期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:298
A shape variation result via the geometry of eigenfunctions
Article
Anoop, T. V.1  Kumar, K. Ashok1  Kesavan, S.1 
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词: Geometry of the first eigenfunctions;    Foliated Schwarz symmetry;    Shape derivative;    Monotonicity of the first eigenvalue;    Zaremba problem;    Torsional rigidity;   
DOI  :  10.1016/j.jde.2021.07.001
来源: Elsevier
PDF
【 摘 要 】

We discuss some of the geometric properties, such as the foliated Schwarz symmetry, the monotonicity along the axial and the affine-radial directions, of the first eigenfunctions of a Zaremba problem for the Laplace operator on annular domains. Together with the shape calculus, these fine geometric properties help us to prove that the first eigenvalue is strictly decreasing as the inner ball moves towards the boundary of the outer ball. (c) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2021_07_001.pdf 703KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次