high-frequency abscissas given by Lemma 6.6 is four.

Example 7.2 (One cycle with one appended edge). The graph in the second example consists of 
a cycle of length three and one edge of length one attached to this cycle (see Fig. 3). We assume 
Dirichlet conditions at the boundary vertex and standard coupling at the central one. As in the 
previous example, it would also be possible to replace the three edges in the cycle by one single 
loop, but in this case we did not feel the need to do so as the matrix corresponding to the original 
graph had a smaller dimension. The coupling matrix is
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Fig. 3. Graph with a cycle and one appended edge (Example 7.2).

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0
0 −1/3 2/3 0 2/3 0 0 0
0 2/3 −1/3 0 2/3 0 0 0
0 0 0 0 0 0 1 0
0 2/3 2/3 0 −1/3 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us assume constant dampings a2 on the cycle and a1 on the attached edge with, in general, 
a1 
= a2.

Using the Ansatz f1(x) = α1 sinh (λ̃1(λ)x) on the appendix and f2(x) = α2 sinh (λ̃2(λ)x) +
β2 cosh (λ̃2(λ)x) on the cycle with x = 0 at its centre, one has from the continuity of the function 
on the cycle

f2(3/2) = f2(−3/2) ⇒ α2 sin

(
3

2
λ̃2(λ)

)
= 0 .

In a similar way to the previous example, this leads to equation (20) and to the same behaviour as 
in the case of a segment of length 3/2, i.e. c

(6)
0 = −a2, c(7)

0 = −a2 + 2
3πi and c(8)

0 = −a2 + 4
3πi.

Under the assumption α2 = 0 one has

λ̃1(λ) cosh
3λ̃2(λ)

2
cosh (λ̃1(λ)) + 2λ̃2(λ) sinh

3λ̃2(λ)

2
sinh (λ̃1(λ)) = 0 .

Using the asymptotic expansions of λ̃j (λ) and λ in n, in a way similar to the previous example, 
we have

n

(
z5 − 1

3
(z3e−2a1 + z2e−3a2) + e−2a1−3a2

)
+O(1) = 0

with z = ec
(s)
0 , which gives the polynomial equation

z5 − 1

3
(z3e−2a1 + z2e−3a2) + e−2a1−3a2 = 0

yielding the high-frequency abscissas. Hence there are in general five sequences of eigenvalues 
with eigenfunctions having nontrivial support on the appendix plus three sequences with eigen-
functions behaving as sinh (λ̃2(λ)x) on the cycle and having trivial component on the segment. 
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Fig. 4. Spectrum of the graph in Fig. 3 for a1 = 3, a2 = 0, b1 = 0, b2 = 0 in Example 7.2.

Fig. 5. Spectrum of the graph in Fig. 3 for a1 = 3, a2 = 0, b1 = 0, b2 = 0 in Example 7.2, detail.

For the particular choice a1 = 3 and a2 = 0 (i.e. no damping on the cycle) we have these numer-
ically found roots of the above equations: z1,2 = −0.345 ± 0.603 i, z3,4 = ±0.0863, z5 = 0.690. 
The values of the coefficients are c(1,2)

0 = −0.364 ± 2.091 i, c(3)
0 = −2.452 + π i, c(4)

0 = −2.450, 

c
(5)
0 = −0.371. The eigenvalues may be computed numerically in this case and their location 

is shown in Figs. 4–6. The upper bound on the number of high-frequency abscissas given by 
Lemma 6.6 is eight.

Example 7.3 (One cycle with two appended edges). The third example we study consists of five 
edges, three of them in a cycle, with the remaining two attached at different vertices as shown 
in Fig. 7. Let us again assume standard coupling at vertices connecting two and more edges and 
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Fig. 6. Spectrum of the graph in Fig. 3 for a1 = 3, a2 = 0, b1 = 0, b2 = 0 in Example 7.2, detail.

Fig. 7. Graph with one cycle and two appended edges (Example 7.3).

Dirichlet coupling at the boundary. The lengths of all edges are equal to one. The coupling matrix 
for this graph is

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 0 0
0 −1/3 2/3 0 0 0 2/3 0 0 0
0 2/3 −1/3 0 0 0 2/3 0 0 0
0 0 0 −1/3 2/3 0 0 0 2/3 0
0 0 0 2/3 −1/3 0 0 0 2/3 0
0 0 0 0 0 −1 0 0 0 0
0 2/3 2/3 0 0 0 −1/3 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 2/3 2/3 0 0 0 −1/3 0
0 0 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We use the Ansatz f1,2(x) = α1,2 sinh λ̃1,2x on the appendices, f3(x) = α3 sinh λ̃3x+β3 cosh λ̃3x

on two edges of the cycle with x = 0 in the only vertex of degree two and f4(x) = α4 sinh λ̃4x +
β4 cosh λ̃4x on the last edge of the cycle with x = 0 in its centre. For simplicity we omit explicit 
dependence of λ̃j on λ. From the coupling conditions we get
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Fig. 8. Spectrum of the graph in Fig. 7 for a1 = 3, a2 = 4, a3 = 5, b1 = b2 = b3 = 0 in Example 7.3.

α1 sinh λ̃1x = α4 sinh
λ̃3

2
+ β4 cosh

λ̃3

2
= α3 sinh λ̃3 + β3 cosh λ̃3 ,

α2 sinh λ̃2x = −α4 sinh
λ̃3

2
+ β4 cosh

λ̃3

2
= −α3 sinh λ̃3 + β3 cosh λ̃3 ,

λ̃1α1 cosh λ̃1 + λ̃3

[
α4 cosh

λ̃3

2
+ β4 sinh

λ̃3

2
+ α3 cosh λ̃3 + β3 sinh λ̃3

]
= 0 ,

λ̃2α2 cosh λ̃2 + λ̃3

[
−α4 cosh

λ̃3

2
+ β4 sinh

λ̃3

2
− α3 cosh λ̃3 + β3 sinh λ̃3

]
= 0 .

The determinant of the above system gives the secular equation in this case, and the location of 
the eigenvalues found numerically for particular values of the damping coefficients are shown in 
Figs. 8–9.

Using the asymptotic expansion of λ̃j (λ) in n one obtains a polynomial equation in z = ec
(s)
0 .

− 9 + (3 e2a1 + 3 e2a2 + e2a3)z2 + 8e3a3z3 + (e4a3 + e2(a1+a3) − e2(a1+a2)+
+ e2(a2+a3))z4 − 8(e2a1+3a3 + e2a2+3a3)z5 + (e2(a1+a2+a3) − e6a3 + e2a1+4a3+
+ e2a2+4a3)z6 + 8e2a1+2a2+3a3z7 + (e2a1+2a2+4a3 + 3e2a1+6a3 + 3e2a1+6a3)z8−

− 9e2a1+2a2+6a3z10 = 0 .

For the choice of the damping a1 = 3, a2 = 4 and a3 = 5 it has roots

z1 = −0.02951, z2 = −0.01228, z3 = −0.00471 − 0.00938 i,

z4 = −0.00471 + 0.00938 i, z5 = −0.00354 − 0.00690 i,
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Fig. 9. Spectrum of the graph in Fig. 7 for a1 = 1, a2 = 3, a3 = 7, b1 = b2 = b3 = 0 in Example 7.3.

z6 = −0.00354 + 0.00690 i, z7 = 0.00674, z8 = 0.01122 − 0.00626 i,

z9 = 0.01122 − 0.00626 i, z10 = 0.02911.

This leads to eigenvalues with

c
(1)
0 = −3.52 + 3.14 i, c

(2)
0 = −4.40 + 3.14 i, c

(3)
0 = −4.56 − 2.04 i,

c
(4)
0 = −4.56 + 2.04 i, c

(5)
0 = −4.86 − 2.05 i, c

(6)
0 = −4.86 + 2.05 i,

c
(7)
0 = −5, c

(8)
0 = −4.35 − 0.51 i, c

(9)
0 = −4.35 + 0.51 i,

c
(10)
0 = −3.54.

The upper bound on the number of high-frequency abscissas according to Lemma 6.6 is ten.

We showed in Section 6 that there can be at most 2N distinct high-frequency abscissas. We 
shall now present an example of a graph with standard coupling where this maximum is attained.

Example 7.4 (Complete graph on four vertices K4). Let us consider a complete graph K4 with 
all edge lengths equal to one (see Fig. 10). The secular equation can be obtained by the approach 
shown in the previous sections or in Sections 3 and 7.

For a special choice of damping coefficients a1 = 7.7, a2 = 10.5, a3 = 13.7, a4 = 13.7, 
a5 = 5.7, a6 = 11.2, one finds that the secular equation leads to the following polynomial in 

z = ec
(s)
0

− 81 + 1.43471 · 1013z2 + 1.17346 · 1016z3 − 5.30758 · 1023z4 − 3.11505 · 1027z5+
+ 4.21374 · 1033z6 − 8.24732 · 1036z7 − 4.34523 · 1042z8 + 1.63257 · 1043z9+

+ 1.98616 · 1050z10 − 1.56782 · 1056z12 = 0 ,
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Fig. 10. Complete graph on four vertices (Example 7.4).

which has (approximate) roots

z1 = −0.00112, z2 = −0.000145, z3 = −0.0000312, z4 = −9.53 · 10−6,

z5 = −5.42 · 10−6, z6 = −2.77 · 10−6, z7 = 2.78 · 10−6, z8 = 5.02 · 10−6,

z9 = 0.0000113, z10 = 0.0000276, z11 = 0.000147, z12 = 0.00112.

This leads to eigenvalues with

c
(1)
0 = −6.80 + 3.14 i, c

(2)
0 = −8.84 + 3.14 i, c

(3)
0 = −10.4 + 3.14 i,

c
(4)
0 = −11.6 + 3.14 i, c

(5)
0 = −12.1 + 3.14 i, c

(6)
0 = −12.797 + 3.14 i,

c
(7)
0 = −12.792, c

(8)
0 = −12.2, c

(9)
0 = −11.4,

c
(10)
0 = −10.5, c

(11)
0 = −8.83, c

(12)
0 = −6.80.

We can see that the maximal number of distinct high-frequency abscissas, which is 12, is attained.

Example 7.5 (Star graph with different edge lengths). Now we illustrate what happens when the 
lengths of the edges of the graph are changed. We consider a star graph with three edges, Dirichlet 
coupling at the free ends and standard coupling in the central vertex. The coupling matrix is

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 −1/3 0 2/3 0 2/3
0 0 −1 0 0 0
0 2/3 0 −1/3 0 2/3
0 0 0 0 −1 0
0 2/3 0 2/3 0 −1/3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If all the lengths are commensurate then the graph can be described by the machinery of previous 
sections, where the unit length is the greatest common divisor of the edge lengths.

Using the Ansatz fj (x) = αj sinh λ̃j x on each edge with x = 0 at the free end one obtains the 
secular equation
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Fig. 11. Spectrum of a star graph with different lengths of the edges, l1 = 1, l2 = 1, l3 = 1.03 in Example 7.5.

Fig. 12. Spectrum of a star graph with different lengths of the edges, l1 = 1, l2 = 1, l3 = 1.41 in Example 7.5.

3∑
j=1

λ̃j cosh
(
λ̃j lj

) 3∏
i=1
i 
=j

sinh
(
λ̃i li

)
= 0 .

The eigenvalue location for particular lengths of the edges and the choice a1 = 3, a2 = 4, a3 = 5
is shown in Figs. 11–13. From this we see that by choosing different lengths for the edges it will 
be possible to increase the number of high-frequency abscissas and make it larger than the value 
of 2N given by Lemmata 6.6 and 6.7 for the equilateral case.

Finally, we study the behaviour of the spectra of this graph for l1 = l2 = 1, l3 = 1 + ε, 
a1(x) = a2(x) = 1, a3(x) = 1 + aε for small ε and fixed a. For ε = 0 we have eigenvalues 
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Fig. 13. Spectrum of a star graph with different lengths of the edges, l1 = 1.5, l2 = 2.1, l3 = 3.1 in Example 7.5.

Fig. 14. Spectrum of a star graph with different lengths of the edges, l1 = 1, l2 = 1, l3 = 1.03, a1 = a2 = 1, a3 = 1.03 in 
Example 7.5.

given by the equation sinh λ̃1 = 0 (with multiplicity 2) and eigenvalues given by cosh λ̃1 = 0
(with multiplicity 1). For nonzero ε there is a sequence of eigenvalues given by sinh λ̃1 = 0 (with 
multiplicity 1) and we find from the numerics that, starting with real parts of the eigenvalues 
approximately −1 − a/3 and −1 − 2a/3, begin to interlace each other for bigger imaginary part 
of the eigenvalues (see Fig. 14). The imaginary part of the point, where these two sequences first 
cross, grows as ε approaches zero. The difference between the imaginary parts of two consecu-
tive eigenvalues in this sequence is approximately π . Hence, we conjecture that for ε rational and 
approaching zero the number of high-frequency abscissas grows to infinity and for ε irrational 
the measure μ∞ defined in Section 6 is no longer atomic.
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