期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:263
Well-posedness theory for degenerate parabolic equations on Riemannian manifolds
Article
Graf, M.1  Kunzinger, M.1  Mitrovic, D.2 
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ Montenegro, Fac Math, Podgorica, Montenegro
关键词: Degenerate parabolic equations;    Cauchy problem on a Riemannian manifold;    Geometry compatible coefficients;    Kinetic formulation;    Well-posedness;   
DOI  :  10.1016/j.jde.2017.06.001
来源: Elsevier
PDF
【 摘 要 】

We consider the degenerate parabolic equation delta(t)u + divfx(u) = div(div(A(x)(u))), x is an element of M, t >= 0 on a smooth, compact, d-dimensional Riemannian manifold (M, g). Here, for each u is an element of R, x -> f(x)(u) is a vector field and x -> Ax(u) is a (1, 1)-tensor field on M such that u -> (Ax(u)g g), 4 is an element of TIM, is non decreasing with respect to u. The fact that the notion of divergence appearing in the equation depends on the metric g requires revisiting the standard entropy admissibility concept. We derive it under an additional geometry compatibility condition and, as a corollary, we introduce the kinetic formulation of the equation on the manifold. Using this concept, we prove well-posedness of the corresponding Cauchy problem. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_06_001.pdf 1445KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次