JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:269 |
On a weighted Trudinger-Moser inequality in RN | |
Article | |
Abreu, Emerson1  Fernandes Jr, Leandro G.2  | |
[1] Univ Fed Minas Gerais, ICEx Dept Matemat, Caixa Postal 702, BR-30161970 Belo Horizonte, MG, Brazil | |
[2] Univ Fed Roraima, Dept Matemat, Av Cap Ene Garcez 2413, BR-69310000 Boa Vista, Parana, Brazil | |
关键词: Weighted Trudinger-Moser inequality; Weighted rearrangement; Schwarz symmetrization; | |
DOI : 10.1016/j.jde.2020.02.023 | |
来源: Elsevier | |
【 摘 要 】
We establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type Lu where theta, beta >= 0 and alpha > 0, are constants satisfying some existence conditions. It is worth emphasizing that these operators generalize the p-Laplacianand k-Hessian operators in the radial case. Our results involve fractional dimensions, a new weighted Polya-Szego principle, and a boundness value for the optimal constant in a Gagliardo-Nirenberg type inequality. (c) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2020_02_023.pdf | 1103KB | download |