期刊论文详细信息
Kodai Mathematical Journal
On the first Dirichlet Laplacian eigenvalue of regular polygons
Carlo Nitsch1 
[1] Mathematisches Institut Universität zu Köln
关键词: First Dirichlet Laplacian eigenvalue;    Isoperimetric inequality;    Shape derivative;    Eigenvalues on polygons;   
DOI  :  10.2996/kmj/1414674611
学科分类:数学(综合)
来源: Tokyo Institute of Technology, Department of Mathematics
PDF
【 摘 要 】

References(21)The Faber-Krahn inequality in R2 states that among all open bounded sets of given area the disk minimizes the first Dirichlet Laplacian eigenvalue. It was conjectured in [1] that for all N ≥ 3 the first Dirichlet Laplacian eigenvalue of the regular N-gon is greater than the one of the regular (N + 1)-gon of same area. This natural idea is suggested by the fact that the shape becomes more and more "rounded" as N increases and it is supported by clear numerical evidences. Aiming to settle such a conjecture, in this work we investigate possible ways to estimate the difference between eigenvalues of regular N-gons and (N + 1)-gons.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080708071ZK.pdf 18KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次