期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:268 |
Symmetrical Prandtl boundary layer expansions of steady Navier-Stokes equations on bounded domain | |
Article | |
Li, Quanrong1  Ding, Shijin2  | |
[1] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China | |
[2] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Guangzhou 510631, Guangdong, Peoples R China | |
关键词: Steady Navier-Stokes equations; Inviscid limit; Prandtl boundary layer expansions; Convergence rate; | |
DOI : 10.1016/j.jde.2019.09.030 | |
来源: Elsevier | |
【 摘 要 】
This paper is concerned with the validity of the Prandtl boundary layer theory in the inviscid limit of the steady incompressible Navier-Stokes equations, which is an extension of the pioneer paper [13] (Y. Guo et al., 2017, Ann. PDE) from a domain of [0, L] x R+ to [0, L] x [0, 2]. Under the symmetry assumption, we establish the validity of the Prandtl boundary layer expansions and the error estimates. The convergence rate as epsilon -> 0 is also given. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2019_09_030.pdf | 1911KB | download |