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Abstract

We are interested in the existence of least energy sign-changing solutions for a class of Kirchhoff-type 
problem in bounded domains. Because the so-called nonlocal term b(

∫
� |∇u|2dx)�u is involving in the 

equation, the variational functional of the equation has totally different properties from the case of b = 0. 
Combining constraint variational method and quantitative deformation lemma, we prove that the problem 
possesses one least energy sign-changing solution ub. Moreover, we show that the energy of ub is strictly 
larger than the ground state energy. Finally, we regard b as a parameter and give a convergence property of 
ub as b ↘ 0.
© 2015 Published by Elsevier Inc.
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1. Introduction

Let � be a bounded domain in RN , N = 1, 2, 3, with a smooth boundary ∂�. We investigate 
the existence of least energy sign-changing solutions of the following Kirchhoff type problem
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⎧⎪⎨
⎪⎩

−
(
a + b

∫
�

|∇u|2dx
)
�u = f (u), x ∈ �,

u = 0, on ∂�,

(1.1)

where a, b are positive constants. We assume f ∈ C1(R, R) and satisfy the following hypotheses:

(f1) f (s) = o(|s|) as s → 0;
(f2) For some constant p ∈ (4, 2∗), lim

s→∞
f (s)

sp−1 = 0, where 2∗ = +∞ for N = 1, 2 and 2∗ = 6 for 

N = 3;
(f3) lim

s→∞
F(s)

s4 = +∞, where F(s) = ∫ s

0 f (t)dt ;

(f4) f (s)

|s|3 is an increasing function of s ∈R \ {0}.

In recent years, the following elliptic problem

⎧⎪⎪⎨
⎪⎪⎩

−
(
a + b

∫
�

|∇u|2dx
)
�u + V (x)u = f (x,u), x ∈ �,

u ∈ H 1
0 (�),

(1.2)

has been studied extensively by many researchers, here � is a domain in RN , possibly un-
bounded, with empty or smooth boundary, V : � → R, f ∈ C(� × R, R), and a, b > 0 are 
constants. (1.2) is a nonlocal problem as the appearance of the term (

∫
�

|∇u|2dx)�u implies 
that (1.2) is not a pointwise identity. This causes some mathematical difficulties which make the 
study of (1.2) particularly interesting. Problem (1.2) arises in an interesting physical context. In-
deed, if we set V (x) = 0 and let � ⊂R

N be a bounded domain in (1.2), then we get the following 
Kirchhoff Dirichlet problem

⎧⎪⎨
⎪⎩

−
(
a + b

∫
�

|∇u|2dx
)
�u = f (x,u), x ∈ �,

u = 0, on ∂�,

(1.3)

which is related to the stationary analogue of the equation

ρ
∂2u

∂t2
−

(P0

h
+ E

2L

L∫
0

∣∣∣∂u

∂x

∣∣∣2
dx

)∂2u

∂x2
= 0,

proposed by Kirchhoff in [14] as an existence of the classical D’Alembert’s wave equations for 
free vibration of elastic strings. After the pioneer work of J.L. Lions [15], where a functional 
analysis approach was proposed to the equation

⎧⎪⎨
⎪⎩

utt −
(
a + b

∫
�

|∇u|2dx
)
�u = f (x,u), x ∈ �,

(1.4)
u = 0, x ∈ ∂�,
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problem (1.4) began to call attention of several researchers, see [1,2,8,10] and the references 
therein.

Kirchhoff’s model takes into account the changes in length of the string produced by trans-
verse vibrations. In (1.3), u denotes the displacement, f (x,u) the external force and b the initial 
tension while a is related to the intrinsic properties of the string, such as Young’s modulus. We 
have to point out that such nonlocal problems also appear in other fields as biological systems, 
where u describes a process which depends on the average of itself, for example, population den-
sity. For more mathematical and physical background of the problem (1.3), we refer the readers 
to the papers [1,2,8,12–14,16] and the references therein.

Recently, there has been increasing interest in studying problem (1.2), especially on the ex-
istence of positive solutions, multiple solutions, ground states and semiclassical states, see for 
example, [1,9,11–13,16,18,20] and the references therein. We must point out that there are very 
few results on the existence of sign-changing solutions for problem (1.2). Recently, only Zhang 
et al. [17,23] studied the existence of sign-changing solutions of (1.3) via invariant sets of descent 
flow. To the authors’ knowledge, there is no result on the existence of least energy sign-changing 
solutions for problems (1.2) and (1.3).

Throughout this paper, we denote H := H 1
0 (�) the usual Sobolev space equipped with the 

inner product and norm

(u, v) =
∫
�

∇u∇vdx, ‖u‖ = (u,u)1/2.

Define the energy functional Ib : H →R by

Ib(u) := a

2

∫
�

|∇u|2dx + b

4

(∫
�

|∇u|2dx
)2 −

∫
�

F(u)dx. (1.5)

The functional Ib is well-defined for every u ∈ H and belongs to C1(H, R). Moreover, for any 
u, ϕ ∈ H , we have

〈I ′
b(u),ϕ〉 = a

∫
�

∇u∇ϕdx + b

∫
�

|∇u|2dx

∫
�

∇u∇ϕdx −
∫
�

f (u)ϕdx. (1.6)

Clearly, critical points of Ib are the weak solutions for nonlocal problem (1.1). Furthermore, if 
u ∈ H is a solution of (1.1) and u± 
= 0, then u is a sign-changing solution of (1.1), where

u+(x) = max{u(x),0} and u−(x) = min{u(x),0}.
When b = 0, Eq. (1.2) does not depend on the nonlocal term (

∫
�

|∇u|2dx)�u any more, i.e., it 
becomes to the following semilinear equation

{−�u + V (x)u = f (x,u), x ∈ �,

u ∈ H 1
0 (�),

(1.7)

where we set a = 1 for simplicity. In the literature, there are different ways to get the sign-
changing solutions of Eq. (1.7). For example, by constructive arguments, Bartsch and Willem [4]
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proved that, for every integer k ≥ 0, there is a pair of solutions u±
k of (1.7), which have precisely 

k nodes. Via a variational argument and a version of deformation lemma, Castro, Cossio and 
Neuberger [7] proved that (1.7), on a bounded domain, possesses a sign-changing solution which 
changes sign only once. By constructing invariant sets and descending flow, Bartsch, Liu and 
Weth [3] got a sign-changing solution with precisely two nodal domains for (1.7) when V (x)

has a positive lower bound and f satisfies the Ambrosetti–Rabinowitz superlinear condition. By 
variational method together with the Brouwer degree theory, Bartsch and Weth in [5] obtained 
three nodal solutions for a singularly perturbed problem of (1.7) on a bounded domain with V (x)

being a constant. For more discussions on the existence of sign-changing solution of (1.7) un-
der various conditions on V (x) and f , we refer the reader to the book [24] and the references 
therein. However, these methods of finding sign-changing solutions for (1.7) heavily rely on the 
following decompositions, for u ∈ H ,

〈I ′
0(u),u+〉 = 〈I ′

0(u
+), u+〉, 〈I ′

0(u),u−〉 = 〈I ′
0(u

−), u−〉, (1.8)

I0(u) = I0(u
+) + I0(u

−), (1.9)

where I0 is the energy functional of (1.7) given by

I0(u) = 1

2

∫
�

|∇u|2 + V (x)u2dx −
∫
�

F(x,u)dx, F (x,u) =
u∫

0

f (x, s)ds.

When b > 0, the nonlocal term (
∫
�

|∇u|2dx)�u is involved in the equation, for the variational 
functional Ib given by (1.5), it is easy to see that

Ib(u) = Ib(u
+) + Ib(u

−) + b

2

∫
�

|∇u+|2dx

∫
�

|∇u−|2dx, (1.10)

〈I ′
b(u),u+〉 = 〈I ′

b(u
+), u+〉 + b

∫
�

|∇u−|2dx

∫
�

|∇u+|2dx, (1.11)

〈I ′
b(u),u−〉 = 〈I ′

b(u
−), u−〉 + b

∫
�

|∇u+|2dx

∫
�

|∇u−|2dx. (1.12)

Clearly, the functional Ib does no longer satisfy the decompositions (1.8) and (1.9). Hence, the 
methods of getting sign-changing solutions of (1.7) seems not applicable to problem (1.1). In 
fact, there are some essential differences in investigating the sign-changing solutions of the prob-
lem (1.1) between b = 0 and b > 0, because of the so called nonlocal term (

∫
�

|∇u|2dx)�u. 
Motivated by [5], in order to get a sign-changing solution for the problem (1.1), we first try to 
seek a minimizer of the energy functional Ib over the following constraint:

Mb =
{
u ∈ H, u± 
= 0 and 〈I ′

b(u),u+〉 = 〈I ′
b(u),u−〉 = 0

}
, (1.13)

and then we show that the minimizer is a sign-changing solution of (1.1). Note that the paper 
[5] is concerned with Eq. (1.7), but in our problem (1.1) the nonlocal term (

∫ |∇u|2dx)�u

�
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is involved, as we mentioned above the functional Ib has no more the properties (1.8), (1.9), 
and it is rather difficult to show that Mb 
= ∅. Thus, we must introduce some new ideas to 
apply variational method as in [5] to get a sign-changing solution for the problem (1.1). Roughly 
speaking, we prove Mb 
=∅ by using the parametric method and implicit function theorem. We 
do it successfully by proving that, if u ∈ H with u± 
= 0, there is a unique pair (s, t) ∈ (R+×R+), 
such that su+ + tu− ∈ Mb, see Lemma 2.1. To show that the minimizer of the constrained 
problem is a sign-changing solution, we take advantage of quantitative deformation lemma and 
degree theory.

Our first main result can be stated as follows.

Theorem 1.1. If the assumptions (f1)–(f4) hold, then the problem (1.1) possesses one least 
energy sign-changing solution ub, which has precisely two nodal domains.

Another aim of the paper is to show that the energy of any sign-changing solution of (1.1) is 
strictly larger than the ground state energy. This is trivial for the typical equation (1.7), i.e., the 
problem (1.2) with b = 0, a = 1. In fact, if we denote the Nehari manifold associated to (1.7) by

N0 =
{
u ∈ H \ {0} : 〈I ′

0(u),u〉 = 0
}
, (1.14)

and let

c0 := inf
u∈N0

I0(u), (1.15)

then, for any sign-changing solution w ∈ H of (1.7), it follows from (1.8), (1.9) that w± ∈
N0. Moreover, if the nonlinearity f (x, s) satisfies conditions (see [4], A2–A6) analogous to 
(f1)–(f4), then we can deduce that

I0(w) = I0(w
+) + I0(w

−) ≥ 2c0. (1.16)

It is well-known that the minimizer of (1.15) is indeed a ground state solution of the problem 
(1.7), and c0 > 0 is the ground state energy, i.e., the least energy of all weak solutions of (1.7). 
Therefore, (1.16) implies that, the energy of any sign-changing solution of Eq. (1.7) is larger than 
two times the least energy, this property is called energy doubling by Weth in [21]. However, if 
b > 0 in (1.1), the property (1.16) is still unknown for the functional Ib. Indeed, let wb ∈ H be a 
sign-changing solution of (1.1), it follows from (1.11) and (1.12) that

w±
b /∈ Nb :=

{
u ∈ H \ {0} : 〈I ′

b(u),u〉 = 0
}
. (1.17)

Then, although (1.10) shows that

Ib(wb) > Ib(w
+
b ) + Ib(w

−
b )

we still cannot deduce that Ib(wb) ≥ 2cb, where

cb := inf Ib(u). (1.18)

u∈Nb
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From these observations, it is even not easy to compare Ib(ub) with cb. However, taking advan-
tage of the auxiliary function φ which is given in Lemma 2.3, we have the following theorem.

Theorem 1.2. If the assumptions of Theorem 1.1 hold, then cb > 0 is achieved and

Ib(ub) > cb,

where ub is the least energy sign-changing solution obtained in Theorem 1.1. In particular, cb is 
achieved either by a positive or a negative function.

Theorem 1.2 indicates that the energy of any sign-changing solution of (1.1) is strictly larger 
than the ground state energy.

It is obvious that the energy of the sign-changing solution ub obtained in Theorem 1.1 depends 
on b. As a by-product of this paper, we give a convergence property of ub as b ↘ 0, which reflects 
some relationship between b > 0 and b = 0 in problem (1.1). Our main results in this direction 
can be stated as the following theorem.

Theorem 1.3. If the assumptions of Theorem 1.1 hold, for any sequence {bn} with bn ↘ 0 as 
n → ∞, there exists a subsequence, still denoted by {bn}, such that ubn convergent to u0 strongly 
in H as n → ∞, where u0 is a least energy sign-changing solution of the problem

{−a�u = f (u), x ∈ �,

u = 0, on ∂�,
(1.19)

which changes sign only once.

The proof of Theorem 1.3 includes three steps: we first prove {ubn} is bounded in H , then we 
prove ubn → u0 strongly in H , and we finally prove that u0 is just a least energy sign-changing 
solution of (1.19).

The paper is organized as follows. In Section 2, we prove several lemmas, which are crucial 
to prove our main results. In Section 3, by quantitative deformation lemma and degree theory, 
we first show that the minimizer of the constrained problem is a sign-changing solution. We then 
prove Theorems 1.2 and 1.3 by some energy estimations and comparisons.

2. Some preliminary lemmas

We use constraint minimization on Mb to seek a critical point of Ib. We begin this section by 
checking that the set Mb is nonempty in H .

Lemma 2.1. Assume that (f1)–(f4) hold, if u ∈ H with u± 
= 0, then there is a unique pair 
(su, tu) of positive numbers such that suu+ + tuu

− ∈Mb .

Proof. Fixed u ∈ H with u± 
= 0, we denote B := ∫
�

|∇u+|2dx
∫
�

|∇u−|2dx for convenience. 
Then, su+ + tu− is contained in Mb if and only if



JID:YJDEQ AID:7784 /FLA [m1+; v1.204; Prn:9/03/2015; 16:21] P.7 (1-19)

W. Shuai / J. Differential Equations ••• (••••) •••–••• 7
⎧⎪⎨
⎪⎩

as2‖u+‖2 + bs4
(∫

�
|∇u+|2dx

)2 + bBs2t2 − ∫
�

f (su+)su+dx = 0,

at2‖u−‖2 + bt4
(∫

�
|∇u−|2dx

)2 + bBt2s2 − ∫
�

f (tu−)tu−dx = 0.

(2.1)

Hence, the problem is reduced to verify that there is only one solution (s, t) ∈ (R+ × R+) of 
system (2.1).

We consider the solvability of the following system with a parameter μ ∈ [0, 1],
⎧⎪⎨
⎪⎩

as2‖u+‖2 + bs4
(∫

�
|∇u+|2dx

)2 + μbBs2t2 − ∫
�

f (su+)su+dx = 0,

at2‖u−‖2 + bt4
(∫

�
|∇u−|2dx

)2 + μbBs2t2 − ∫
�

f (tu−)tu−dx = 0.

(2.2)

Define

Z :=
{
μ

∣∣ 0 ≤ μ ≤ 1 such that (2.2) is uniquely solvable in R+ ×R+
}
, (2.3)

and set

gμ(s, t) := as2‖u+‖2 + bs4
(∫

�

|∇u+|2dx
)2 + μbBs2t2 −

∫
�

f (su+)su+dx,

hμ(s, t) := at2‖u−‖2 + bt4
(∫

�

|∇u−|2dx
)2 + μbBs2t2 −

∫
�

f (tu−)tu−dx. (2.4)

Claim 1. The set Z contains 0, i.e., 0 ∈ Z .

Since g0(s, t) is independent of t and h0(s, t) is independent of s, without loss of generality, 
we need only to prove that there is a unique t > 0 such that h0(s, t) = 0. Since u− 
= 0, from 
(f1)–(f4) that h0(s, 0) = 0, h0(s, t) > 0 for t > 0 small and h0(s, t) < 0 for t large. Suppose that 
there exist t1, t2, such that 0 < t1 < t2 and h0(s, t1) = h0(s, t2) = 0, then

a

t2
1

‖u−‖2 + b
(∫

�

|∇u−|2dx
)2 =

∫
�

f (t1u
−)

t3
1

u−dx

and this identity is also true if t1 is replaced by t2. Therefore,

a
( 1

t2
1

− 1

t2
2

)
‖u−‖2 =

∫
�

(f (t1u
−)

(t1u−)3
− f (t2u

−)

(t2u−)3

)
|u−|4dx,

which is absurd in view of (f4) and 0 < t1 < t2. Then the proof of Claim 1 is completed.

Claim 2. The set Z is open and closed in [0, 1].
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We first prove that Z is open in [0, 1]. Suppose that μ0 ∈ Z and (s̄, ̄t) ∈ R+ × R+ is the 
unique solution of (2.2) with μ = μ0. By direct calculation, we have

∂gμ(s, t)

∂s

∣∣∣
(s̄,t̄ )

= as̄‖u+‖2 + 3bs̄3
(∫

�

|∇u+|2dx
)2 + μ0bBs̄t̄2

−
∫
�

f ′(s̄u+)s̄|u+|2dx, (2.5)

∂gμ(s, t)

∂t

∣∣∣
(s̄,t̄ )

= 2μ0bBs̄2 t̄ ,
∂hμ(s, t)

∂s

∣∣∣
(s̄,t̄ )

= 2μ0bBs̄t̄2, (2.6)

∂hμ(s, t)

∂t

∣∣∣
(s̄,t̄ )

= at̄‖u−‖2 + 3bt̄3
(∫

�

|∇u−|2dx
)2 + μ0bBs̄2 t̄

−
∫
�

f ′(t̄u−)t̄ |u−|2dx. (2.7)

Set the matrix

M =
⎡
⎢⎣

∂gμ(s̄, t̄)

∂s
,

∂gμ(s̄, t̄ )

∂t
∂hμ(s̄, t̄)

∂s
,

∂hμ(s̄, t̄)

∂t

⎤
⎥⎦ .

By the condition (f4), for s 
= 0, we have

f ′(s)s2 − 3f (s)s > 0. (2.8)

Then

∂gμ(s, t)

∂s

∣∣∣
(s̄,t̄ )

< −2as̄‖u+‖2 − 2μ0bBs̄t̄2,

and

∂hμ(s, t)

∂t

∣∣∣
(s̄,t̄ )

< −2at̄‖u−‖2 − 2μ0bBs̄2 t̄ .

Thus, we conclude that

detM >
(

2as̄‖u+‖2 + 2μ0bBs̄t̄2
)(

2at̄‖u−‖2 + 2μ0bBs̄2 t̄
)

− (2μ0bBs̄2 t̄ )(2μ0bBs̄t̄2) > 0.

Then, the implicit function theorem implies that we can find open neighborhoods U0 of μ0 and 
A0 ⊂R+ ×R+ of (s̄, ̄t) such that the system (2.2) is uniquely solvable in U0 × A0.

Suppose that there is μ1 ∈ U0 such that the second solution (̃s, ̃t) of (2.2) exists in (R+×R+) \
A0, then by the implicit function theorem again, we can find a solution curve 

(
μ, 

(̃
s(μ), ̃t(μ)

))
in 

(μ1 − ε, μ1 + ε) × (R+ ×R+) which satisfies (2.2) and goes through (μ1, (̃s, ̃t)). Assume μ0 <
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μ1 for a while and extend this curve as much as possible. Since it cannot be defined at μ0 and 
enter into U0 ×A0, there should be a point μ2 ∈ [μ0, μ1) such that (̃s(μ), ̃t(μ)) exists in (μ2, μ1]
and blows up as μ → μ+

2 . However, this is impossible. In fact, if (s, t) having sufficiently large 
norm, by (f3), the left-hand side of (2.2) is strictly negative for at least one of them. This gives a 
contradiction. Thus, U0 ⊂Z . The case μ0 > μ1 is similar.

We next prove that Z is closed in [0, 1]. Let {μn} be a sequence in Z converging to μ0 ∈ [0, 1]
and (sn, tn) ∈ (R+ ×R+) be the solution of (2.2) for μn. By the preceding argument the sequence 
(sn, tn) is bounded above. Thus we may assume that (sn, tn) converges to a solution (s0, t0) ∈
(R+ × R+) of (2.2) for μ0. Combine (2.2) and (f1)–(f2), by Sobolev embedding theorem, we 
can get

a(sn)
2‖u+‖2 ≤

∫
�

f (snu
+)snu

+dx ≤ a

2
(sn)

2‖u+‖2 + C(sn)
p‖u+‖p. (2.9)

Since p > 4, we then conclude that 0 < C1 ≤ sn is uniformly in n, thus s0 ≥ C1 > 0. Similarly, 
we conclude t0 ≥ C2 > 0, where C, C1 and C2 are constants. So (s0, t0) ∈ (R+ × R+). Also, 
the fact that (s0, t0) is the unique solution in R+ ×R+ again follows from the implicit function 
theorem. Claim 2 is therefore proved.

From the above two claims, we can easily get the conclusion of Lemma 2.1. �
Lemma 2.2. Assume that (f1)–(f4) hold, suppose that u ∈ H such that, g1(1, 1) ≤ 0 and 
h1(1, 1) ≤ 0, where g1(s, t), h1(s, t) are given as (2.4) with μ = 1. Then the unique pair (su, tu)
of positive numbers obtained in Lemma 2.1 satisfies 0 < su, tu ≤ 1.

Proof. Suppose that su ≥ tu > 0, since suu+ + tuu
− ∈Mb , then we have

as2
u‖u+‖2 + bs4

u

(∫
�

|∇u+|2dx
)2 + bs4

u

∫
�

|∇u+|2dx

∫
�

|∇u−|2dx

≥ as2
u‖u+‖2 + bs4

u

(∫
�

|∇u+|2dx
)2 + bs2

ut2
u

∫
�

|∇u+|2dx

∫
�

|∇u−|2dx

=
∫
�

f (suu
+)suu

+dx. (2.10)

The assumption g1(1, 1) ≤ 0 gives that

a‖u+‖2 + b
(∫

�

|∇u+|2dx
)2 + b

∫
�

|∇u+|2dx

∫
�

|∇u−|2dx ≤
∫
�

f (u+)u+dx. (2.11)

Combine (2.10) and (2.11), we then get

( 1

s2
u

− 1
)
a‖u+‖2 ≥

∫ [f (suu
+)

(suu+)3
− f (u+)

(u+)3

]
(u+)4dx.
�
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If su > 1, the left side of this inequality is negative. But from (f4), the right side is positive, thus 
we must have su ≤ 1. Then the proof is completed. �
Lemma 2.3. For fixed u ∈ H with u± 
= 0, then, the vector (su, tu) which obtained in Lemma 2.1
is the unique maximum point of the function φ : (R+ ×R+) → R defined as φ(s, t) = Ib(su

+ +
tu−).

Proof. From the proof of Lemma 2.1, (su, tu) is the unique critical point of φ in (R+ ×R+). By 
the assumption (f3), we deduce that φ(s, t) → −∞ uniformly as |(s, t)| → ∞, so it is sufficient 
to check that a maximum point cannot be achieved on the boundary of (R+ ×R+). Without loss 
of generality, we may assume that (0, ̄t) is a maximum point of φ. Then since

φ(s, t̄) = Ib(su
+ + t̄u−)

= as2

2

∫
�

|∇u+|2dx + bs4

4

(∫
�

|∇u+|2dx
)2 −

∫
�

F(su+)dx

+ bs2 t̄2

2

∫
�

|∇u+|2dx

∫
�

|∇u−|2dx

+ at̄2

2

∫
�

|∇u−|2dx + bt̄4

4

(∫
�

|∇u+|2dx
)2 −

∫
�

F(t̄u−)dx

is an increasing function with respect to s if s is small enough, the pair (0, ̄t) is not a maximum 
point of φ in (R+ ×R+). �

By Lemma 2.1, we can define the following minimization problem

mb := inf
{
Ib(u) : u ∈Mb

}
. (2.12)

Lemma 2.4. Assume that (f1)–(f4) hold, then mb > 0 can be achieved.

Proof. For every u ∈ Mb , we have 〈I ′
b(u), u〉 = 0. Then by (f1), (f2) and Sobolev embedding 

theorem, we get

a‖u‖2 ≤ a

∫
�

|∇u|2dx + b
(∫

�

|∇u|2dx
)2 =

∫
�

f (u)udx

≤ a

2
λ1

∫
�

|u|2dx + C̃

∫
�

|u|pdx

≤ a

2
‖u‖2 + C‖u‖p (2.13)

where λ1 is the first eigenvalue of (−�, H). So, there exists a constant α > 0 such that ‖u‖2 ≥ α. 
And by (2.8), we have
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f (s)s − 4F(s) ≥ 0. (2.14)

Then

Ib(u) = Ib(u) − 1

4
〈I ′

b(u),u〉 ≥ 1

4
‖u‖2 ≥ 1

4
α.

This implies that mb ≥ 1
4α > 0.

Let {un} ⊂ Mb be such that Ib(un) → mb . Then {un} is bounded in H , and there exists 
ub ∈ H such that u±

n ⇀ u±
b weakly in H . Since un ∈ Mb, we have 〈I ′

b(un), u±
n 〉 = 0, that is

a

∫
�

|∇u±
n |2dx + b

∫
�

|∇un|2dx

∫
�

|∇u±
n |2dx =

∫
�

f (u±
n )u±

n dx. (2.15)

Similar as (2.13) there exists a constant μ > 0 such that ‖u±
n ‖2 ≥ μ for all n ∈N. From (f1) and 

(f2), for any ε > 0, there exists Cε > 0 such that

f (s)s ≤ εs2 + Cε|s|p, for all s ∈ R.

Since un ∈ Mb, thus

μ ≤ ‖u±
n ‖2 <

∫
�

f (u±
n )u±

n dx ≤ ε

∫
�

|u±
n |2dx + Cε

∫
�

|u±
n |pdx.

Using the boundedness of {un}, there is C1 > 0 such that

μ ≤ εC1 + Cε

∫
�

|u±
n |pdx.

Choosing ε = μ
2C1

, we get

∫
�

|u±
n |pdx ≥ μ

2C̄
.

By (2.15) and the compactness of the embedding H ↪→ Lq(�) for 2 ≤ q < 2∗, we get

∫
�

|u±
b |pdx ≥ μ

2C̄
, (2.16)

thus, u±
b 
= 0. The conditions (f1)–(f2) combined with the compactness lemma of Strauss [19]

gives

lim
n→∞

∫
f (u±

n )u±
n dx =

∫
f (u±

b )u±
b dx, lim

n→∞

∫
F(u±

n )dx =
∫

F(u±
b )dx. (2.17)
� � � �
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By the weak semicontinuity of norm, we have

a‖u±
b ‖2 + b

∫
�

|∇ub|2dx

∫
�

|∇u±
b |2dx

≤ lim inf
n→∞

{
a‖u±

n ‖2 + b

∫
�

|∇un|2dx

∫
�

|∇u±
n |2dx

}
. (2.18)

Then from (2.17) we get

a‖u±
b ‖2 + b

∫
�

|∇ub|2dx

∫
�

|∇u±
b |2dx ≤

∫
�

f (u±
b )u±

b dx. (2.19)

From (2.19) and Lemma 2.2, there exists (sub
, tub

) ∈ (0, 1] × (0, 1] such that

ub := sub
u+

b + tub
u−

b ∈ Mb.

Since condition (f4) implies that H(s) := sf (s) − 4F(s) is a non-negative function, increasing 
in |s|, we then have

mb ≤ Ib(ub) = Ib(ub) − 1

4
〈I ′

b(ub), ub〉

= 1

4
‖ub‖2 + 1

4

∫
�

(
f (ub)ub − 4F(ub)

)
dx

= 1

4
‖sub

u+
b ‖2 + 1

4
‖tub

u−
b ‖2 + 1

4

∫
�

(
f (sub

u+
b )sub

u+
b − 4F(sub

u+
b )

)
dx

+ 1

4

∫
�

(
f (tub

u−
b )tub

u−
b − 4F(tub

u−
b )

)
dx

≤ 1

4
‖ub‖2 + 1

4

∫
�

(
f (ub)ub − 4F(ub)

)
dx

≤ lim inf
n→∞

[
Ib(un) − 1

4
〈I ′

b(un), un〉
]

= mb. (2.20)

We then deduce that sub
= tub

= 1. Thus, ub = ub and Ib(ub) = mb . �
3. Proof of main results

The main aim of this section is to prove our main results. We first prove that the minimizer 
ub for the minimization problem (2.12) is indeed a sign-changing solution of (1.1), that is, 
I ′ (ub) = 0.
b
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Proof of Theorem 1.1. Using the quantitative deformation lemma, we prove that I ′
b(ub) = 0.

It is clear that I ′
b(ub)u

+
b = 0 = I ′

b(ub)u
−
b . It follows from Lemma 2.3 that, for (s, t) ∈ (R+ ×

R+) and (s, t) 
= (1, 1),

Ib(su
+
b + tu−

b ) < Ib(u
+
b + u−

b ) = mb. (3.1)

If I ′
b(ub) 
= 0, then there exist δ > 0 and λ > 0 such that

‖I ′
b(v)‖ ≥ λ, for all ‖v − ub‖ ≤ 3δ.

Let D := ( 1
2 , 32 ) × ( 1

2 , 32 ) and g(s, t) := su+
b + tu−

b . It follows from Lemma 2.3 again that

m̄b := max
∂D

Ib ◦ g < mb (3.2)

For ε := min{(mb −m̄b)/2, λδ/8} and S := B(ub, δ), [see [22], Lemma 2.3] yields a deformation 
η such that

(a) η(1, u) = u if u /∈ I−1
b ([mb − 2ε, mb + 2ε]) ∩ S2δ ;

(b) η(1, Imb+ε
b ∩ S) ⊂ I

mb−ε
b ;

(c) Ib

(
η(1, u)

) ≤ Ib(u) for all u ∈ H .

It is clear that

max
(s,t)∈D̄

Ib

(
η(1, g(s, t))

)
< mb. (3.3)

We prove that η(1, g(D)) ∩ Mb 
= ∅, contradicting to the definition of mb. Let us define 
h(s, t) := η(1, g(s, t)) and

�0(s, t) :=
(
I ′
b

(
g(s, t)

)
u+

b , I ′
b

(
g(s, t)

)
u−

b

)
=

(
I ′
b(su

+
b + tu−

b )u+
b , I ′

b(su
+
b + tu−

b )u−
b

)
,

�1(s, t) :=
(1

s
I ′
b

(
h(s, t)

)
h+(s, t),

1

t
I ′
b

(
h(s, t)

)
h−(s, t)

)
.

Lemma 2.1 and the degree theory now yields deg(�0, D, 0) = 1. It follows from (3.2) that g = h

on ∂D. Consequently, we obtain deg(�1, D, 0) = deg(�0, D, 0) = 1. Therefore, �1(s0, t0) = 0
for some (s0, t0) ∈ D, so that η(1, g(s0, t0)) = h(s0, t0) ∈ Mb, which is a contradiction. From 
this, ub is a critical point of Ib, and so, a sign-changing solution for problem (1.1).

Now, we show that ub has exactly two nodal domains, to this end, we assume by contradiction 
that

ub = u1 + u2 + u3

with

ui 
= 0, u1 ≥ 0, u2 ≤ 0 and suppt(ui) ∩ suppt(uj ) =∅, for i 
= j, i, j = 1,2,3
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and

〈I ′
b(ub), ui〉 = 0, for i = 1,2,3.

Setting v := u1 + u2, we see that v+ = u1 and v− = u2, i.e., v± 
= 0. Then, by Lemma 2.1, there 
is a unique pair (sv, tv) of positive numbers such that

svv
+ + tvv

− ∈Mb,

or equivalently,

svu1 + tvu2 ∈Mb.

And so,

Ib(svu1 + tvu2) ≥ mb. (3.4)

Moreover, using the fact that I ′
b(ub)ui = 0, it follows that

〈I ′
b(v), v±〉 < 0.

From Lemma 2.2, we have that

(sv, tv) ∈ (0,1] × (0,1].
On the other hand,

0 = 1

4
〈I ′

b(ub), u3〉 = a

4

∫
�

|∇u3|2dx + b

4

(∫
�

|∇u3|2dx
)2

+ b

4

∫
�

|∇u1|2dx

∫
�

|∇u3|2dx + b

4

∫
�

|∇u2|2dx

∫
�

|∇u3|2dx − 1

4

∫
�

f (u3)u3dx

< Ib(u3) + b

4

∫
�

|∇u1|2dx

∫
�

|∇u3|2dx + b

4

∫
�

|∇u2|2dx

∫
�

|∇u3|2dx. (3.5)

Then, similar as (2.20), we can calculate that

Ib(svu1 + tvu2) = Ib(svu1) + Ib(tvu2) + bs2
v t2

v

2

∫
�

|∇u1|2dx

∫
�

|∇u2|2dx

= as2
v

4
‖u1‖2 + 1

4

∫
�

(
f (svu1)svu1 − 4F(svu1)

)
dx + at2

v

4
‖u2‖2

+ 1

4

∫ (
f (tvu2)tvu2 − 4F(tvu2)

)
dx
�
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≤ a

4
‖u1‖2 + 1

4

∫
�

(
f (u1)u1 − 4F(u1)

)
dx + a

4
‖u2‖2

+ 1

4

∫
�

(
f (u2)u2 − 4F(u2)

)
dx

= Ib(u1) + Ib(u2) + b

2

∫
�

|∇u1|2dx

∫
�

|∇u2|2dx

+ b

4

∫
�

|∇u1|2dx

∫
�

|∇u3|2dx + b

4

∫
�

|∇u2|2dx

∫
�

|∇u3|2dx. (3.6)

Then, from (3.4), (3.5) and (3.6), we have

mb ≤ Ib(svu1 + tvu2) < Ib(u1) + Ib(u2) + Ib(u3) + b

2

∫
�

|∇u1|2dx

∫
�

|∇u2|2dx

+ b

2

∫
�

|∇u1|2dx

∫
�

|∇u3|2dx + b

2

∫
�

|∇u2|2dx

∫
�

|∇u3|2dx

= Ib(ub) = mb,

which is a contradiction. This way, u3 = 0, and ub has exactly two nodal domains. �
By Theorem 1.1, we know that the problem (1.1) has a least energy sign-changing solution 

ub which changes sign only once. We now prove that the energy of ub is strictly larger than the 
ground state energy.

Proof of Theorem 1.2. Let Nb and cb be given by (1.17) and (1.18), respectively. Then, similar 
as the proof of Lemma 2.4, for each b > 0, we can deduce that there exists vb ∈ Nb such that 
Ib(vb) = cb > 0. By Corollary 2.9 in [12], the critical points of the functional Ib on Nb are 
critical points of Ib in H , we can conclude that I ′

b(vb) = 0. Thus, vb is a ground state solution of 
(1.1).

From Theorem 1.1, we know that the problem (1.1) has a least energy sign-changing solution 
ub which changes sign only once. Suppose that ub = u+

b + u−
b . As the proof of Claim 1 in 

Lemma 2.1, there is unique tu+
b

> 0 such that

tu+
b
u+

b ∈Nb.

Then, by Lemma 2.3, we get

cb ≤ Ib(tu+
b
u+

b ) = Ib(tu+
b
u+

b + 0) < Ib(u
+
b + u−

b ) = mb,

that is Ib(ub) > cb , which implies that cb > 0 cannot be achieved by a sign-changing function. 
This completes the proof. �
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Now, we are in a situation to prove Theorem 1.3. In the following, we regard b > 0 as a 
parameter in problem (1.1). We shall analyze the convergence property of ub as b ↘ 0.

Proof of Theorem 1.3. For any b > 0, let ub ∈ H be the least energy sign-changing solution of 
(1.1) obtained in Theorem 1.1, which changes sign only once.

Step 1. We claim that, for any sequence {bn} with bn ↘ 0 as n → ∞, {ubn} is bounded in H . 
Choose a nonzero function ϕ ∈ C∞

0 (�) with ϕ± 
= 0. From (2.14), for s 
= 0, we have

f (s)s > 4F(s).

Then, (f3) implies that, for any b ∈ [0, 1], there exists a pair (λ1, λ2) of positive numbers, which 
does not depend on b, such that

⎧⎪⎨
⎪⎩

aλ2
1‖ϕ+‖2 + bλ4

1

(∫
�

|∇ϕ+|2dx
)2 + bBϕλ2

1λ
2
2 − ∫

�
f (λ1ϕ

+)λ1ϕ
+dx < 0,

aλ2
2‖ϕ−‖2 + bλ4

2

(∫
�

|∇ϕ−|2dx
)2 + bBϕλ2

1λ
2
2 − ∫

�
f (λ2ϕ

−)λ2ϕ
−dx < 0,

where Bϕ = ∫
�

|∇ϕ+|2dx
∫
�

|∇ϕ−|2dx. In view of Lemmas 2.1 and 2.2, for any b ∈ [0, 1], there 
is a unique pair 

(
sϕ(b), tϕ(b)

) ∈ (0, 1] × (0, 1] such that

ϕ̄ := sϕ(b)λ1ϕ
+ + tϕ(b)λ2ϕ

− ∈Mb. (3.7)

Thus, for any b ∈ [0, 1], we have

Ib(ub) ≤ Ib(ϕ̄) = Ib(ϕ̄) − 1

4
〈I ′

b(ϕ̄), ϕ̄〉

= a

4
‖ϕ̄‖2 + 1

4

∫
�

(
f (ϕ̄)ϕ̄ − 4F(ϕ̄)

)
dx

≤ a

4
‖ϕ̄‖2 + 1

4

∫
�

(
C1ϕ̄

2 + C2ϕ̄
p
)
dx

≤
{a

4
‖λ1ϕ

+‖2 + a

4
‖λ2ϕ

−‖2 + 1

4

∫
�

(
C1λ

2
1|ϕ+|2 + C1λ

2
2|ϕ−|2

)
dx

+ 1

4

∫
�

(
C2λ

p

1 |ϕ+|p + C2λ
p

2 |ϕ−|p
)
dx

}
:= C0, (3.8)

where C0 does not depend on b. For n large enough, it follows that

C0 + 1 ≥ Ibn(ubn) = Ibn(ubn) − 1

4
〈I ′

bn
(ubn), ubn〉 ≥ a

4
‖ubn‖2. (3.9)

Then, {ubn} is bounded in H .
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Step 2. There exists a subsequence of {bn}, still denoted by {bn}, such that ubn ⇀ u0 weakly 
in H . Then, u0 is a weak solution of (1.19). Since ubn is the least energy sign-changing solution 
of (1.1) with b = bn, then by the compactness of the embedding H ↪→ Lq(�) for 2 ≤ q < 2∗, 
we deduce that ubn → u0 strongly in H as n → ∞. In fact,

‖ubn − u0‖2

= 〈I ′
bn

(ubn) − I ′
0(u0), ubn − u0〉 − bn

∫
�

|∇ubn |2dx

∫
�

∇ubn

(∇ubn − ∇u0
)
dx

+
∫
�

f (ubn)
(
ubn − u0

)
dx −

∫
�

f (u0)
(
ubn − u0

)
dx → 0, as n → ∞.

Then, u0 
= 0 and u0 changes sign only once.

Step 3. Suppose that v0 is a least energy sign-changing solution of (1.19), the existence of 
v0 was proved by Bartsch, Weth and Willem in [6], Proposition 3.1. By Lemma 2.1, for each 
bn > 0, there is a unique pair 

(
sbn, tbn

)
of positive numbers such that

sbnv
+
0 + tbnv

−
0 ∈Mbn .

Then, we have

a(sbn)
2‖v+

0 ‖2 + bn(sbn)
4
(∫

�

|∇v+
0 |2dx

)2 + bn(sbn tbn)
2
∫
�

|∇v+
0 |2dx

∫
�

|∇v−
0 |2dx

=
∫
�

f (sbnv
+
0 )sbnv

+
0 dx, (3.10)

and

a(tbn)
2‖v−

0 ‖2 + bn(tbn)
4
(∫

�

|∇v−
0 |2dx

)2 + bn(sbn tbn)
2
∫
�

|∇v+
0 |2dx

∫
�

|∇v−
0 |2dx

=
∫
�

f (tbnv
−
0 )tbnv

−
0 dx. (3.11)

Recall that v±
0 satisfies

a‖v±
0 ‖2 =

∫
�

f (v±
0 )v±

0 dx. (3.12)

Up to a subsequence, one can easily check that

(sbn, tbn) → (1,1), as n → ∞. (3.13)
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Now, we can prove u0 is a least energy sign-changing solution of (1.19) which changes sign only 
once. From (3.13) and Lemma 2.3, we have

I0(v0) ≤ I0(u0) = lim
n→∞ Ibn(ubn) = lim

n→∞ Ibn(u
+
bn

+ u−
bn

)

≤ lim
n→∞ Ibn

(
sbnv

+
0 + tbnv

−
0

) = I0(v
+
0 + v−

0 ) = I0(v0). (3.14)

This completes the proof of Theorem 1.3. �
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