期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:269
On a weighted Trudinger-Moser inequality in RN
Article
Abreu, Emerson1  Fernandes Jr, Leandro G.2 
[1] Univ Fed Minas Gerais, ICEx Dept Matemat, Caixa Postal 702, BR-30161970 Belo Horizonte, MG, Brazil
[2] Univ Fed Roraima, Dept Matemat, Av Cap Ene Garcez 2413, BR-69310000 Boa Vista, Parana, Brazil
关键词: Weighted Trudinger-Moser inequality;    Weighted rearrangement;    Schwarz symmetrization;   
DOI  :  10.1016/j.jde.2020.02.023
来源: Elsevier
PDF
【 摘 要 】

We establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type Lu where theta, beta >= 0 and alpha > 0, are constants satisfying some existence conditions. It is worth emphasizing that these operators generalize the p-Laplacianand k-Hessian operators in the radial case. Our results involve fractional dimensions, a new weighted Polya-Szego principle, and a boundness value for the optimal constant in a Gagliardo-Nirenberg type inequality. (c) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2020_02_023.pdf 1103KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次