JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:259 |
Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains | |
Article | |
Shuai, Wei | |
关键词: Kirchhoff-type equations; Sign-changing solutions; Nonlocal term; | |
DOI : 10.1016/j.jde.2015.02.040 | |
来源: Elsevier | |
【 摘 要 】
We are interested in the existence of least energy sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. Because the so-called nonlocal term b(integral(Omega)vertical bar del u vertical bar(2)dx)Delta u is involving in the equation, the variational functional of the equation has totally different properties from the case of b = 0. Combining constraint variational method and quantitative deformation lemma, we prove that the problem possesses one least energy sign-changing solution u(b). Moreover, we show that the energy of u(b) is strictly larger than the ground state energy. Finally, we regard b as a parameter and give a convergence property of ub as b SE arrow 0. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2015_02_040.pdf | 796KB | download |