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Abstract

We consider the degenerate parabolic equation
dru + divix (1) =div(div(Ax (1)), xeM, t>0

on a smooth, compact, d-dimensional Riemannian manifold (M, g). Here, for each u € R, x = jx(u) is
a vector field and x — Ax(u) is a (1, 1)-tensor field on M such that u — (Ax(u)&, &), &€ € TxM, is non-
decreasing with respect to u. The fact that the notion of divergence appearing in the equation depends on
the metric g requires revisiting the standard entropy admissibility concept. We derive it under an additional
geometry compatibility condition and, as a corollary, we introduce the kinetic formulation of the equation
on the manifold. Using this concept, we prove well-posedness of the corresponding Cauchy problem.
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1. Introduction

We consider the Cauchy problem for a degenerate parabolic equation of the form

oru 4+ div fx (1) = div(div(Ax(u))), xeM, t>0 (1)
uli=0 = uo(x) € L>(M) 2

on a smooth (Hausdorff), compact, d-dimensional Riemannian manifold (M, g). For simplicity,
we shall assume that

0<up<l. 3)

This is a natural assumption since equation (1), among other phenomena, describes fluid con-
centration dynamics in the case of flow in porous media (Buckley—Leverett type equations), and
concentration always varies between zero and one (see e.g. [3]).

We suppose that the map (X, &) — §x(§) =§(x,&), M xR — TM is C! and that, for every
& eR, x> fx(§) € X(M) (the space of vector fields on M). Also, (x,&) — Ax(§): M xR —
TI]M is supposed to satisfy x > Ax(§) € 7]1 (M) for each £ € R and we assume that the
&-derivative of A is positive semi-definite and

AL(E) = ox (&) Tox(§), 4)

with o such that (x, &) > ox(§) : M x R — T/ M is C? and x> oy (¢§) € T, (M) foreach & € R.
Here 0| € 7'11 (M) denotes the transpose of o € 7']1 (M), i.e., the unique tensor field such that
(0(X),Y)=(X,oT(Y)) forany X, Y € X¥(M). In particular, this implies that £ > (Ax(&)£, &)
is non-decreasing for any & € Ty M.

In local coordinates, we write

The divergence operator appearing in the equation is to be formed with respect to the metric, so
in local coordinates we have (cf. (12) below):

3 .
div fx () = div (x > fx(u(t, x))) = @(f,f (u(t,%)) +T}; x) X, x)) (5)

where the I'-terms are the Christoffel symbols of g and the Einstein summation convention is in
effect. Similarly, the right hand side of (1) is to be understood as

div(x > div(Ax(u(t, x)))), (6)

whose explicit local expression can be read off from (15) below.
Equation (1) describes a flow governed by

e the convection effects (bulk motion of particles), which are represented by the first order
terms, i.e. by the flux f;
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o diffusion effects, which are represented by the second order term, i.e., the (1, 1)-tensor Ax(§)
(more precisely its derivative with respect to &, denoted by a; see (7)) which describes di-
rection and intensity of the diffusion of, e.g., a fluid whose concentration at x € M at time
t>0is u(t,x).

The equation is degenerate in the sense that 9z Ax can be equal to zero in some direction for some
x € M (i.e., Ax(§) is not strictly increasing with respect to £). Roughly speaking, if this is the
case (i.e., if for some vector § € Tx M we have (9 A(x, £)&, &) = 0), then diffusion effects do not
exist at the point x for the state £ in the direction &.

We note that the usual form of a degenerate parabolic equation (see e.g. [6]) is

du + div(x, u) = div(a(x, u)Vu)). 7)

In the flat case (i.e., when M = R? with the Euclidean metric), equation (1) is obviously reduced
to (7) simply by putting a(&) = A’(§), where the prime denotes the derivative with respect to &
(with slightly more algebra, one can show that this also holds when A depends on (z, x) as well).
However, form (7) is not convenient for deriving the entropy conditions given in Definition 3.

To resolve this problem we follow the foundational works [6,7] in introducing an appropriate
entropy admissibility concept for (1) under the following geometry compatibility condition (see
[4] for an appropriate notion in the case of scalar conservation laws):

divfx(§) = div(div(Ax(£§)) forevery &€ € R. (8)

We note that, from a physical point of view, this is an incompressibility condition (divergence
of the (diffusive) flux fx(§) — div(Ax(§)) is zero). Indeed, an incompressible fluid in a control
volume changes the density only due to the diffusion effects:

D,
—7 = div(A/(x.p)- Vp). A(x.p) = BeA(.8)|,_,. ©)

where p is density of the control volume and g—f = 3—’; + Z—’; - Vp is the material derivative for the
flow velocity % = (%, e %‘1). If we rewrite our equation in R4 (with the Euclidean metric,

writing p instead of u and disregarding non-smoothness for the moment), we actually have

g—’; + 0 (f(x.§) — divAX, §))|._, - Vo + Div(f (x,§) — divA(X. §)) |, _,

= div(A'(x, p) - Vp)

(10)

Then, taking as usual fi—’t‘ = 0¢ (f(x, &) —divA(x, 5)) |$:p and comparing (10) and (9), we arrive
at

(div £ (x,§) — div(div(A(x,§)))|,_, =0,
which immediately gives what we called the geometry compatibility condition.

Since the equation we consider is of degenerate parabolic type, solutions are not necessar-
ily smooth and weak solutions must be sought. Such a weaker solution concept may result in
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non-uniqueness, and so we need to eliminate “non-physical” solutions through an entropy ad-
missibility concept ([6,7]). Since we are in a manifold setting, we will express the conditions
locally, and then, using the compatibility conditions, show that the admissibility conditions have
the same form globally as well (see Theorem 1).

With appropriate admissibility conditions in place, we can fairly directly derive the kinetic
formulation to (1) (see (53)). This generalization of similar previous results ([7-9]) is, however,
not enough to provide well-posedness of admissible solutions to (1). What has to be incorporated
in the kinetic formulation is the chain rule (see Theorem 2), originally introduced in [7], and
extended to the heterogeneous setting in [6]. We implement this in a general way, which does
not presuppose the form of the kinetic function (see the comments after Remark 5 below), and
which may generate several stable semigroups of solutions (compare standard and non-standard
shocks, for instance in [11,18]). We also note that our kinetic solution concept for degenerate
parabolic equations is new also from the standard Euclidean point of view.

Degenerate parabolic equations appear in a broad spectrum of applications, such as sedimenta-
tion-consolidation processes ([5]) or flow in porous media ([16]), which very often occur in
non-flat media (e.g., during the CO; sequestration process the caprock confining the brine in
which gas is injected is basically never flat, cf. [23]). In other words, in our situation, we con-
sider a flow governed by the convection and diffusion effects along a non-flat surface.

Nevertheless, due to obvious technical complexities, the equation was so far only considered
on the entire space (see e.g. [6,7,10] and references therein). Moreover, while the existence prob-
lem was settled a fairly long time ago [28], uniqueness in the case of an anisotropic diffusion
was obtained only rather recently in [7] for homogeneous coefficients, and in [6] for the het-
erogeneous ones. Our strategy of proof follows the one developed in [7]. However, unlike the
situation from these works, where the kinetic formulation is used only to prove uniqueness of
solutions, here we develop the concept so that it can be used for the existence proof as well. This
is in accordance with the standard kinetic approach used for conservation laws when the weak
convergence of the kinetic functions ([3,22,26]) (or the Young measures ([4,15]), which is essen-
tially equivalent) corresponding to a sequence of approximate solutions together with uniqueness
of the kinetic function provide well-posedness of entropy solutions to (1), (2).

Although investigations concerning well-posedness of evolution equations on manifolds at-
tracted a significant amount of attention recently, this problem for degenerate parabolic equations
on manifolds has not been considered until now. The most closely related research is directed to-
wards scalar conservation laws on manifolds and we mention [4,20,25] for the Cauchy problem
corresponding to scalar conservation laws on manifolds, and [17,26] for the (initial)-boundary
value problem on manifolds. The approach in [26] is based on the kinetic formulation as well,
and Definition 3.1 from there inspired our kinetic solution concept.

The paper is organized as follows. In Section 2 we introduce notions and notations from
differential geometry as well as the entropy admissibility concept corresponding to (1). We then
move on to derive the kinetic formulation of (1). In Section 3, we prove a uniqueness result
for the kinetic formulation of the problem under consideration. Finally, in Section 4 we show
existence of kinetic solutions as well as existence and uniqueness of entropy solutions.

2. Preliminaries from Riemannian geometry and the entropy admissibility concept
Our standard references for notions from Riemannian geometry are [24,27]. For notions and

results from distributional geometry we refer to [21,13]. As already stated in the introduction,
(M, g) will be a d-dimensional Riemannian manifold. If v is a distributional vector field on M
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then its gradient Vv is the vector field metrically equivalent to the exterior derivative dv of v:
(Vu, X) =dv(X) = X(v) for any X € X(M). In local coordinates,

Jv
ﬁaj, (11)

Vv = gij
with g/ the inverse matrix to g; 7 =1(0,i,0,5). For T € 77‘ (M), a divergence of T is any con-
traction of one of its k contravariant slots with the new covariant slot of its covariant differential
VT € 7;’; {(M). In particular, if kK = 1 then T possesses a unique divergence divT € 7}0(M ). We
list here the local coordinate expressions for the cases that will be of interest in this paper.

First, if X € Tl = XM)isaC I vector field on M with local representation X = X i %, then
divX € C(M) is locally given by

; 0X* Ly
divX = - + T, x". (12)

The same expression holds for X a distributional vector field, and similar for the formulae given
below, which we formulate in the smooth case with the understanding that they carry over by
continuous extension also to the distributional setting. If a C I one-form w € 7'10(M )= QM)
is locally given by w = w;dx', then its divergence is defined as the metric contraction of its
covariant differential Vow € 7'20(M ), SO

diva)zgijaia)j —F{‘lgila)k. (13)

1

I T e T (M), T =T @dx', then div T = (div T);dx’, where

(divT); =8, 1] + 141! — %, 1. (14)

Finally, again for T € 7'11 (M), div(div(T')) € C(M) is given in local coordinates by

div(div(T)) = g" [0k T} + T8 T} —T}; 4 T} — T T + ;T T s
— @~ Ty 4 T

In the Cauchy problem (1), (2), (x,&) > Ax(§) : M xR — T]IM is C! and for each & € R,
X Ax(§) € Tll (M). In general, if T is a (1, k)-tensor with C'-dependence on an additional
real variable &, i.e., (X, &) > Tx(§) : M xR — TklM is C! and foreach £ e R, x> T(x, &) €
77(1 (M), then (recalling that the derivative with respect to & is denoted by T”), it follows from the

chain rule and the corresponding local expressions that for an H' N L*®-functionu : R x M — R,
we have

div(T (X, u(t,X)))iy.....ixy —div(X > T (X, §))iy ..

.....

Hle=uirx (16)
=T/ % u(t,x))djut,x).

Furthermore, if (x,&) —> o(X,€): M xR — TIOM is such that for every £ € R it holds that
x> T(x,&) € TO(M) = Q' (M), we obtain from (13)
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div(w(x, u(t, X)) — div(x > 0 (X, §))e=ut.x) = 87 (X} (X, u(t, ))dju(t, ). 17)
After these preparations we can prove:
Theorem 1. Assume that the compatibility condition (8) holds and that u : R* x M — R is a

bounded HV2(Rt x M) non-negative solution to (1). Then for any S € CZ(R) such that S(0) =0
we have

u(t,x)
,S(u) + div [ 16 €) ds
0
(18)
u(t,x)
= divdiv( f A;(g)s/(s)dg) — 8" (W)(AL ) Vu, Vu),
0
where f' = 8¢ and A’ = 3¢ A.
Proof. First, note that for any f € C (M;R), we 7'10(M ) we have
div(fw) = fdivo+g"d; fw; = fdivw + o (V). (19)

Based on this, we calculate for any S € C 2(R) such that S(0) =0 (keeping in mind that u is
non-negative):

u(t,x)

av( [ neseas)
0
. u(t,x) '
= 87 (u(t.30) £ (%, (. 0) i1, %) + / S0 " (%, §) d
0
u(t,x) ' . (20)
+ [ s©r)rfxea
0

LS w0 diveyu. ) = Sl ) diviyE)|

u(t,x)

+ f §'(&) div(f'(x, §)) d§.

0
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Also,
u(t,x)
(av [ a@sed)
0
&
(g)A/lj(x’u([’x))S/(u(t,X))ajM+diV /A;(U)S/(v)dv L %)
=u(t,X
2 i e
28 u(t, %)) div(Ax (u(t, %))); — S (u(t, %) div(Ax()); )
u(t,x)
+ / div(AL(E)); ' (€)dE.
0

Now set & (X, &) := div f(f AL (v)S (v)dv and &(x, &) := div(Ax(£)). Using this notation and ap-
plying (19) to the first two terms on the right-hand side of (21), we obtain

div(@x,u(r, X)) =S (u(t, x)) div div(Ax (u(z, X)))
+8" div(Ax(u(t, x)); S" (u(t, x))d;u — S (u(t, x)) div(d(x, u(t, X))

u(t,x) (22)
— 8" a; (x, u(t,x))S" (u(t, x))dju + div / div(AL(€)S'(§)dé.
0
Here,
u(t,x)
div / div(AL(£))S'(€) d&
0

£
D gii div(A;(S))‘ S’ (u(t, x))du + div / div(AL(v)S (v)dv
E=u(t,x) E=u(t,x)
0

u(t,x)
=S (u(t,x))g" @} (x, u(t,x)dju + / divdiv(AL(£))S' (&) d&
0

(23)

(17

= 5" (u(t,x)) (div(c?)(t, u(t,x))) —div(o(x, S))L_:w X))

u(t,x)
+ / divdiv(AL(§))S'(§) dE.
0
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From (22) and (23), we conclude

u(t,x)

divdiv( / A;(E)S’(S)dé)

0
= 8" (u(t,x)) divdiv(Ax(u(t,x))) — S’ (u(t, x)) div diV(AX(S))‘E .
=u(r,X

u(t,x)
+S”(u(t,x))gijA/f(x,u(t,x))aruaju+ f divdiv(A;(E))S/(S)df;‘ 24)
0

= 8" (u(t,x)) divdiv(Ax(u(t, x))) — S (u(t, x)) diniV(Ax(S)L 0
=u(r,x

u(t,x)

+ 8" (u(t, X)) (A% (u(t, X)) Vu, Vu) + / divdiv(AL(§))S' (&) d&.

Finally,

u(t,x)

div( / 7.(6)S' (&) dE) "
0

20)

S (u(t, x)) (diV(fx(u(t, X)) —div(f(r, é))‘gzw X))

u(t,x)
N / S'(€) div f, () dE
0
(ﬁ_)S/(u(t,X))diV(fx(u(t, X)) — S/(M(I,X)) divdiv(Ax(§)) f=u(tx)
=u(t,X
u(t,x)
+ / S'(&) divdiv AL (§) d&
0
u(t,x)
2 wle, %) div(u(r, %) + divaiv / A8 (©)de)
0

— 8 (u(t,x)) divdiv(Ax (u(t, x)) — " (u(t, x))(A;(u(t, x))Vu, Vu),
whichis (18). O

Another property of the entropy solution that we shall require is the so-called chain rule. It was
introduced in [7] in the homogeneous case and adapted to the inhomogeneous situation in [6]. To
formulate it, we first recall that AL(§) = ox(§ )TUX(S ) by (4) and note that if o is locally given

byo = o’.k a?ck ® dx', then

0 P
ol = (o) 5 7 @dx’ with (0 )} = 0" gui. (25)
Please cite this article in press as: M. Graf et al., Well-posedness theory for degenerate parabolic equations on
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Given ¥ : R — RT, we now consider B(x, £) such that 8/(x, &) = oxT(é;‘), and Y (x, &) such

that (8Y)(x, &) = ./l/f(g)aXT(é) and B(x,0) = ¥ (x,0) = 0 (recall that a prime here denotes
the derivative with respect to the real variable &). In local coordinates, this reads

(BY (x,&) = g (00" (X, ) gmi (%), 6
(BNY (x,8) = VU () g" )0/ (X, &) gmi (X).

We will need the following result on the divergences of the S-tensors:

Theorem 2. (Chain rule) If u : [0,00) x M — R is a non-negative bounded H“*(R* x M)
function, then for any non-negative r € C(R) we have

div (¥ (x (e, %)) = div(B” (x,6))| .

27)
— Sy, x))(div(,B(x, u(t, %)) — div B(x, E)‘g:ug X)).
Proof. Using (14), and writing u for u(z, x) we calculate
div(BY (x,1)); = 0; ((B")] (x. u) + (B ) (x, )l — (B")] (x, w)T";
=\/w(u>(o;r>{(u>aju+/\/w(s>aj<oi){'<s)ds (28)
0
+ (B x Ty — (BY)] (x, )T,
Also,
div(p” (x. €|, = / VI®3;(0)] € ds + (B x. )Ty = (BY)] (x0T,

0

and therefore (compare with (28))
div(p” (% w); = div(8Y (x. €)i] _ =V (@) wdju.
Analogously,
div((x w)); = div(B(x )| _ = (03] w)dju, (29)

which gives the claim. O

Combining (29) with (25) we obtain that we can rewrite the last term in Theorem 1 using:

2
(AL W)Vu, Vu) = [div(B(x, u(t, x)) — div(B(x, 5)“5:”([,)() o

(30)

1/2

where |w|, = (g" wiw 7)< denotes the norm induced by g on the space of one-forms.
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Following [7], we are next going to introduce an appropriate concept of entropy solution to

(1), (2). The definition of entropy solutions, as well as ultimately the proof of their existence,
rests on vanishing viscosity approximations

Oty + divfx(uy) = div(div(Ax(uy))) + nAuy,, (3D

where 7 > 0 is some small constant. Here, A is the Laplace—Beltrami operator on the manifold
given, for any h € C*°(M), by Ah =divoVh, with div and V as in (5) and (11), respectively. In
terms of local coordinates, setting |g| :=detg,

1 y
h=——0; Y9:h). 32
N (Vlglg”a;h) (32)

It follows from Theorem 1 and (30) that if u,, is a bounded H2(Rt x M)-solution to (31) then

iy (,X) iy (,X)

0r S (uy) + div / f;(E)S/(S)d(?:diniV(/ A (§)S'(§)dé§)
0 0 (33)

2
" (uy) ‘div(ﬂ(x, (1, 0) = AV (B8 | 1S Gen) Auty

Noting that we have A(S(w)) = S”(w)|Vw|? + §'(w)Aw for any bounded H?-function w on
M, we can rewrite the last term in (33) as

S (uy) Ay =nASuy) —nS" (uy)|Vuy|?.
Finally,
nS”(un)IVunlz=/S”(§)mn(t,x,é)d§, (34)
R

where m,(t,x,8) =n6(§ — uy,(z, X))|Vu,,|2 is a non-negative measure on [0, 0c0) x M x R. We
shall also denote

2
ny(t,X, &) =8(5 — uy(t,x)) ’diV(ﬂ(X, un(t,x))) — div(B(x, Z))|§:Mn(,,x) . (35)

which is a non-negative measure as well. Note that for u#,, > 0 the measures n, and m,, are both
supported in [0, 0c0) x M x [0, 00). So we may rewrite (33) as

uy(t,x) iy (t,X)
8 S(uy) + div / f;(g)s/(g)dgzdivdiv( / A;(g)s/(g)dg)
0 0 (36)
=[S @t x. )+ mye.x. e + naS()

0

Please cite this article in press as: M. Graf et al., Well-posedness theory for degenerate parabolic equations on
Riemannian manifolds, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.06.001




YJDEQ:8858

M. Graf et al. / J. Differential Equations eee (eeee) see—eee 11

Further, if we choose S(u) = u? /2 and then integrate (36) over M x [0, co), we have

1
(O + mp)dediodr = [ 5o Pdu 37)
Rt xM xR+ M

Integration here is carried out with respect to the Riemannian density +/|g| induced by g. In

local coordinates, du(x) = +/|g| dx, where /|g| = /| det(g;;)|.

Based on these observations, the following definition of entropy solutions extracts those prop-
erties that are stable under strong convergence (analogous to [7, Def. 2.1]).

Definition 3. We say that the measurable function u : [0, 00) x M — [0, 1] is an entropy solution
to (1), (2)if
€y

div(B(x, u(t,x)) —div(B(x, §)) et € L%([0, 00) x M); (38)

(ii) There exists a non-negative measure m on [0, 0c0) x M x [0, co) such that for any function
S e C%([0, 00)), the following equality holds, together with the initial condition (2), in the sense
of distributions on D’ ([0, 00) x M):

u(t,Xx) u(t,x)

s +div [ i@ ©ds =dvav ([ ae)s @)

0 0 N (39)
2
=80 [div (B 1t 0) = VB Dy | / S"(&)m(t, x, §)dE;
0

(>iii) The chain rule (27) holds.

Equation (31) is not a standard viscous approximation, but it is still a strictly parabolic equa-
tion. A viable approach to establishing existence of entropy solutions to (1), (2) would be to
invoke [19, Section V] to obtain existence of a solution to (31), (2) for every n > 0 and then
showing that the net (u,) so obtained converges (in an appropriate sense) towards the entropy
solution to (1), (2). Instead of implementing this approach directly, we shall first introduce a ki-
netic formulation of (1), (2) on M and then prove existence of the entropy solution by proving
uniqueness of the kinetic solution (see e.g. [4,15,26] for such an approach in the case of scalar
conservation laws).

To this end, let us rewrite (39) in the kinetic formulation. Set

1, 0<é&<u(tx)
XM(I9X7§) = _la M([,X)S%‘SO
0, otherwise.

Notice that if O < u, then for & > 0,
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Xu(t, X, &) = sgn, (u(t,X) — §). (40)

Taking into account that when 4 (x, 0) =0, we have

h(x,u(t,x)) =h(x, u(t,x)) — h(x,0) =/h/(X, E)xu(t, X, §)dE, (41)
R

we can rewrite (39) in the so-called kinetic form as follows:

o [ s @mde+an( [ns©nea)

R R
= divaiv [ 05 ©ayede) - [ 8" +myds.
R R
where
d 2
(% 8) = 3 [divE ox e, ) — div(p (5,60 d(ute 0 — ). “2)
k=1

Considering S’ as a test function supported in (0, 00), we conclude

3 xu + div(xufy () = divdiv(x, Ax (§)) + ¢ (n +m), & € (0, 00). (43)

Next, we shall need a local version of the kinetic equation. Accordingly, let ¢ € CC2 (M). Then
multiplying (43) by ¢ and inserting gives

¥ (Pxu) + div (P xufy(©)) = ¢ xu + ¢ v (§)) + Xxufx ) (@)
= ¢ divdiv(x, Ay (§)) + @0 (n +m) + xufy (§)(de).
Furthermore,
divdiv(¢ x, Ay (§)) = div(x, A% (§)(d¢)) + div(¢ div(x, A% (£)))
= div(xu A% (§)(d9)) + ¢ divdiv(x, A (§)) + div(x, Ay (6))(V),

so that we arrive at

3 (P xu) + div (P xufy(§)) = div div(¢ xu Ax () + ¢ (n +m) + xufy () (d¢p)

44)
—div (xu Ay (§)(d)) — div (xu Ay (§)) (V).

Our goal is to analyze (44) in local charts by regularization. To this end, we shall employ a
standard mollifier p, 5 € D([0, co) x R? x [0, 00)) of the form (below and in the sequel, in
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order to avoid proliferation of symbols, we shall by a slight abuse of notation denote convolution
kernels for 7, x or £ by the same letter)

it 8= o (Eor (4) [Toa(2) =t s 45)
j=1

where p, (t,X) := —r o1 (9 [12; @2(3) and ps () := o1 (5).
Here, w1, wy € D(R) are non-negative compactly supported smooth functions with total mass
one, and supp (w;) € (—1, 0). For a distribution F € D’([0, 00) x R? x [0, 00)) we set

F*Y =Fxpes. F*=Fxp,, (46)

where

F*,Og,g(t,x,g) :(Fips,s(t_'vx_'sg_')>

47
F*p&‘(tvxv‘i:) Z(Fsp&‘(t_"X_'))'

For a distribution F € D’'([0, 00) x M x R) compactly supported in a single chart (U, ¥y) we
set (suppressing the dependence on « notationally)

F& = ((F oy ") * pe.s) 0 Vras (48)

with F oy, ! the pullback of F under the diffeomorphism Yo !, Finally, recalling that we work
with non-negative solutions, which automatically provide (40), we introduce the following defi-
nition.

Definition 4. Let F be a set of tuples (x, ug, m, n), containing the following data: x : [0, 00) x
M x [0, 00) — [0, 1] is measurable, & — x (¢, X, &) is compactly supported, uniformly in (, X),
and is non-increasing for & € [0, 00). The function ug : M — [0, 1] is measurable, and m,n €
M([0, 00) x M x [0, 00)) are Radon measures. Then F is called kinetically admissible if it
satisfies:

(i) For any (x, uo, m,n) € F, the following Cauchy problem is satisfied:

x +div(xfy(§)) = divdiv(x AL (§)) + 9 (n +m) (49)
x(0.x,8) =sgn, (uo(x) —§) (50)

for (t,x,&) € [0,00) x M x [0, 00).

(ii) For any two tuples (x, ug, m,n), (x, vo, m,n) € F, there exist a finite atlas (Uy, Wa)§:1
for M and non-negative smooth functions ¢, € D(Uy) such that ¢§ is a partition of unity and
constants Cy such that the following estimate holds for a.e. ¢:

Please cite this article in press as: M. Graf et al., Well-posedness theory for degenerate parabolic equations on
Riemannian manifolds, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.06.001




YJDEQ:8858

14 M. Graf et al. / J. Differential Equations eee (eeee) see—eee

lim sup lim sup [ / (e (m 4+ 1)) (9o (1 — 7))5°
=0 =0 [0,1) x M x[0,00)

— (¢ 3 (2 + 7)) (P ) dtd (x)d &

+ / (divdiv(ge x A))*° (P (1 — TP dtdpu(x)dé
[0,6) x M x[0,00) (51)

b v - DA @u0" didpode]
[0,1) x M x[0,00)

<Cqy / x (1 = )dtdu(x)dé&.
[0,2) x M x[0,00)

A measurable function x : [0, 00) x M x [0, 00) — [0, 1], £ — x (¢, X, &) that is compactly
supported with respect to £ uniformly in (¢, x), and is non-increasing with respect to & € [0, 00),
is called an F-kinetic solution if there exist measures m, n € M([0, 00) x M x [0, c0)) such that
(x,ug,m,n) € F.

Remark 5. (i) The initial value in (50) is understood to be attained in the weak sense, i.e., for
any test function ¢ we have

}glg)/x(t»xyé)w(x,é)du(x)dé=/Sgn+(u0(x)—E)w(x,é)du(x)dé- (52)

(ii) Since ¢4 is supported in a single chart, the regularizations in (51) are defined as in (48).
(iii) As introduced after (37), d 4 (x) denotes the Riemannian density associated with the met-
ric g.

Our approach differs from the kinetic solution concept from [7] since here we do not a
priori impose the form of the kinetic function (i.e., we do not assume that it has the form
% (sgn(u — &) +sgn(§)) as in [7]; see formula (2.15) there). It is also more typical in the the-
ory to call kinetic solution a function depending on time, space and kinetic variables satisfying
some additional properties (see e.g. [8,26]). Note that we can have several kinetically admissi-
ble sets. This is natural since there may exist several stable semigroups of solutions to (1), (2)
essentially depending on the approximation that we use (see e.g. [1,18] for conservation laws).

3. Uniqueness
Our first goal in this section is to derive a uniqueness result for elements of a kinetically
admissible set whose initial data coincide. To prove this we will rely on the following version of

Friedrichs’ Lemma, which follows as in [14, 17.1.5]:

Lemma 6. Let ¢ be a standard mollifier (p € D(RY), [ @ =1). Set . (x) = e ¢ (x/e) and let
1<j=d
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() Let h € C2(RY), k € L>°(RY). Then
j(hk)x e — 0j(h(kx@e)) >0 (e—=0) in L}OC(R”I).
(i) Let v e LY(RY) be compactly supported, and let a € C L(RY). Then
(@djv) x e —a@ux) >0 (e—0) in L'RY.

Theorem 7. Assume that F is a kinetically admissible set for (1), (2). Then, for any two tuples
(x,uo,m,n) and (X, vo, m, n) in F, equality of ug and vg implies that x = x and x = x, fora
Sfunction u € L*°([0, 00) x M).

Proof. Assume that for the initial value 1y with
O0<up=1

we have two tuples (x, ug, m,n) and (x, ug, m,n) in F. Note that according to the geometry
compatibility condition (8) we have

I (1= 1) +div((1 = DF () = divdiv((l — X) AL (&) — 3 (7 + m). (53)

Now let (g, Ua)f;: | be a covering of M by charts as in Def. 4, with corresponding functions

Go (SUpp P € Uy, Z';:] ¢2 = 1). Fixing «, we rewrite (53) in localized form for ¢ = ¢,. Then
from (44) we obtain

¥ (px) =—div (pxF (&) + divdiv(px Ay (€)) + ¢z (n +m) + xfi(§)(d)

. / . , (54)
—div (x Ax(5)(d9)) — div (x A () (V9),

and starting from (53) instead of (43), the proof of (44) shows that

(Pl — 1)) =—div(d(1 — N)f(€)) +divdiv(p (1 — ¥) AL (&)
— G (i + i) + (1 — PFe(E)(dg) — div (1 — D)ALE)AP)) (55
—div ((1 = DALE)) (Vo).

Note that all terms in both (54) and (55) are supported in a single chart (¥, Uy), so using
push-forward under the chart map ¥, we obtain an equivalent system of equations, this time on
Yo (Uy) C R?, and all differential operators occurring in (54) and (55) are transformed into the
corresponding ones on R? with respect to the push-forward metric (/4 )g. Moreover, all tensors
and functions involved have compact support within ¥ (U, ), hence can be extended by O to all
of R?. Altogether, this means that we may assume, without loss of generality, that M = R? and
g = gij is a Riemannian metric on RY.

Now we convolve equations (54) and (55) by p, s and multiply them by (¢ (1 — 7)) and
(¢ x)®?, respectively. Next we sum the equations so obtained and integrate over [0, 7) x R4+
Then we find that the left hand side,
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t o0
2 / 3 / / 607 @1 — 1) dEdp s,
0

R 0

can be written as a sum of six terms, which we treat separately. For the limiting behavior of the
first term, we obtain

lim lim< / — (Vg1 — DFEN D (@1

e—>05—0
[0,) x R4 x[0,00)

— (div(px TN (P (1 — 7)) dtdédu(X))

(56)
_ f div(, ()P (1 — 7)x didedp(x)

[0,1) xIR9 x[0,00)

<cC / (1— D)y didedu(x).
[0,£) x R4 x[0,00)

where we used the product rule and Lemma 6 (ii) on one, and integration by parts on the other
term. Similarly, for some bounded function G,

lim lim< / —div (1 = ) A"(d))™ ()"

e—>08—0
[0,1) xR4 x [0,00)

—div(xA'(d$)”* @ (1 — ;z))&“dtdsm(x))

T . _ ikq. s INEY &8 8
_51%1%( [ et (a-pwise)” wo
[0,7)xR9 x[0,00) (57)

. ; £,
— g%, (xan]0;9) " (@1 - x»&‘sdtdsdu(x))

4 / G &)(1 - 7)xdidedp(x)

[0,1) xR9 x [0,00)

<c / (1 — D)xdidedu(x),
[0,£) xIR¥ x [0,00)

and so on for all other terms except the ones involving divdiv(¢ (1 — x) Ay (§)) — ¢ (71 + )
where we directly use (51) to get the desired estimate.
Thus we arrive at
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lim lim (f f(¢x)8’5(¢(1 — )E0dEdu(x)

e—>06—0
R4 0

([ [@oriwa - prdeanm)

R 0

> (58)
t=0

< C//x(l ~ Ddedu(x).

R4 O

The initial condition (52) implies that

lim lim (( / / @0 @1 = D) dgdu(x)

e—>06—0

) —o.
t=0

Rd 0

Thus, rewriting (58) as an expression on M results in

t

Gxt=pdsdu <G, [ [ 10 - psan. (59)
M x[0,00) 0 Mx[0,00)
Now summing over « =1, ..., k and setting C := Zzzl Cy <0 gives
t
[ ra-nasauwsc [ [ xa-pasdu. (60)
M x[0,00) 0 M x[0,00)

From here, according to the Gronwall inequality, we conclude that

X(I7X7§)(1_X~(I7X7§)):O

for almost every (¢, x,&) € [0,00) x M x R.

This implies that either x (t,x,£&) =0 or x (¢, x, £) = 1. Since we can interchange the roles of
x and x, we conclude that 1 and O are actually the only values that xy or x can attain and that
Xx = X. Since y is also non-increasing with respect to £ on [0, o), we conclude that there exists
a function u : [0, 00) x M — R such that

x(t,x, &) =sgn, (u(t,x) —§). (61)

In fact, this function is given by u(t,x) = fooo x(t,x,&)d&. Note that this in particular shows
that if x = x a.e. then

<
I
<

almost everywhere. O

Notice that from the proof of the previous theorem we see that every x appearing in any tuple
from F has the form sgn, (u(z, x) — &) where the function u satisfies (39).
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4. Existence

Our next aim is to prove that given initial data ug : M — [0, 1], there exists a kinetic function
x and corresponding measures m, n such that the conditions from Definition 4 are satisfied. To
this end, consider the vanishing viscosity approximation (31) augmented with the initial condi-
tions (2). We have the following theorem.

Theorem 8. For any n > 0 the initial value problem (31), (2) has a unique solution u, in
HY2((0, 00) xM) NL®((0, 00) x M). This solution satisfies, for any convex S € C%(R) with
S0) =0,

MU(I,X) Mr;(t»x)

3 S (up) + div f f;(E)S/(S)d«S:divdiV(/ AL(E)S (§)dE)
0 0

2 (62)
_g (u T))

div(B (X, uy(1,x))) — div(B(x, C))‘c

=uy,(t,x) P

+nAS(uy) — nS" (uy)|Vuy|?.

Proof. The existence follows from the standard theory of Cauchy problems for parabolic equa-
tions [19, Theorem 1.1., Section V]. Indeed, rewriting (31) in local charts with image RY we
obtain unique local solutions that patch together to provide the desired unique global solution.
The solution is bounded between 0 and 1, which follows from the maximum principle [2] since,
due to (8), the constants 0 and 1 represent solutions to (31), and the initial data are bounded
between zero and one.

Finally, (62) follows from (33). O

We now want to prove that for such solutions uy, the corresponding x,,, n, and m;, defined
through (33), (35), and (34), converge to the function yx, and measures m and n such that the set
of all such limits (x,, uo, n, m) is a kinetically admissible set in the sense of Definition 4. Before
we show convergence we will establish that there exist convergent subsequences such that their
limits satisfy (51) from Definition 4.

Lemma 9. Let uy be a solution to (31) with the initial data uy|;—o = uo and measures n,, m,.
Then there exists a subsequence 0, along which xy, converges (in the weak-x topology) to some
Xu € L*([0, 00) x M x [0, 00)) and such that the corresponding measures ny, and my, converge
weakly to Radon measures n,, m,. Furthermore such limits satisfy (49), (50).

Proof. According to (37), we see that the sets {n,},-0 and {m;},-0 are bounded in the space
of Radon measures M([0,00) x M x [0, 00)). Also the x,, are bounded between zero and
one. Thus, we can find common weakly converging subsequences (see [12, Theorem 1.1.2 and
1.1.4]). Equation (49) follows from rewriting (62) in terms of Xuy, (see (41) onwards) and letting
n — 0 (note that nAS(u,) < nC — 0). Now multiplying (49) by kink functions f; converging
to sgn, (T —t) and a test function ¢(x, &), integrating over all variables and letting first n — 00
and then j — oo shows that the function 7'+ fx(T, x,E)p(x, £)du(x)d€ appearing in (52) is
almost everywhere equal to a continuous function in 7. This gives the initial condition (50). O
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We will now show that the set of all limits of such subsequences satisfies the conditions
of Definition 4. To this end, let us first prove the following lemma. Since (51) only deals with
expressions of the form ¢y x,, where ¢, is compactly supported in a chart domain we may assume
M =R?. Let us put

a= A;(’ Ko =Pl = Xv), Xu=PaXu- (63)

Notice that for every fixed ¢, § > 0 we have for every (¢, X, £) along the previously chosen sub-
sequence

lim x&0 (%, &) = x50 (t, %, £). (64)
n—oo

The same holds for )'(5’;8 and )Z,f;la, as well as all their (partial) derivatives.
Since g is symmetric and positive definite there exists a symmetric square root (depending
smoothly on the point) which we will denote by #, i.e.,
¢ = suhinik

(where &j is the Kronecker—Delta).

Lemma 10. There exists a bounded function G (depending on the metric, a and ¢y, but not on
&, 6, or n) defined on [0, 00) x R9 x [0, 00) such that

o (0.¢]
f/divdiv()zvna) *pa,gij”l‘sdudf;' +//divdiv()2una) *ps,(;)zlffd,udé

Rd O R4 0
2 / / Bimh™ (R (3 ) e (V) (¥ )e(t — T.X = Ppelt — T X —¥)
RSd (R+)3
x (divy (B, ua@ ¥ D) = (divy (B0 0) ) lemuirwn) (s

. 206
x (divy (B (v, un(r, )
. 208
- (ley (5’)‘3 Gy, é“))) Igzun(f,y))idydrdy/dr’dudg
o0
~ [ [Gexe - xidniduas,
R4 0

on (Rd, g), where ~ means that the difference of the left hand side and the right hand side goes
to zero in LllOC (RY) (as a function of t) as, first, n — 00, second § — 0, and finally ¢ — 0.

Proof. Since the calculations required for this proof are quite extensive, we only summarize the
main steps here and outsource several arguments to the appendix. Also, to reduce the notational
burden, we will suppress all r-dependencies: the t- and 7’-integrations remain untouched by the
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arguments used in the proof below, so we state all the required steps as if u,, v, pe, G, ... were
independent of ¢, noting that re-introducing the actual dependencies then is entirely straightfor-
ward. Moreover, f]R d& will always be understood to mean f]R+ dg.

In the computations below, we shall rely heavily on the Friedrichs lemma for convolutions
(cf. Lemma 6). To begin with, note that for any f € C>(R?*!) and any fixed ¢, §

lim jXU (X §) ((Xu,, f) *ps,é) (%, 8)dux)d§

n— 00
Rd+1

= / 8/)25’6(7‘7 £) (()Zu f)* :08,5) (x, &)du(x)dEk.

Rd+!1

This is due to dominated convergence since |)~(§;5| <1,19; Xv,,8| < 19 pe,sll 1 (ra+1y < C and both
)Z,ff and )251;5 are supported in a compact set (which is independent of n). The same holds true
for all integral expressions of similar form.

Therefore, whenever the difference of two such expressions (containing )"(5*8 and ¥ ’6) con-
verges to zero due to a variant of the Friedrichs lemma, the difference of the same expressions
(only now containing )25,;5 and )Z{f;la) converges to zero if we first let n — 0o and then §, & — 0.
So they are going to be equivalent for the limit (we use & in our notation).

First, by (A.2) we obtain:

[ divaivi, @« psi dnde

Rd+!1

(66)
~ - / (8 div(Fu, @) ) * pe,s0; 25, d .
Rd+!1
That we do not have an actual equality here is merely due to the fact that some of the appearing
Christoffel terms will be inside a convolution on one side of the equation but outside on the other.
As outlined above, however, this does not cause a problem in the limit thanks to the Friedrichs
lemma.

We continue with the right hand side of (66). Expanding the remaining divergence, and using
gl = —F,{agi“ — F,’;hgjb and gijaf = g’i(aT)’r‘(aT){, we find (see (A.5)):

/ (8 div(Tu, @) ) * pe.50; %5 d s

Rd+!1

~ / g WOy, M@ M Kun @ ©) oy (¥ 1)
R3d+3 (67)

X O pe,5(X =y, & —1)0jpe,s(X—2Z,& — {)dydndzdidu(x)dé

/ 0700 O35 .6 [¢7 T al + T, 80l | (x, )dnxd,

Rd+1

where the & again stems from a variant of the Friedrichs lemma.
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This allows us to calculate

[ (& aivGar) « st s anae
Rd+1
+ / (gl] diV(Xvna)l'> *pg’sa/;(;;lad,udf
Rd+1

A f Suih"™ ()0 Yk (y, mA™ (2) (6T (2, ¢)

R3d+3

X X, (2, 8) Xu, (¥, MOk pe,s (X =y, & —m)3jpes(X —2,§ — {)dydndzdidu(x)d§

+ / St @) (o) @ OB (¥) (0T, (3. n)

R3d+3

X Xon (Zy €)X (¥, MOk 0,6 (X — 2,6 — )0 pe5(X—y, & — n)dydndzddp(x)dé 68)

[ b e [ @6 o ~ i @ e @)

R3d+3

X Xon (Zs €)Xt ¥, MOk ps,6 X =y, & —10)0jpe.s(X —2,& — {)dydndzdd(x)dé

+ / Sl @)@ ")f @, ) [ @) 0] @, 0) = 1" e 3.
R3d+3
X X (2 ©) Ty (V2 )26 (X — 2§ = 03 6.5 (X — ¥, & — m)dydndzd¢ dpu(x)d

+ / 0% Ky [g”F’”za +Fkag’“a"]duds
Rd+1

+ / Xv,, 3]Xu [”l"mla +Fkag’”ak]dpbd$.

Rd+1

Looking at the fourth term from (68) another lengthy calculation and invocation of the Friedrichs
lemma (see (A.6)) gives

[ swi @0 [ @6 @0 - i ee v

R3d+3

X Xon 2y §) Xty (¥ M) Ok 06,5 (X — 2, — £)0j pe 5 (X —y, & — n)dydndzdidu(x)dé

~ [ s @@ o) [ @™ a6 - B e )] (69)

R3d+3

X X, (2, 8) Xu, (¥, )0 pe,5 (X — 2,6 — £) 0 pe,s (X — ¥, § — n)dydndzdtdu(x)d§
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T N R Sy NG

Rd+!1

- f St h 753 759 (0 TYVETS, 0y (™ (0T ) .

r- s

Rd+!1

The last two terms in the equation above are of the form
[ e 6o s 0)

for an appropriate function G (which is bounded and independent of n). By (63) and Lemma 6 it
follows that the difference of this expression and the right hand side of (65) (with the functions
G only differing by a factor of q&g) is = 0.

So the third and fourth term from (68) together give

St W@ [ W)@ o =1 @07 2. 0)]

R3d+3

X X, (2, 8) Xu, (¥, M)k pe,s (X — ¥, & — 10 pes (X — 2,8 — §)dydndzdidu(x)ds

[ b @0 [ @6 .0~ i e )]

R3d+3

X Xvy (2, &) Xuy (¥ MOk Pe,6 X — 2,6 — £)0 pe 5(X—y, & — n)dydndzd{du(x)dé

~ [ s @ [ @) e — 1 @ e @)

R3d+3

X Xvy (2, ) Xun ¥, MOk pe,6 X — Y, & — )0 pe s (X —2,& — {)dydndzd{d(x)dé

[ b @M w0 [ @6 .0~ i e )]

R3d+3

X Yoy (25 &) Xuy (¥, M0 pe,5(X — 2,6 — E)Okpe,s (X — Y, & — n)dydndzd{dpu(x)ds

+ f RS 7o G (x, £)dpud

Rd+!1

(71)

= f b [ D@ — 1 @0 i@, 0)

R3d+3
x [ @)D wm = 1 @0 @ )] o, @ ), (v 1)
X O pe,s(X =y, & = mIjpes(x—2,§ — )dydndzdfdp(x)d§

+ / D ZEP G x, £)dpdE,

Rd+!1

again for some bounded function G.
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Expanding the functions A" I(UT)]; in Taylor series (see the appendix for the details of the

following calculation), we conclude that

b [ D@ DEG. ) =W @) 0D, )]

R3+3
x [ @ @D om0 @ 0] 00| R, 0 Ry 0 0)
X O pe,s(X—Y, & —1m)jpss(X —2,& — {)dydndzddu(x)dé
N - / SmxEoxE? [Bk (h”(aT)’:) 9; (h”"(aT){) (72)
Ri+

+9; (h”(aT)’;) % (hmi(aT)-{)] duds
=[x ri o epduas,
Rd+1

where & holds if we let first n — o0, then § — 0 and finally ¢ — 0 (so that all other terms in the
Taylor expansion will go to zero). This shows that the third and fourth term of (68) again simply
sum to a term of the form [ x{ ‘sxbfn’SG(x, £)dude.

Next, an integration by parts shows that the fifth and sixth term in (68) sum to

- / XUn lensa |: ”lea +Fkaglaak] dlLdE = / Xvn XMnSG(X S)d/"l’dé

Rd+1 RA+1

hence it only remains to study the first two terms in (68).
The sum of the first and second term from (68) can be shown to be (approximately) equal to

&,8
/ (1= x50 (G (x, §)dpds +2 / bt (90007 1))

Rd+!1 Rd+1 (73)
. T £,8
x (¢ah"0; (0] (1 = x0,) " dpudg.

Again, this uses the product rule and integration by parts and the details are in the appendix.
Note that, similarly,

[ ot (1100, TE) ™ (700, (T 1 = ) s

RA+1

&,8 . -\ €,0
b [ s (a0 )) (1701 = 00350 ) e 4)

Rd+!1

~ f (1= X2 xE0G(x, §)dpdE

Rd+!1
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and obviously

/ st (1,200 ™E) ™ (791 = 30,0930 ™) s

Rd+!1

75)
~ f (1= X2 AESG(x, E)dpde.

Rd+!1
Using (74) and (75) we then conclude that (73) can be written as

8 . : 8
2 [ bt (080T ) (77000, T 1 = 0,0) e

Rd+1

e,
~2 [ (81300 = Gl 10,8007

Rd+!1
. . , -\ €,0
x (h’"’¢>a8j((aT){(1 — Xv,)) —h" o (1 — Xv,,)aj(UT)ij) duds

+ / (A= X2 X2 G (x, &)dpdg (76)

Rd+!1

£,
=<2 [ S (8800 = s, BT

Rd+!1
mi TvJ mi TvJ &8
x (B 640; (@) ) = " a0 ™)) ) " dpds

+ / (1 - xEDXEDG(x, £)ddE.

Rd+!1

Now in (26) we defined BY (x, &) by (8:8Y) (x,€) = V¥ (E)o” (x,£) and BV (x,0) = 0 for
any x, and (41) gives

(1083000 = pesx. ) = [ (7 )0 9005~y
— 3 (h™ ) (¥) pe (X — ¥)) / ps (& — (@D (v, ) xw, (v, Mdndy
= f (W™ (¥) o (¥)D; 0 (X — y) — 3 (B o)) (¥) 0 (X — 1)) (B ) (3, va(9)dy

= / W $)ga (¥)pex = 3, (B )] (v, vn(¥)) dy,

R4
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and

(" e, 950 ] ) % pes . 6)
= f R (y) o () pe (X — Y) / s (€ —md; ()] (v, ) xu, (v, M)dndy
R4 R

= / W §)e W6 x = 1)8; (BAED]1,0)) ez ly-

R4

Hence using (28) it follows that their difference is given by

(H™ 820 TY] x0r) = W, 0@ ) % e (x.6)
= [ 17 @0a -9 (divy (7€ . 0ay)
R4

- (divy (ﬂpg(s_‘)(y, f))) |§=vn(y)) dy.

i
An analogous treatment of (¢oh" 0 ((07)¥ xu,) — Pah™ xu, Bk(ar)’;)s’(3 shows that (76) be-

comes

£,8
=2 [ 8 (8 00T = Gl 0,807

Rd+!1
mi Tv\J mi TvJ &8
x (B"1640; (@7 o) = 1" daxa, 0 @™)] ) " dpds

=-2 St h™ (VR (Y ) o ()P (¥) pe (X — ¥) pe (X — ¥')

R3d+1
x (divy (B0, v ') = (divy (BP0 0)) ez
x (divy (B2 3 a3)) = (divy (B7E3,0)) ) lemunty ), dydy dpuds.
This finally establishes (65). O
Before we state the next lemma, we note that by a limiting procedure (exactly as in [7, (2.7)])

we may insert S(u) = sgn, (§)(u — &)+ +sgn, (—=&)(u — &)_ into (33). Then multiplying by a
test function in & and integrating over (¢, X) € [0, 00) x M as well as over £ it follows that

/ (nu,, +my, )€, X, E)dtdpu(x) < v(§), (77)

RtxM

in the sense of distributions in &, where
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v(§) :=sgn (§)I1(wo — &)+l L1y +segny (=)o — E) -l L1 (ar) (78)
=sgn (§)lwo — &)+l (79)

(which is a bounded function compactly supported in [0, 1]). Since this holds for all #, it must
also hold for the weak limit n,, + m,,.

Lemma 11. For weakly convergent subsequences xy,,Ny,, My, and Xy, Ny, My, (as in
Lemma 9) we have

/ / (Per (M, + 11,)) 50 0 (P X )*° + (P (1, + 11,)) 50 B (D Xy )0 d 1 (X)dE

R4 O
00

#2 [ [ O 600606 )0xt = T x= et — 7' ox =)
R3d+2 0 (80)
. 26— . 26— ’
x (divy (B0 0@ ¥0) = (divy (B0, 0) ) ez
x (divy (B¢ (v, un(r.9))
. 26—
— (divy (7€ 0.0)) ) le=untey) ) dydrdy'de'dpuds <0,
Proof. To begin with, a straightforward calculation using (41) shows that
0 (B )™ = B (X)ps(§) — (BB (E — u)) * pe.s. (81)

Therefore, (¢q(my,, + ny,))° -8 0g (o Xv,)° 8 splits into the following terms:

/ / (P (M1, + 110,)) % B (P )P d e (X)dE

R4 0O .
- / / 95(%)05€) (¢ (1, +10,))" dpd
Rd 0 .
- / / (Gatn, ) (GubE — ) duuds 82)
R4 Ooo
_//(%zmun)g’a((bacs(é —un))g’adudé
R4 0O
< / / BE (%) 05 (€) (P 1y +musy))”’ dud
Rd 0O

- / f (P, )5 (Pad(E — un))**dpude

R4 0

by positivity of m,, . First note that the first term is zero since ps is supported in (-1, 0).
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We now look at the second term. By definition of n,, (see (42))

/ / (Partu,) (Pa8(E — up))**duds

R4 0
= / /,05(5 —un (T, ¥)ps(E —un(t',y)pe(t =T, x = y)pe(t — 7', x =y x
R3d+2 0
2
X o (V)P (y) |div(B(Y, un (T, ¥))) —dlv(ﬂ(yvi))t ) dydtdy'dd'dpdg.
=un(t g(y)

Defining the vector field X, on R by

X!, (1,y) == h"(y) (divw(y, un (,y)) — div(B(y, ¢ ))‘c— ¢ y>>
=un(t, j

we see that

2
dV(B(Y. a1, ) = div (B(Y. )|

Un

E=unt:Y) g (y)

where |.|, denotes the Euclidean norm on R?. So, using | X, (t,y)lf + Xy, (t/,y/)|§ >

26ii X, i (t y)Xun (t,y") and the chain rule (27) (which holds since u,, v, are sufficiently reg-
ular for all n) we see that

— f / (D) B (E — v))E° + (Pann, )5 (Pad(E — un))**dpude (83)
R4 0
< f / S ™ (VAT (Y ) (9 b )2t — 7. X — ot — 7 X — ¥)
R3d+2 0

x (divy (B0, 0@ ¥0) = (divy (BT 6.0) ) lemien).
x (divy (B¢, un(z, )
— (divy (B0, 0) ) lemunten ), A 7Y T ).
This concludes the proof. O
From this we conclude that condition (51) is fulfilled.

Lemma 12. Under the assumptions of the previous Lemma the limits satisfy the estimate (51).
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Proof. As before, due to the presence of the cut-off functions ¢y, we may without loss of gen-
erality suppose that M = R?. We first calculate

/ / (G + 1)) 3 (o) (X)dE

RY 0
__ / / (G s + 1) 0 (B (1 — 30)) it (x)lE
R4 0
__ / (G + 1) (1%, 0) (B (1 — )Pt ()&
Rd
+ f f e (Do (my + 1)) (P (1 — x))Pd p(x)dE. (84)

R¢ O

Next, note that (¢, (n, + m,,))¢ is continuous (and even locally Lipschitz) in & since by assump-
tion (xu, uo, my, ny) satisfies (49), hence (44), which implies that 9g (¢« (1, + m,,))® will be in
L2 ([0,00) x RY x R). Thus

o0
/_/¢§(X)ps(r§) (o (ny +m)*° dpudé — [¢§(X) (Go(ny +my))* (x,0)d
Rd 0O R4
as § — 0. Now, for any the estimate (77) (and v(§) = 0 for £ < 0) shows that the measure
fR+xM(”u + my)(t, X, £)dtdu is supported in [0, 0c0) hence by positivity (n, + my,)(¢, X, ) is

supported in [0, c0) x M x [0, co). But this implies (n, + m,)*(¢,x,&) =0 on [0, 00) x M for
any £ < 0. Thus

(ny +my,)e(t,x,00=0 (85)
on [0, 00) X M by continuity, so

t

//(PE(X) (o (nu +my))* (t,%,0)dpudz =0. (86)

0 R4

Since 0 <1 — x, <1 (and m,, n, and ¢, are non-negative) this immediately implies that the
first term in (84) must converge to zero as § — 0 as well.
Thus,

lim sup lim sup/ /(¢a (my + nu))s,Sa&_ (¢ Xv)s’adﬂ(x)dg
0

e—0 §—0
R4

e—0 §—

= limsup lim sup f / 3 (bar (my + 1)) (o (1 = X)) dpu(x)dE.
0
R4 0
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Combining this with Lemma 10 and Lemma 11 and letting n — oo (keeping in mind (77)) gives
the claim. 0O

From the above, we see that the following theorem holds.

Theorem 13. Denote by F the set of all tuples (xy, uo, my, ny) obtained as the weak limits along
subsequences as in Lemma 9 of appropriate terms from the vanishing viscosity approximation
(31) with initial condition (2). Then F satisfies the conditions from Definition 4.

Proof. That such limits satisfy (49), (50) is part of the statement of Lemma 9, while relation (51)
follows from Lemma 12. O

As a direct consequence we obtain the following result on the uniqueness of entropy solutions:
Corollary 14. Let u, v be entropy solutions of (1), (2). Then u = v.

Proof. We do this by showing that the set F consisting of all entropy solutions is kinetically
admissible. From this, uniqueness of entropy solutions follows from Theorem 7.

As was shown in Section 2, the kinetic functions y,, x, corresponding to u, v satisfy the
Cauchy problem (49), (50). It remains to show (51). But this follows as in Lemmas 10 to 12 by
replacing the sequences there with the constant sequences x, ny, my and x,, ny, m,: Note that
the only place where the higher regularity of the u,, enters is in the use of the chain rule in (83),
which entropy solutions have to satisfy by definition. O

The final theorem of the paper establishes existence of the entropy admissible solutions to

(D, ().

Theorem 15. There exists a function u : [0, 00) x M — [0, 1] satisfying the conditions of Defi-
nition 3. It is obtained as the strong L}OC([O, 00) X M) limit of the functions (u,) obtained as the
solution to (31), (2).

Proof. From Theorem 13, Lemma 9 and Theorem 7 it follows that for the entire family (u;)
(and not only a subsequence)

sgn (uy(t,X) — &) — sgn (u(r,x) —&) as n— 0 in L°([0,00) x M X [0, 00)),

where u is defined in (61). Indeed, according to Theorem 13 and Lemma 9, any weak-x limit
of a subsequence of sgn, (u,(#, X) — &) belongs to the family  from Definition 4, while from
Theorem 7 it follows that all such limits coincide (since they correspond to the same initial
value). This in turn means that the Young measure corresponding to the family (u,) is the atomic
measure of the form §(u (¢, x) — &). Indeed, for any f € C I(R), we have (keeping in mind (61)
and the fact that 0 <u, <1):
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up(t,X) 1

fuy(t, %)) = / f’(E)déJrf(O)=/f/(§)8gn+(un(t,x)—5)d5+f(0)
0 0

1
;}‘/f’(é)sgn+(u(t,X)—é)dé+f(0)=/f($)5(u(t,X)—E)dé.
0 R

From here, according to standard properties of Young measures [15], we conclude that

u, — u strongly in L}Oc([O, 00) X M).
The strong convergence provides all the conditions from Definition 3 (cf. [7, Section 7]). O
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Appendix A

In this appendix we provide details of the arguments used in the proof of Lemma 10. As
before, we shall suppress the #-dependence to simplify the presentation. Also, as in the Lemma,
J d& is to be understood to in fact mean [, d&.

To begin with, we show (66), using integration by parts, (13), and Lemma 6, as well as the

fact that d/[g] = I';,+/Ig[, and

08" = g1’ — gItT", (A1)

[ divaiviu,a e o7 dnde

Rd+!1

- / (879 div(Fuy@)i) * Pe.s X5 d s — / (57T v, ) » e 725 d e
Rd+!1 Rd+!1

= / 87 ()3 div(Fu,@)i (¥, ) pe,s (X —y. & — mdydnx® (x,€)/1g(x)|dxdgdydn

R2d+2

- / (/T8 div(Tu, @k ) * pes X5 dnds

Rd+!1
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= / 8" () div(Fu,@)i (v, )3 pe.s (x — y, € — n)dydn x5’ (x, £)/|g(x) ldxdgdydy

R2d+2

- f 978" (y) div (X, @)i (¥, ) pe.s (X — ¥, & — mdydni’ (x, €)v/|g(x)|dxdEdydn

R2d+2

- f ( Ty, le(Xua)k)*,OSSXU,l dpd§

Rd+!1

=- / 87 () div(Fu, @)i (¥, M) pe.s (X — ¥, € — )dydnd; x&° (x, £)/1g(x)|dxdEdydn

R2d+2

[ ST @i @ e y.& ~ dydni x. 0, e ldxdedydn

R2d+2

[ (@l gl v, a) )« s 7 duds

Rd+!1

- / (87Tk div(iu @ ) * pes Xi dpds

Rd+!1

Rd+1 Rd+!

[ (@l g v, )« pes 7 P dud

Rd+!1
- / (g”' I div(xua)k) * pesXeSdpde
Rd+1
~ / (gl] diV(Xuna)i) *pg"saf)_(s,’,adlldf (A2)

RA+1
Turning now to (67), we again use (A.1), as well as
glaf =g (@M 0")] (A3)
to calculate:

(87 div(u, @)1 ) * pe,39; 25 d s

Rd+1

= [ O G ah) 3 s 3. & — iy 75 x5 dp ) dyd

R2d+2
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[ 03 o7, 0 0 [P wal o - T W)

R2d+2

X pe,s(X—y,§ —n)dydndu(x)d§

= / 87 (W) Owa) (v, Mk pe.s(x —y, & — ndydnd; x5’ (x, &)dydnd ju(x)d&

R2d+2

- / 08" () G a) (5. 15 5 (5 — ¥, & — m)dlydd; 52 (x, £)dydnd (%)

R2d+2

b [ 0k w7, omg @ [Pl - Tl )]

R2d+2

X pe,s(X—y,& —n)dydndu(x)d&

= / 87 W) uab) (v, Mk pe.s(x —y, & — m)dydnd; x& (x, &)dydnd u(x)dé

R2d+2

- f (Mlag™ +Tisg™) )G, 1)

R2d+2

X pe.s(x—y, & — ndydnd; x5 (x, £)dydnd p(x)d&

[ 0 R, g 0 [Tl - T Wl )]

R2d+2

X pes(X =y, & —n)dydndu(x)dé

= f f WOy, M@ M Kun @ ©) Kty (35 1)

Rd+! Rd+1
X O pe,5(X—Y,& —10)0jpe,5(X—12,& — ¢)dydndzd i dju(x)dé
ij ia k
+ / / 9 XE(x, E)xun(y,n)[ ral +Fkag a; ](y,n)
Rd+! Rd+1

X pe,s(X—y,& —n)dydndu(x)dé

~ / / g WOy, M@ M vy @ ) oy (¥ 1)

Rd+1 Rd+1
X O pe,s(X—Y, & =1)djpes(X—2,§ —{)dydndzdtdu(x)d§
+ / 00 (%, )1 (%, ) [ ¢ Tyl 4+ T 8" a | x §)dpuxds. (A4)
Rd+!1

Here, the last &~ follows from the Friedrichs lemma in the following way: For any f € CC2 (RI+1)
we have
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%50 (. &) ((Xup £) * pe.s) (%, E)dpu(x)d&

— / 75 (5, £) (3 G ) % Pe.5) (%, E)du(X)dE

Rd+1
- / 750, 6) (G £) % p5.0) (%, )0/ T (Ol
Rd+]

~ o / 750 (%, £)9; (RED £)(%, E)du(x)d

Rd+1

- / RE (0, )75 (%, £) £ (%, 60/ Tg () dxdlg

Rd+!1

- / 81 X5 (6 )7 (%, ) £ (%, E)dp(X)dE.

Rd+!1

To summarize, (A.4) becomes

[ (& divGu,ar) » st 26 dnae
Rd+!1

~ / WOy, M@ Mm@ ) Ty (¥ 1) X

R3d+3

X O Pe,s(X—y, & —1)0jpes(X —2,& — {)dydndzdldu(x)d§

n / 00t ORI .6 [¢Tal + T8 | x dnde. (A5

Rd+1

To simplify notation we set 5%/ := hi¥ (O'T)]{. Looking at the fourth term from (68) we see

' (2.0) [ 2.6) = 6™ (v |

R3d+3

X X (2 §) Xuy (F, MOk pe,s (X — 2,6 — £)3jpe.s(Xx =y, § — n)dydndzdtdu(x)ds

- / S5 (2, £)6™ (@, 1) Fo, (@ ©) o, (V2 1)

R3d+3

X O pe,5(X — 2,6 —£)0jpe s(X—y, & — n)dydndzdidu(x)dé

- / 815K (2, £)6™ (¥ 1) o, (2 ©) T, (¥ 1)

R3d+3
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X 0k Pe,s(X = 2,8 — )0 pes(X =, & —n)dydndzddu(x)d§

- / S5 (2, £)6™ (2, ) Ko, (@ ©) o, (¥ 1)

R3d+3

X OkPe,s(X — 2,5 —0)0jpe,s(X =Yy, &§ —n)dydndzddp(x)d§

- / St O (G 70,) % pe.591 (6™ Fu,) % Py I ldxdE

Rd+!1

_ / 55 (2, £)6™ (2, ) T, (2 ©) o, (92 1)

R3d+3

X 0jpe,s(X— 2, — {)Okpe,s(X—y, & — n)dydndzdidu(x)d§

+ / St (57 T, ) % 9590 (5™ Fu, ) % po.s/TgldxdE

Rd+1

+ / St (5 R, ) % P59 (6™ Fuy) o574 dXE

Rd+1

~ / 55 (2, £)6™ (2, 0) T, (2 ©) o, (V2 1)

R3d+3

X 0jpe,s(X—2,& — )0k pe,s(X =Y, & — n)dydndzdidp(x)d§

- / 51} (6% ) % Po.50 (6™ Fuy) % Po.sd it (L

Rd+1

[ 8 ) % e ) s

Rd+1

4 / S G 7E00,(GM 75D dxdg

Rd-H

Q

w15 (2,0) 5" @, ) = 5™ v, |

R3d+3

X Xy (Z &) X, (¥, M0 0,5 (X — 2,& — £)Okpe,5(X =y, & — n)dydndzd{du(x)dé

— / S X520 (6™ x0T dxd.§+/ S G* X 500, (6™ xo:0)Iy dxdE

Rd+1 Rd+1

= [ b @@ 0 [ @™ @0 - B e )]

R3d+3
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+ / St 759 750 (0TI 0; (™ (0] d pdg

Rd+!1
- / Smih™ %5 %8 (0TS e (W™ (o)) )d pdE. (A.6)
Rd+!1

This establishes (69). '
Next we show (72). Using again the notation 6/ := hik(¢T){, we have to show that

[ om[at e =@ o] [ 6m - 5" @ o)

R3d+3

X )_(v,, (Zv E)Xun (Y7 U)akpe,é(x -y ‘i: - U)ajﬂs,s(x —Z, é - f)dyd’?ddedﬂ(X)dé

~— / I [ak (&”‘) 9; (&'"f)+a ( lk) ak( ”’/)]dudé. (A7)

Rd+!1

To do so, we introduce a change of variables,

_ X—-y _ x—-z _ §—n -
y= , 7= , = . ¢ = ,
e e é

so the left hand side of (A.7) becomes

(—1)2+2 / 682 5 (X — 6§, & — 8i7) K, (X — €7, & — 87)
K

X S1m [&lk(x—sy,éj —57) — 6k (x — 67, £ —55)] (AS)
x [&mf(x — 6§, & —87) — 6™ (x — 67, £ — 55)]

X Ok e, (€T, 571); pe.5 (7. 8) dZdT dydiid p (X)dE,

where K C R3*@+D is a suitable compact set (the J,, have compact support, uniformly in 7).
Henceforth, we will simply use the letter K to generically denote such compact sets. Recalling
our simplifying assumption on suppressing ¢-dependence, we have

1
,psa(sy,Sn)— w1(n)1'ls¢,wz(ys) 0jwa(¥;),

so (A.8) becomes
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1 _
/; T (X — £, & — 871) o, (X — e7, & — 87)

K
X 0un [ 51 (x — 3, & — ) = 5 (x— e7. — 60 (A9)
« [5-"11 (X—ey, & —8i) —6™ (x — ez, & — 84_’)] w1 (M) Mszrw2(Ys)
X e (FK)@1(§) Myt (Zy) 8j2(2) dzdE dydid p(x)ds.

We now expand 6/F(x — £§, &£ — 877) and 6K (x — £7, & — 87)ina Taylor series around (x, §) to
obtain

5 x — ey, & —87) —6'*(x — ez, & — 87)

d
=D 05" (x.§) e@ ~§r) + 06" (x.£) 8¢ —7)

r=1

+ 3[Rl 5.6, 8 (—eF, —00)" - RI(x, ¢2,&,88) (e, —60)° ],
|oe|=2

where the fok are suitable bounded functions (since &k e C?). Doing the same for 6/ (x —
ey, & — 81) and 6™ (x — €Z, & — §¢) and multiplying, we see that the only relevant remaining
term is

d d
& [Z 06" (x. £) @ — y»} X [Z 06" (%, €) (7 — yn}

r=1 s=1

since all other terms will go to zero as, first, n — o0, then § — 0 and finally ¢ — 0 by bounded-
ness on compact sets (uniformly in ») of all functions appearing in the integrand. We may also
replace )y, (X — ey, & — 1) by Xu, (X, €): The difference of both versions can be estimated by

c f f / Fu(X = 63, & — 87) — Fu(x, )] did§dp(x)dE
K BQ.e) B(0.5)

as n — oo. Now by assumption ¥, € L! since it is bounded and has compact support, so the
Lebesgue differentiation theorem applies, and together with dominated convergence shows that
this integral converges to zero as, first, § — 0, and then ¢ — 0. By a similar argument we may
afterwards also replace x,, (X — ¢z, & — 8¢) by Xv, (X, &). This gives

1 5 _ o _ _
/5_2 Xy (X — €Y, & —01) Xv, (X — £2,§ —6¢)
K

X Sim [&”‘(x — ey, & — i) — 6K (x — 67, & — 35)]

x [6" (x = &3, € — i) = 3" (x — £2, € — 60) | w1 () My x 2 (Fy)
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X n ()1 (§) My jw(Zy) w2 (2)) dzdE dydiid n(x)dg

d
~ / T (%, )70, %, )8 > [8,5 (%, £)0,6™ (. )

K r,s=1
X (ZsZy — Y52y — ZsYr + ¥5¥r) ] 01 (D) T2 (Fs) dn Fr) w1 (€)
X Tz jw2(2,)j 02 (2;) d2dEdydid u(x)dé
= / T 0%, 6) o, (%, )81 | =06 (%, ) 065" (x, €) 9a7,
K

— %3 (%, £) ;6™ (x, €)7;50) | k02 G109j02 7)) d7dTrd ()

= / T 0%, 6) T, (%, )81 | —0,6™ (%, ) 045" (x, &)

K

— 6" (x, £)0;6™ (x,s»] dp(x)dE. (A.10)

This concludes the proof of (72).
Next we have to show that the first and second term of (68) sum to (73). For the first term of

(68) we get

Smth” ()@ TYECy, MA™ (2) (6T (2, 0) K 2 O) Ty (92 1)

R3d+3

X O Pe,s(X—y, & —1)0jpe,s(X —2,& — {)dydndzdldu(x)d&
= [ st (1@ ) w ety (7T 7 ) # s
Rd+!1
~ [ w0y (70T 75 ) s
Rd+1
rl T\k &3 mip Tvis \*°
[ s (a0 0) 0 (17 0™ 5,)

Rd+1

~ / St (Pah™) (0K xS ™ (6] padj (1 — x5:0)d pdt

Rd+!1

+ / (1= xED) xE0G (x, £)dde

Rd+1

£,6 . . £,6
b [ s (000 n) oy (0™ ) Cdnds

Rd+1

A similar calculation gives

Please cite this article in press as: M. Graf et al., Well-posedness theory for degenerate parabolic equations on
Riemannian manifolds, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.06.001




YJDEQ:8858

38 M. Graf et al. / J. Differential Equations eee (eeee) eee—esee

/ S (¢ah”ak<(aT>’;xun))8’8 ; (W @™ x,,n)s’sd,wzg

Rd+1

~ / Suidah™ (0T )EB x50 (Pah™ ) (0 T)] (1 — xE:0)dud

RA+1

+ f (= XD G x, ) dpds

Rd+!1

&,8 . . &,8
b [ s (8000 0) (W7 0005 (0T 1 = 00) dade. (a2

Rd+!1

Putting together (A.11) and (A.12) and doing an integration by parts (to get the terms containing
9;(1— Xﬁ,’,s) and g X,f;la, respectively, to cancel up to a term absorbed into the function G) gives

[ it (4@ ) o pesty (W7 0TV 7, ) w s

Rd+1

&,8 . . &,
~ [ s (8000 0) (W7 005 (0T 1 = 0,0) e

Rd+1

+ / (1= 2 AE3 G x, £)d . (A13)

R+

An analogous calculation for the second term from (68) establishes (73).
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