期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:268
Symmetrical Prandtl boundary layer expansions of steady Navier-Stokes equations on bounded domain
Article
Li, Quanrong1  Ding, Shijin2 
[1] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
[2] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Guangzhou 510631, Guangdong, Peoples R China
关键词: Steady Navier-Stokes equations;    Inviscid limit;    Prandtl boundary layer expansions;    Convergence rate;   
DOI  :  10.1016/j.jde.2019.09.030
来源: Elsevier
PDF
【 摘 要 】

This paper is concerned with the validity of the Prandtl boundary layer theory in the inviscid limit of the steady incompressible Navier-Stokes equations, which is an extension of the pioneer paper [13] (Y. Guo et al., 2017, Ann. PDE) from a domain of [0, L] x R+ to [0, L] x [0, 2]. Under the symmetry assumption, we establish the validity of the Prandtl boundary layer expansions and the error estimates. The convergence rate as epsilon -> 0 is also given. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_09_030.pdf 1911KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次