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Abstract

This paper is concerned with the validity of the Prandtl boundary layer theory in the inviscid limit of the
steady incompressible Navier-Stokes equations, which is an extension of the pioneer paper [13] (Y. Guo et
al., 2017, Ann. PDE) from a domain of [0, L] x Ry to [0, L] x [0, 2]. Under the symmetry assumption,
we establish the validity of the Prandtl boundary layer expansions and the error estimates. The convergence
rate as ¢ — 0 is also given.
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1. Introduction
1.1. Formulation of the problem

In this paper, we consider the following steady incompressible Navier-Stokes equations

UUX + VUY +Px ZSUXX +8Uyy,
UVx 4+ VVy+ Py =eVxx +¢eVyy, (1.1)
Ux +Vy =0,

in the domain
Q={X,V)0<X=<L,0<Y=<2}
with moving boundary conditions
UX,0=UX,2)=up>0, V(X,00)=V(X,2)=0.
We will focus on the problem when ¢ — 0. As ¢ — 0, a formal limit of the solution of
(1.1) should be the shear flow [Uy, V] = [ug(Y), 0], which satisfies the corresponding Euler
equations. We assume that this smooth positive function u8(~) satisfies ug( 1-Y)= ug(l +7),

forany Y € [0, 1] and uB(O) = uS(Z) = U, # up. Accordingly, we assume that the solution [U, V]
to (1.1) satisfies the following symmetrical conditions with respectto ¥ =1

UX,1-V)=UX,1+4Y),V(X,1-Y)=-V(X,14+7Y),Y €0, 1].

It should be noted that, due to this assumption, the pair [U, V]i<y <> satisfies equations (1.1)
as long as [U, V]o<y<1 does. Then our discussion can be restricted to the domain

Qo ={X,N0=X=<L,0<Y=<1}
and the boundary conditions turn to
(U, VI(X,0) =[up,0], [Uy,VI(X,1)=][0,0]

Now we introduce the Prandtl’s scaling

x=X,y=

Y
NG
and the new unknown functions

1
Ub(x,y)=U(X,Y), Vi(x,y) = ﬁV(X, Y).

Under this transformation, system (1.1) can be rewritten as
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UUE + VEUS + PE = U, + U

XX
USVf+V8V;+PyS/8=V;y+8fo,
Uf—i—Vyg:O,
in the domain
Q {( )|0< <L O0<y< !
= {(x, <x<L,0<y=<—},
& y y \/E

with the boundary conditions

& & & & 1
[U°, VZ](x,0) =[up, 01, [Uy,V ](x,ﬁ)Z[O,O].

In what follows, we intend to find the exact solutions [U?, V¢, P¢] in form of

U (x, ) = ttapp(x, ¥) + 7 T 10 (x, ),

VE(X, Y) = Vapp(x, ¥) + 7 T10% (x, y),
1

PE(x,y) = papp(x,y) + €' T2 p(x, y),

where

Uapp (¥, y) = ud(Jey) +ul (x, y) + eul (x, ey) + Jeuh (x, y),
Vapp (X, ¥) = V9 (X, ¥) + v (¥, V/EY) + /EV, (%, ¥),
Papp(*, ) = VEPL(x, /Ey) + /Eph(x, y) +epi(x, y).

Substituting (1.4) into (1.2), we get

1
Ry, + &7 T2 [0y + v0y)uapp + (Uappdx + Vapp0y)u® + p& — Acu®]

+&2" L Wfd, + vedy)uf =0,
1
Rgpp +e¥t2 [(Mgax + Usay)vapp + (uappax + Uappay)vg + pi/s - Aavs]
+e2Y TN Wfd, + vedy)v =0,

1
dxttapp + dyvapp + €72 (ug +v5) =0,

where A, 1= 83 + 83)% and the errors caused by the approximation

Rapp = (appOx + VappOy)itapp + Ox Papp — Deltapp,

Rgpp := (UappOx + Vappdy)Vapp + Oy Papp/€ — AsVapp,

or precisely

3

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)
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Rty = @+ )+ el + b + @ + vl + VEuh)dy | @l +u + Velul +up)

+ e (Velpy + phl +ep3) — (07 + 0D ud + uf + Velul +u)), (1.7)
Ry, = [(u(e) + ”(1)7 + Velul + u},])ax + (vg +v! + \/Ev;,)ay] (vg +o! + \/Ev;)

+0y(pe + Py +VEP)/VE = (05 + ) () + vy + Vevy). (1.8)
Now the boundary conditions can be rewritten as

1 1
Uapp(x,0) + 7 ¥ 20t (0, 0) =up,  Byuapp(x, ) + " 2u(x, 2) =0,

1 ! (1.9)
Vapp (. 0) + 7205 (1, 0) =0, vapp(x, 72) + &7 205 (x, ) =0

It is clear that there are only three equations with two boundary conditions, but there are
twelve unknown functions, which makes this system unclosed. To construct the approximate
solution, we have to divide this big system into a few subsystems in terms of the order of ¢.

1.2. Boundary conditions
Let us see how to impose boundary conditions for each subsystem. For convenience, denote

7:=./ey.

Boundary conditions on {y = 0}:

ud(0) + ud (x, 0) = up, 1y (x,0) +up(x,0) =0, uf(x,00=0;  (1.10)
V) (x,0) +v,(x,00=0,  v,(x,0)=0, v¥(x,00=0.  (L.11)

Boundary conditions on {y = ﬁ}:

1 1 1

u?,y(x,ﬁ)zo, Uy, (x, 1) =0u, (x, ﬁ)zo, ui,(x,ﬁ):o; (1.12)

v (x i)zo v (x, =00 (x L):0 Ve (x i):O (1.13)

p \/g 4 e\ s Up\As \/E ) . \/E . .

Boundary conditions on {x = 0}:

u(0,y) =iio(y), uy0,2)=up(2),  u,©y)=ii(y),  u0,y)=0; (I.14)

v,(0,2) =Vpo(z),  v°(0,y)=0. (1.15)
Boundary conditions on {x = L}:

o (L. 2) =Vpr(2),  [p° —2eul, uf +evi](L,y) =0. (1.16)

Denote u, := uS(O), which, in general, is not equal to uj. Then by the first condition in
(1.10), we shall take u%(x,0) = uj, — u,. Similarly, we will take u},(x,0) = —u}(x,0) and
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vg (x,0) = —vg (x,0), as u; (x,0) and vg (x,0) will be defined automatically by the profile ug,
and vg, respectively.
For the existence of the Euler corrector [u!, v! pg], it is necessary for us to impose the fol-

e’ Yer
lowing compatibility conditions:

Vio(0) = —v)(0,0),  Vp(0) =—v)(L,0),  Vpo(l)= V(1) =0.
In addition, as will be seen in Section 3 that vgzz (x, 1) =0 follows directly from the boundary
condition ve} (x, 1) =0 and the elliptic equation ve} satisfies, we should also set that Vé()(l) =
V7 (1) = 0. Moreover, the boundary condition ulz (x, 1) = 0 follows as soon as the compatibility
condition u }71(1) =0 is given, since that

X

ué(x, z7) = ué(z) — / vgz(s, z)ds,

0

which is a natural solution by the divergence-free condition u, + v}, = 0.

Collecting the functions prescribed in (1.14) and (1.15), precisely, ug(y), u},(z), u1(y) and
Vbo(z), one yields the following boundary conditions on {x = 0} for (U¢, V¥¢), which represent
the in-flow conditions:

U(0, y) = ul(z) + ito(y) + eup (z) + Vel (v); (1.17)
Ve, y) =090, y) + Vio(2) + Vv, (0, y). (1.18)

Here, we infer that vg (0, y) and /ev },(0, y) are unnecessary to be prescribed since they can be
determined respectively by the parabolic equations they satisfy.

Finally, the prescribed conditions in (1.16) give the out-flow conditions for (U?, V¢), in which
only v;, u® and v® are prescribed as these profiles satisfy elliptic equations. Physically, the out-
flow condition for (1¢, v®) in (1.16) is called the stress-free condition.

1.3. Main result and discussion
We state our main result of the present paper as follows:

Theorem 1.1. Let up > 0 be a constant tangential velocity of the Navier-Stokes flow on the
boundary {Y = 0}, and let uS(Y) be a smooth positive Euler flow satisfies ugz(l) = 0. Sup-
pose that the boundary conditions prescribed in (1.10)-(1.16) hold and compatibility conditions
discussed after those boundary conditions in subsection 1.2 are valid. Suppose further that the
positive condition miny{ug(ﬁy) +ug(y)} > 0 holds. Then there exists a constant Lo > 0, which
depends only on the prescribed data, such that for 0 < L < Lo and y € (0, %), the asymptotic
expansions stated in (1.4)-(1.5) is a solution to equations (1.2) on Q2 together with the cor-
responding boundary conditions. The approximate solutions appearing in the expansions are
constructed in Section 2, 3, 4 and 5, in which the remainder solutions [u®, v¥] satisfies the esti-
mate
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IVeu® |l 200,y + 1IVev® Il 12¢0,) + 6L, + VeV |l x,) < Co. (1.19)

With this Theorem and the corresponding estimates for each component of the expansions,
we can obtain the convergence rate of this sequence as ¢ — 0, which indicates the validity of the
asymptotic expansions (1.4)-(1.5). Precisely, we have the following

Corollary 1.2. Under the assumptions of Theorem 1.1, there is an exact solution [U, V] to the
original system (1.1) on the rectangle domain [0, L] x [0, 2] with the corresponding boundary
conditions, such that

=

Y
sup |U(X,Y) —ud(Y) —u') (X —) — Jeul(x, Y)' <e1; (1.20)
(X,Y)eQ NG
Y
sup V(X Y) — V&) <X —) — Jevl(x, Y)‘ < g2tV (1.21)
(X.Y)eQ NG

as € — 0, where the zeroth order Prandtl profile [u(;,, vg] and the first order Euler corrector

[ui, v é] are constructed in Section 2 and Section 3, respectively. In particular, in the zero viscosity
limit, the convergence [U, V] — [ug, 0] discussed at the beginning of this paper is valid in the

€L
usual LP norm with convergence rate of order €2», 1 < p < 4-00.

Before continuing, let us give a short historical review on the study of the Prandtl boundary
layer theory. It is well known that the Prandtl boundary layer theory was first proposed by L.
Prandtl in 1904 in the celebrate lecture ’On fluid motion with very small fraction™ at the Hei-
delberg mathematical congress, see [28]. In this lecture, Prandtl used theoretical approach with
some simple experiments to show that the flow past a body can be divided into two regions: a
very thin layer close to the boundary where the viscosity is important, and the remaining region
outside this layer where the viscosity can be neglected. Over more than one hundred years, great
achievements have been made on the application of computational fluid mechanics and simula-
tion. However, the rigorous proof for the validity of this theory, at least in general cases, is still
uncompleted.

One of the main problem on the road to the validity of the Prandtl boundary layer theory
is the well-posedness of the Prandtl equation, which was initiated by O. Oleinik in [29] with
px < 0 for the steady setting, and in [30] with assuming monotonic-in-y to the initial data of
tangential velocity for the unsteady setting, see also the book [31]. Subsequently, these problems
attracted considerable attention of many excellent mathematicians. In the steady case, if p, > 0,
then boundary layer separation will appear in the physical pointview, which has been studied by
Goldstein and Stewartson [15,32], see also [3]. For the unsteady case, the local well-posedness
of Prandtl equation in [0, L] x R, and global well-posedness for L sufficiently small were ob-
tained in [30,31], by the Crocco transformation. Afterwards, still by the Crocco transformation,
this global well-posedness was extended to arbitrary L < 400 in the sense of weak solution,
under the assumption of p, <0 by Z. Xin et al[36]. Without the Crocco transformation, the local
well-posedness was also established in [2,26] by energy method under the same monotonicity as-
sumption. So far, the global existence of regular solutions to Prandtl equation is still open, even
with the monotonicity assumption. When the monotonicity assumption is generalized to multiple
monotonicity regions, the local well-posedness is also valid in the analytic setting[21]. In the di-
rection of removing the monotonicity assumption, we refer to [7,17,22,24,33,34] for some results
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in analytic or Gevery setting, while in the Sobolev setting, the equations are ill-posed(Cf.[5,8]).
There are also some results on the finite-time blow-up solutions, see [4,16,23].

The main purpose of the present paper is to study the validity of the expansions (1.4)-(1.5) to
the solutions of the steady Navier-Stokes equations. In the unsteady cases, the local validity is
given by [33,34] in analytic setting, by [6] with Gevery setting, and by [25] under the assumption
that the initial vorticity distribution is supported away from the boundary, also see [1,27] for other
related results. In addition, there are also some proofs for the invalidity in Sobolev spaces, see
[9-12,14]. The first study of the validity for the steady incompressible Navier-Stokes equations
was due to the pioneer paper by Y. Guo and T. Nguyen [13] in which the problem was set on an
infinite domain [0, L] x R4 with L small, and the limit is a shear Euler flow. Subsequently, S.
Iyer extended L to oo with the constant limit flow (1, 0)[19]. He also obtained the validity result
in the case when the limit Euler flow is a non-shear one with L small [20]. Similar result in a
rotating disk [0, 6p] x [Ro, +00) with 8y small is given in [18].

This paper aims to extend the results of [13] to a bounded domain, y € [0, 2], which is more
suitable to the physical reality. To our knowledge, so far, there is no results on a rectangle do-
main. The main difference between this paper and [13] is that the boundary layer consist of two
components, {Y = 0} and {¥Y = 2}, while in [13] there is only one component, {Y = 0}. The
extra boundary {Y = 2} makes it difficult to couple with each other in the analysis of the bound-
ary layers. To overcome this difficulty, we assume that the limit Euler flow is symmetrical, i.e.
uS(Y) = ug(Z —Y), and make effort to construct the symmetrical Prandtl layer expansions. Since
the boundary conditions on {Y = 1} are generated automatically by the symmetry assumptions,
we have to deal with them carefully in the construction of each layers.

The detailed novelties of this paper, we think, can be stated in the following comments.

(a) In the step of constructing the zeroth order Prandtl profiles [”(1)7’ vg], we first consider to
solve the Prandtl equations in [0, L] x R4 in order to use the Von Mises transformation. After
the solutions are constructed, we construct [u?,, vg] in [0, L] x I, by cut-off method which will
yield some new error terms and give rise to some new estimates.

(b) The construction of the first order Euler corrector [ui, v ;, p;] is done directly on
[0, L] x [0, 1], where a trouble boundary term ug(l)velz(x, 1) appears. To deal with it, we add
the x-depending term f(;‘ ug(l)vgZ (s, 1)ds to the pressure p; so that an elliptic equation will be
derived for v).

(c) Similar to the idea of constructing [12, v0], the extension and cutoff to the domain is also
gy, Up

used in the construction of the first order Prandtl corrector [u},, vll,, p},], where the proof of some

weighted estimates is the most difficult part, especially in dealing with vy, vpyy and vpyy. In
[13], the authors stated the result of the weighted estimates || {y)" vyl 212 and [[{(y)" vpxyy ||L)%L§
and proved the unweighted one (n = 0), gave an idea for the proof of the case n ## 0 without
details which says that one can test equation (4.16) by (y)" vy, (¥)"vxx to get the weighted es-
timates. However, we find that this is not a trivial problem. The main problem is that the low
order term [|vp.||z272 can only be controlled by ||(y) ey 22 butnot by [[vpxyll 2,2, which
leads to the failure of the iteration on the index n as stated in [13]. To overcome this difﬁculty,
we use different test functions and weights, say y"v,,. We first establish the weighted estimate
||y”vyyy||L%L% and ||y vyyyy ||L)ch§, see(4.18), for the solution of the linearized equation (4.16).
The reason we use the weight y” but not (y)” is that if one uses the weight (y)”, then some
extra (bad) boundary terms will appear. Fortunately, after proving the solvability of the orig-
inal equation by the fixed point theorem, with the weighted estimates for ||y"vpyyy |l 1212 and

1Y " Vpxyyyll 212> We can recover the (y)"-weighted estimates for vy, and v,,., by using the
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stream function and a new defined function. Of course, the cutoff from R to /, will also produce
some extra terms.

(d) The construction of the remainders [u*, v®, p?] is based on the linearized results from
[13]. We use the contraction mapping theory to prove the existence of the remainders with (1.19),

1 .
compared to [|Veu'llL2q,) + 1 Vev®ll 12(q,) +e7 luf | Lo (. )+8%+7 ||v5||Loo(Q y < Co, with0 <
y < zin[I3]. Therefore the rate of convergence in (1.21) is as fast as € 345 , Whereas in [13] the

fastest rate is € 343,
Notations. Throughout this paper we shall use the following notations. We shall use (y) =

V%2 +1 and denote I, := [0, f] For convenience, we will use || - ||, (1 < p < +00), and

| - | g« (k > 1), to denote the usual L” norm and W2 norm of functions defining on various
domains, such as Qg, 2., and sometimes R and /., depending on the context. We also denote
C(-) auniversal constant, which depends on the given data listed in the parenthesis. Occasionally,
we write C or use the notation < in the estimates for simplification. It should be noted that the
uniform estimates are always independent of L and ¢. The smallness of L depends only on the
given data, while ¢ is always taken to be small sufficiently. Denote that x (-) is a smooth cut-off
function supported in [0, 1] with x (0) =1, x(1) =0, x'(0) = x'(1) =0

In the rest of this paper, we will construct the zeroth order Prandtl profile [u([)j, vg, 0] in Sec-
tion 2, construct the first order Euler corrector [u), v}, pl]and pf, in Section 3. After constructing

the first order Prandtl corrector [u},, v [1,, p1 ] in Section 4, we will, finally, prove the existence of
the reminder in Section 5, which completes the proof of the main results of the present paper.

2. The zeroth order Prandtl profile
In order to construct the zeroth order Prandtl profile [u?,, vg, 0], we denote
= () + ud) 3, ) + ul) + (V) + vy Wl +ud) — 97w +ul).
Since the Euler profile is always evaluated at (x, z) = (x, /€y), we note that

ud =0, (V) +v)dyul = e @) +v)ul,. 0jud = eu),..
u? px~|—veupy—ueupx—i—v (x, O)upy+fy(uez px~|—vez py)+EO

where u, = uS(O) and

y
=¢ / / ezz(\/_l')bt (x, y) + vl (x, \/Et)u([),y(x, y)] dzdr. 2.1
0y
In view of the divergence-free condition, we let

{(ue i+ (W v (x, 0y — iy, =0, 22)

0 0 _
Upy +vp, =0.

Then, the zeroth order error term Ry is reduced to
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RO - ‘/—(v tv )“ez + \/_y(”ez px ez py) + EO gzz' (2.3)

Base on (1.9), we give the following boundary conditions

Ue, py(x \}_) 0, [v +v, ](x 0) =

Since that u .+ v =0, v?, can be expressed as

uf,),(x, 0)=up —

€L

7
v (x y) =/ L (x,0)do,
y

and the coefficient vg + ve} (x, 0) can be rewritten as

y y
0 0 _ 0 _ 0
vp(x,y)—vp(x,O)—/vpy(x,Q)dQ——/upx(x,Q)dQ.

0 0

Then the system (2.2) is reduced to the following nonlinear parabolic system of u(l),:

(ue + u%)u(l)7 Oy gxdGM pvy, yelg,

_ 2.4
06, 0) = —tte, uy(x. ) =0, Ul (0. ) = o). @

First, we extend the domain /; to R4 with lim uf,), (x, y) =0 in place of the boundary condition
y—>0o0

u([),y (x, \/Lg) = 0. Since we shall cut-off the domain from R to I, after establishing the estimates

for the solution, we denote here by [ul"f’, v;"], for distinction.
Now, use the von Mises transformation:

0= [t e, wern) = ),

The function w then solves

Wy = (WWy)y, in Qoo :=[0,L] xRy,
which is a standard one-dimensional porous medium equation and is solvable over 2, at least

when L is small[35]. In addition, by the Maximum Principle of the porous medium equation, we
have

0<co:= m}n{”bv UesUe FUo(Y)} =W = m;lX{ub, Ue,Ue +Uo(Y)} 1= Co. (2.5)
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Now, it remains to derive the energy estimates. Since w does not vanish on the boundary, we
introduce w :=w — u, — [up — u.le~". Then w satisfies

{wx = [wwyl,; — [up — ucJ[we™"], — Fy, 2.6)

w(x,0)=0, lim w(x,n) =0,
n— 00

where F(n) := [up — uellue + [ue — uple™"]e™". Clearly, (n)"F(-) € Wk’P(R+), for any k >
0 and p € [1, 4o00]. In what follows, we will give the regularity estimates for unique smooth
solution to system (2.6).

First, we introduce the following weighted iterative norm:

N (x) _Z sup / )0k w2 +Z// "wloKw,|, j > 1. (2.7)

O<s<x
k=0 k00R+

Multiplying (2.6); by (n)"w and integrating by parts over R leads to

1d

37 (n)”|w|2+/(n)”|wnl2Sf(n)”[lwllwnlJrlwlanl], (2.8)

where the positive upper and lower bounds of w have been used. Applying Cauchy’s inequality
to the right-hand side of (2.8) gives

d
E/<n>"|w|2+/<n>"lwn|2§/(n)"lw|2+/<n>"|Fn|2, (2.9)

which together with the Gronwall’s inequality implies that

0<s<x

sup /(ﬂ)"|w|2+//<n>”lwn|2 < C(LYNo(0) + D). (2.10)
0

This means NVy(x) < C(Np(0) + 1), for some constant C > 0 depends only on L, u,, up, ig.
Next, applying 9, to (2.6); yields

Wyx = [war;]r; + [wan]n — [up — ue][wxe_"]r;- (2.11)
Similarly, multiplying (2.11) by ()" w, and integrating by parts over R, we get

1d
S (n)"lwx|2+/(n>”|wxn|2

5 /(n)nﬂwx”wxnl + |wn||wx||wxn| + |wx|2|wn| + |wx|2]v (2.12)

integrating which over [0, x], together with using the Cauchy’s inequality, leads to
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0<s<x

sup /<n>"|wx|2+//<n>"|wx,,|25N1(0>+//<n>”[|wx|2+|w,,|2|wx|2]
0 0

§N1(0)+/(1+ ||wn||c2>o)[(7l)n|wx|2- (2.13)
0

To bound ||wy ||, due to the equation (2.6), we have

00
|w77| §/|wnn|d77 g/(|wx|+|wn|2+|w|+|Fn|)
n

1/2
5(/<n>"|wx|2) +f<n>”|wn|2+1-

Furthermore, multiplying (2.6); by (n)"w, integrating by parts over Ry and using Cauchy’s
inequality, we yield

/<n>"|wn|25f<n>"<|w|2+ lwy|* + 1 Fy1?) SNi(x) + 1, (2.14)
which implies that

lwylloe SN(x)+ 1. (2.15)

Now, substituting (2.15) into (2.13) yields

0<s<x

sup /<n>"|wx|2+//<n>"|wxn|2sM(O)+/<1+M(s))2/<n>"|wx|2, (2.16)
0 0

and hence, it follows from (2.16) together with (2.10) that
X
Ni(x) < CN1(0) + 1)+f(N1(S))3ds, (2.17)
0

which, by Gronwall’s inequality, implies that A (x) < C(N;(0) + 1), for L sufficiently small.
In what follows, we shall prove the general estimate for A/;(x) by mathematical induction.
Assume that there holds

Ni(x) < CNk(0) + 1), (2.18)

for some k > 1. Then applying 8¥*! to (2.6), we get
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k
N wye = [wort wyly + ) CL [0 wdlwy 1y — [up — u [0 we ™, (2.19)
i=0

Similarly as above, multiplying it by (n)" 8!;*1 w and integrating over R leads to
d
dx

k
< [ attugol ul + [ Y10 w16,
i=0

k1,12 k1, 2
()" 8wl +f(77>n|3;r wy|

k
+ [ Y0k ety 0kl + [ 1ok P, (2.20)
i=0

where the positive upper and lower bounds of w have been used.
It follows by Cauchy’s inequality that

/(n)”laf“wnllaf“wl < 5f<n>"|a!:“wn|2+C/<n>"|af§“w|2, 2.21)

k
f<n>"Z|af+1—'w||a;wn||a§+lwn|

i=1

k
58/<n>”|8f§+1wn|2+cz|I3§+1_lw||§of(n)”laiwnlz, (2.22)
i=1
k

[ Y0 i, ot

i=1

k
< c/<n>"|a‘,’§+1w|2 +Cy ||a!§+1"'w||§o/<n>"|a;;w,,|2. (2.23)
i=1

For case i =0, there holds
/(n)"la,’f“wllwnllaf“wnl s8f<n>"|a,’§“w,,|2+C||wn||§of<n>"|af+1w|2, (2.24)
[ st ) < i) [ et (2.25)
Substituting (2.21)-(2.25) into (2.20), together with using (2.15), we obtain

d
= / 19w + / (19 w2

k
S+ M) / (" w4+ 1 wlg / ()" 105wy (2.26)

i=1
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It remains to give bound on ||3j;w||§o for 1 <i < k. Recalling that w vanishes on n = 0 and
n = oo. Then there holds

n

|a;;w|2=/a,,(|a;;w|2>sf|a;;w||a;;wn|s/|a;;w|2+/|a;;wn|2,

0
X
s/|a;;w|2+/|a;;wn<o, n>|2+/ax/|a;;wn|2

0

< i+1<x)+f|a;'wn(o, 2,

which gives
0L w2, < Niy1(x) + / 192wy, (0, )%, (2.27)

For the estimate to Bj;wn(O, n), we should also prove by mathematical induction. Indeed, for
i = 1, multiplying (2.11) by w, and integrating by parts over R gives

/|aan|2§/[|wxx||wx| +|aan||wx||wn|+|wx||aan|], (2.28)

applying Cauchy’s inequality to which implies that
/ 1wy l* < (1 + ||w,7||go)/ lw | + / lwyx|? < CN2(x) + 1) (2.29)

Taking x — 0 yields f [0, w;, (0, |2 < C(N2(0) + 1)2. Next, assume that there holds

i—1
Z/ 192wy (0, M]* < CN;(0) + 1)* (2.30)
a=1

for i > 2. Then, similarly applying 9. to (2.6);, multiplying the result by 8w and integrating by
parts over R, we have

i—1
/ 05w, 2 < (1 + llwyIZ)Ni1 () + > ||a;*“w||§o/ 102w, |2
a=1

i—1
S Wip1(x) + D% + Z/(|a;;—“w|2 + |a;;—“wn|2>/ 0% w, . (2.31)
a=1

Hence, taking x — 0 in (2.31), together with (2.30), we get
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> / 103w, (0, MI* < CWi41(0) + 1) (2.32)
=1

Therefore, by mathematical induction, (2.32) holds for any i > 1. Now, substituting (2.32) into
(2.27) and further substituting (2.27) into (2.26), we have

d k .
E/(U>n|3f+lw|2+/<ﬂ)n|3f+1wn|2§M+1(X)+(Nk+l(x)+ 1>Z/<n>"|a;wn|2.
i=1
(2.33)

Finally, integrating (2.33) over [0, x], add the result to (2.18) and using Gronwall’s inequality
give

N1 (x) < CWNi41(0) + 1), (2.34)

and hence, by mathematical induction, (2.18) is valid for any £ > 0.

Basing on the solvability of system (2.6) and the estimates (2. 34) for the solution, we are
able to prove the solvability of (2.4) and the estimates for solution u7°. Precisely, we prove the
following:

Proposition 2.1. Assume that uf,o (0, y) :=uo(y) is smooth. Then there exists an smooth solution
uf,o to system (2.4) satisfies that for any n, k € N

sup I kU N 2wy + 1) 5 uSS 20,012 ) < Cotn.k.dig).  (2.35)
x€[0,L]

Proof. In view of the definition of w, we obtain that there exists an unique solution u?f’(x, y(n))
=w(x,n) + [up — u.le™ " satisfies (2.4) on [0, L] x R. Moreover, since that u, + uzo is posi-
tively bounded from lower and upper, 7 is equivalent to y. Therefore (2.35) follows from (2.34)
and the reversibility of the von Mises transformation. 0O

Corollary 2.2. Let u;’f be constructed in Proposition 2.1, and v be obtained directly by the
divergence-free condition. Then, there holds

sup [[()" 350 [, vl 2w, ) < Coln. k. j. fio), (2.36)
xel0,L]

for any given n, j, k € N.

Proof. Clearly, (2.35) gives the estimate of u°° » in (2.36) with j =0.
Applying 9y to equation (2.4); implies that u ) satisfies

y
(ue—l—u )um,x —/ oodOupyy ;‘;yy. (2.37)
0
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In addition, in view of (2.4);,, we obtain the following boundary conditions

Uiy (x,0) =0, ;iLI})u‘;,‘;(x, ¥)=0,u5(0,y) = io(y). (2.38)

Then, applying 8;‘ to (2.37), multiplying the result by 8)1(‘ ‘;f;(y)zn and integrating by parts over

Ry yield
1d
—a/w;%uenaf uS ()" + /|a!: S 12 ()"
// % df)0kuS, 29, [(y)*"] - fafé o U 9, [(1)™"]
k—1
k— k— k
—Zc,f/ AUl + /a CuSsdoalusy, | akus (y)*"
=0 0
=D +Dh+13+14. (2.39)
Note that
I +T. <1||a"u°° )15+ C (S )" 2+ 1) 05 (v)" (2.40)
1782 = 7 HI0c U pyy Y1112 Upx Y1112 iy )" 1, :
I3<CZ||3k U () 120195 s () 2 llag sy, ()" 12
2.41)

<CZ||8£ S (y) ||2+CZ||ax > 0 I3 l5uS ()" 13,

k=1 . 7
k=% 9120 k0 )2n+2/fak ¢ wdeaf U dy [a)’; ;‘;(”2;1]

k—1
1422/ U Oxl py Oyt
£=0

-1
< CY U () 2 afusy, () 12195 U5, ()" 12
=0
k—1
+ O IS () 218k () 2195 u S ()" 12
=0
1 k—1
< JI05RS )"I3 + CALu S ()" 15 + € 310y = u ()" 1318555 ()" 115
=0
(2.42)

Substituting (2.40)-(2.42) into (2.39), applying Gronwall’s inequality and using (2.35) and the

positivity condition u, + uf,o > ¢p, we have
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sup I 0k U 2w,y + 1) 05U 20 22R ) < Cnkodig).  (2.43)
x€[0,
This gives the estimate of ugo in (2.36) with j = 1.

Similarly, applying 8)’; to (2.3) yields

k k Y
ky, k—¢ k—t ¢
du ;‘;) E cka (ue+u°°)8x px+E C /8 wdeax ;‘;
(=0 =0

Direct calculation gives the estimate of u;" in (2.36) with j =2, where (2.43) has been used.
Then, by iteration method, the estimate of uf,o in (2.36) can be derived with arbitrary j.

With the estimates of u‘[’f’ in hand, we are able to derive the estimates for vf,o. In view of the
divergence-free condition, we have

2
o0
S v = / AT usedo| < CllaT us (y) 1I5(y)> ",

y

for any m € N. This together with (2.35) implies that

a5 v5 ()" 113 < ClaE ™ uSe (v)™ 113 / 2nF2=2m < C(k, n, i),

where we take m =n + 2.
Finally, for any j > 1, since that 9 8] o0 —8k+18] ! uSy, the proof of (2.36) is completed
directly by the established estimates of u O

Proposition 2.3. Under the assumptions in Theorem 1.1, there exists smooth functions [ug, vg]

defined in Q2;, satisfying the following inhomogeneous system:

,0
(e + upup, + (V) + vy (x, 0)uy, —up,, = Ry,

9, +v9, =0, (2.44)
U (x, 0) = up — e, u(},y(x,ﬁ)—o [v) 4 v1(x,0) =0, vg(x,ﬁ)=0

where the inhomogeneous term RZ’O is a higher order term of \/¢. In addition, it holds that

sup [1(3)" 853415, V11l 21,y < Coln. k. j. i), (2.45)
x€[0,L]

for any given n, j, k € N.

Proof. Let u;" be constructed in Proposition 2.1, and v;’f be obtained directly by the divergence-
free condition. Define that
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w0, y) = x (Veyuy (x, y) — ﬁx/(«/gy)/u;',"(x,é’)d&
S

V) (x, y) 1= X (Ve (x, ). (2.46)
Then, it follows from directly calculation that [u(l),, v?,] satisfies (2.44) with

y 00
u,0 __ ’ 00,00 00,00 / 00 00
Rp —ﬁxfx dé‘(up Upe + U, upy)—\/g)( Xupx/up do
O )7

y
—\/Ex/vf,o(ue+Xu‘;,°)—3ﬁx’u§§+2ﬁx’u§°/xv?}d@
0

y e8]
/00 /.00 ", .00 /N2, 00 00
+2exu, /X v, d0 —3ex u, +e(x)v, /up do
0 y

o0 o0
—ex" (xvy - ”20(0))/@0619 + 83/2)(”’/“3049
y y
= JeE| +¢E>. (2.47)

Finally, using (2.36) together with the definition of x () give estimate (2.45). O
3. The first order Euler corrector

To construct the first order Euler corrector [u é ve} , pel], we first formulate a closed system for
these functions. For one hand, denote

=Gy 4w’ A @)+ u) @l A ) + vy 0y @l + ud) + ) +v))dy () +u)
+ (pe}x + p},x) — 8y2(ui + u},) + (vg + vel)ugZ + y(ugzu(l),x +vlu® )+ Ey.

ez py

Note that

0 1 1 0, 1y, 1 921 1
(v, +v,)0yu, = \/E(vp + VU Uy, Oy, = Uy,

Since the unknown Euler corrector [u!, v! pel] and Prandt] corrector [u!

1 1 :
) er Veo pr Ups pp] couple with
each other, we take equation

wlul, +vlul, + pl, =0, 3.1)

for the first order Euler corrector and when it has been constructed, we take
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(ui + u}?)ugx + (ug + u?,)u},x + u?,uéx + (vg + vg)u},y + v},ay (ug + ug)

1 1 0.0 0.0 1.0
+ Ppx — Upyy TVl + y(uezupx + vezupy) + E; =0, (3.2)

for the first order Prandtl corrector. Hence, the error R’f then reads

Ve +v)uy, — euy... (3.3)

On the other hand, in view of the divergence-free condition, we have

g, + v, =0, (3.4)
1 1 _
Upy T Vpy =0. 3.5
Even so, the equations above are still not enough to construct neither [ul, v g, p;] or [u},, v;,, pll,].

This motivates us to consider the vertical component (1.8).
Denote that

1
p
R} = (ug + u?,)(vgx + vjx) + (v?7 + vi)ay(v?, + v;) + p;Z + Lg + plz,y - 85@2 + U;)

NG

Clearly, the leading term in R is p})y. Let plljy =0, that is,

Pp=Pp(x). (3.6)
Similar to (3.1) and (3.2), we take
ugvy, + p,, =0, 3.7)
and
@ + ug)vgx + u(l),v;x + (vg + v;)vgy + pf,y — vgyy =0. (3.8)
Then the error Ry is reduced to
Ve + o), —evy... (3.9)

In conclusion, we get a system consisting of (3.1), (3.4) and (3.7) to construct [u;, v; , pg], and

another system consisting of (3.2), (3.5) and (3.6) to construct [u},, v}), p},]. After these functions

being given, pf, will be determined directly by (3.8).

In this section, we only focus on the construction of [u é, ve}, pi], while the construction of

L v 11, p [17] will be done in the next section.

p7
Eliminating pg in (3.1) and (3.7) by using equation (3.4), we deduce the following elliptic
equation for v):

[u

—ulAv! +u® vl =0, in Q, (3.10)

ezz-e
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with A := 8)% + 312. In order to solve this equation, we take the following boundary conditions
Ve (x,0) = =) (x,0), v, (x, 1) =0, v3(0,2) = Vpo(2), v (L,2) =Vpr(2), (3.11)
with the compatibility assumption:
[Vb0(0), VoL (0)] = —[19(0,0), v (L, 0)] and Vjo(1) = V(1) =0. (3.12)

To avoid singularity caused by the presence of corners in €2, we instead consider the modified
elliptic problem:

—udAv} +ul, v = Ep, in Qo, (3.13)

ezz-e

with boundary conditions (3.11). Later, we shall construct a proper potential E; such that ve} , the

solution of the elliptic equation (3.13), is regular enough and that fz OO Epd6 — 0as e — 0.
To define E}, we first introduce

0 x Vpr(z) o
’O T T 0y A
vp )+ng(L,0)UP

x) Vso(@) (x,0), (3.14)

Bx,2):= (1 "L/ 9(0,0)

in the case of both vg(O, 0) and vf,), (L, 0) are nonzero, while in the case that vg(O, 0) =0 or

v?, (L, 0) =0, we simply replace the ratio U‘(/)”("O(ZO)) vg (x,0) by Vpo(z) — vg (x,0)(1 — z), or replace
AN

%vg(x, 0) by Vbr(z) — v9(x,0)(1 — 2), respectively. We infer that B(x, z) satisfies all the
0(L,

boundary conditions in (3.11).

Then denote F,(x,z) := —u(e)AB + ugzzB. In view of the estimates (2.36), it is clear that
B € Wk-P () for arbitrary k > 0, p > 1, provided Vpo(2), Vpr(2) € Wk-P(0, 1), and hence F, €
WkP(Qp).

Now, take Ej =: X(g)Fe(x, 0). Before solving equation (3.13) and derive estimates for vel,
we consider the following auxiliary problem

—u8A1b+ugzzﬁ)=Eb—Fe,in Qo, (3.15)
=0. '

1:Z)’E)Q()

Precisely, we prove the following lemma:

Lemma 3.1. Assume that F,(x,z) € WEP(Qq) for any k > 0, p > 1. Then there exists a unique
smooth solution to the boundary value problem (3.15) satisfying that

~ - ~ _1 ~ _3
1]l L0 + 18 2eg) < Co N0l 3 gy < Ce™2, NBllgagy <Ce 2 (3.16)

where C is independent of €. In addition, there holds

1

~ ~ -1+ -2+
lwllw2ao) <C, Wlysag) <Ce 7, Wlyigq,) <Ce "9, (3.17)
(€20) (€20) (20)

for any g € (1, +00) and C being independent of ¢.
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20
Proof. Define bilinear form on H, (£20)
B[w,ﬁ]::// V-V + 0
uy
Qo
Note that, on one hand
1 1 d) 5 1 11) _
/mmwz @(WQ) =/€%<3>ﬁ+ Gler
ue ue e
0 0 0
1 o L, 1 o
w 02 w 02 W\ w g9
= [ o G| e [ gt +2 [ () St
0 0
l b\ |? 02 ? 0,2 w 0.0
:/ 8Z <u_8) |Me| +/ ug |uez| _/ u(g [ueuez]z
0
1
-\ 2 0
:/8 w |u0|2_/@~2
Z ng e u(e) 9
0 0
(3.18)

T (3w

ez~2

which implies that

ff (v

On the other hand, thanks to the positivity and smoothness of u,, we have
N
w
0
8 <W) el

T (o) =
()]

/wa

/ 0.0 =
IZ) 2
u
e
Qo 0
52 8Z W |ug| +2||u€Z||L2(()l) az W
e e
Qo
P\ | llud 117
w L2(0,1
) min_ [u)]
~ 2
w 02
<Co O\ =5 )| luel” (3.19)
ue
0
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where the inequality | f(z)| < /zll fz(2)|l2 has been used. Then, by applying the Poincaré in-
equality, it follows that

Blib, %] > e[| ®])3:, (3.20)
where « is a positive constant. In addition, by applying the Cauchy inequality, there holds that
Blw, v] < Bllwll g0l 1, (3.21)

for any w, v € H(} (R20). Moreover, since F, € Wk’p(Qo), k>0, p>1,itis clear that

A
10X Ep), < Ce™* 7.

Therefore, by Lax-Milgram theorem, there exists an unique weak solution w € HO1 (2p) to prob-
lem (3.15) satisfying ||w|| ;1 < C.
Now, rewrite (3.15) as below:

—A =G, =:(Ep — F, —u®,_0) /u?,in Qo,

ezz
=0.

- (3.22)
w iBQO

Clearly, G, € L%(Q0). Then by the elliptic estimates, we have

Wl g2 = CllGell2 = C.

In addition, since w = 0 on the boundary, we obtain that

x 172

X Z
a2l < [l oids <2 [ | [lailas | - as
0 0 \o
- 172 L 1)2

<2Vl N ez o, < CVT,

which implies the uniform boundedness of w.
Next, we derive the higher regularity estimates for w. Since that E(x,0) — F(x,0) =0, we

get G.(x,0) = 0 and hence, by equation (3.22), w = w,, = 0 on z = 0. Then, applying 9, and
0,, to (3.22) yields the elliptic problems for w, and w,, respectively:

{—sz =0, [(Ep — Fo —u9,,i)/uY], in Q, 323
wz|x=0’L = 'I)ZZ|Z=0 =0, Tj)zz|1=1 =0,
and
— A, =32 [(Ep — F, — u,.w)/u?], in Qq, 324
&)zz|x:0,[‘ = a}zz|Z:0 =0, ﬁ)zz|zzl =0,
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where the higher order compatibility condition V(1) =

V), (1) = 0 has been used.
Again, the elliptic estimates for H> norm and the estimates for E;, and F, then give

10K D g2 < Ce ™2, k=1,2.

To complete the H 3 and H* estimates for 1, it remains to estimate L2 and H! norm for Wy,
Applying 9, to equation (3.22), we have

—Wyyy = Wezx + Oy [(Eb —F — ugzzlb)/ug:l )

which give the L and H'! norm estimates for 1., and hence completes the proof of (3.16).
Finally, the W*¢ estimates follow simply from the standard elliptic theory. The proof of this

lemma is completed. O

Now, take v, = B 4+ w. Then, recalling that B satisfies boundary conditions (3.11), it follows
that ve} € WkP(Qp) is the unique smooth solution to equation (3.13) with boundary conditions
(3.11). It should be noted that v!

ez

(x, 1) =0, since the definition of E}, and the equation (3.13).
In addition, as B € W*49(), there holds

i
1vglloo + 102 llw2a < C. 0} lly2sng < Ce™Ta k=1,2

(3.25)
Furthermore, in view of equation (3.4) and (3.7), we take

X

uhtr. ) =up(@) — [ ol e

0
1

X

phxy) = [al@ntyce.00a0 ~ [udaanl s
b4 0
where ub(z) =u (O z) satisfies ub(l) =0, and hence we have u (1) =
Substituting ue, pe into (3.1) and integrating by parts yield

0 1

1
0
U, ex+uez e+pex /(I/t AU

ul vldo = — /Eb(x,e)de.

Z

Base on the estimates for vg and Ej, we infer that

1 1
llugll Lo, < C,

||’4 g1, <Ce 4,

1 L. L -3
”uezz ||L2(Qe) =Ce 4 ”ubzz”Lz(O,l) +Ce 4 ”vezzz ||L2(QO) =Ce 4
)+ ve)ul| <109+ vl (A <Ce

)4 e )UezIL2(Q) = Up U 1L (Q2) 1 U e L2(Q) = € ’
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1
f Ep(x,0)d0 < Ce || Epll g, < Co.
ey L2(2)

Hence, it follows that

1
IR Nl 12,y < VENW) + v)ul Nl 20, + ell02ull 2, + / Ep(x,0)d6
Vey L2(2)

1
<Ced, (3.26)
1
IR I L2,y < VEIV) + vellooallve: 2, + €llvez: ll12¢q,) < Ce*, (3.27)

Finally, we estimate E 0. which is defined in (2.1). Note that

y r
W0, (x, y) / / BVETdTdr| = Ol (x,9)] sup W10
z€|0,
0 vy

y r
_1
u(;y(x,y)/fvjzz(x,ﬁr)dzdr < Cemul) e WIIvg. 2201 ()
0y

Then, it follows that

3
1E 2, < Cellu (921l 21, sup ., (@) + Ce* [lud (021 21 1vd2: 20
Z 5

<Ce¢ 3 ; (3.28)
where the estimate (2.36) has been used.

4. The first order Prandtl corrector

1

In this section, we shall construct the first order Pranndtl corrector [u »

s vll,, p},], which solves
(3.2), (3.5) and (3.6). For convenience, we denote u? := u, + ug.
It should be noted that

y
0 1 1 0 1 0 1.0
(e —ue)ttpy, =\/§upx/uez(\/§9)d9, v, 0y, = \/Evpuez.
0

Then, (3.2) can be rewritten as

0 1 01, 0.1 0, .1y 1 1 1
Uty + Uty + Uy, + (V) F VU + Py = Uy,

0 1 0.1 0 01 0 0 1 o

= —Up Uy = Uploy — (UP +yl,tpx)ueZ — ViV, — Ep = Fp.
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We infer that, by Section 2, u is positively bounded from both lower and upper. In addition, the
error terms should be added to

y
R 1= eu),, / ud, (\/20)do + /evul.. 4.1)

0

Taking p}, to be an absolute constant implies that p},x = 0. Then the system for [u},, v },] can
be rewritten as follows:

0,1 0,1 4,01 04 ,1y,1 1 _
{u Upy F Uz, +Uuyv, + (V) + VU, — Uy = Fp, 42)

1 1 _
upx+vpy_0,

with the boundary conditions

1 | | 1
—)=v,.(x,0)=v,(x, —) =0.
2= 0= =)

Similar to the situation in Section 2, we first extend the domain from /I, to Ry with the
boundary condition u}ﬂy (x, ﬁ) = v},(x, ﬁ) = 0 being replaced by u ,(x, 00) = v, (x, 00) =0,
and denote the unknown functions in (4.2) by [u, v, ], for distinction. To the given functions,
define that u%(z) = u%(1), ul(x,z) = ul(x, 1), vl(x,2) =0 in z € (1, +00), and also it; (y) =

Ui (ﬁ) inye (ﬁ, +00). For convenience, we still denote them by u(e), ué, vel, ui.

up (0, ) =1 (), ) (x,0) = —ul (x, 0), ) (x,

Then, applying 9y, to (4.2); and using (4.2); yields

0 0 0 0 1 1 _
—u vpyy +uy vy tugup+ (v, + Ve )U pyy + \/Evezupy —Upyyy = Fpy,

which also can be rewritten as

_ 2 M) -G 43
Upyy+ uO Up (MO Wy P ( . )
where we denote
— 1 F 0 0 1 1 ) 1 1
Gp= L0 Ly T UyyUp — (Up + V) pyy — \/gvez“py e\ Upyy — 20 Upy-
y yy
Furthermore, applying 9, to (4.3), we get

0

Uyy Upyy ”8y 1
—pryy'i‘vax'i‘( MO )yy:pr— F 'Up— F xupy yy. (44)
X

The proof of solvability of (4.2) on [0, L] x R4 consists of several steps.

Step 1, we establish the estimates for the boundary conditions of v, in term of the given
data u1 (y). For simplification, we denote |[(y)" f || g« := Zf:o [| (y)”B;f||2, for any n, k > 0 and
f e H*.
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Lemma 4.1. Let [u, v, ] be smooth solutions of (4.2). Then there holds that

1) 0y O, M2y < Co (14 10) @ sy ) (4.5)
1Y 0y O, 2,y = Co (14 10V Tl sy + ks )i esy) o (46)
for any n > 0 and some constant Cy = Co(uo, vg, u}y, Vo).

Proof. Define stream function ¥ (x, y) = — f)oo up(x,0)d6. Then u, = vy, v, = —,. Further
denote ¢ := uowy - ugw. Then (4.2); becomes

¢x=—u2y —(vg+v;)upy+upyy+Fp. 4.7
By the definition of ¢, we have

1) 630, 2 S 1Y u%upy (0, 2 + 1(3)"uSy ¥ (0, )2 < Col(9)" @1l g1 (4.8)

In view of (4.7), we get

1Y B0, ) gy S Y Ty + @) 4 vt py — tpyy = Fp1(0, ) [
< Coll() i1l g3 + 1) Fp (0. )l 1. (4.9)

In addition, the definition of F), gives
1{y)" Fp(0, )l g3 < Co,
substituting which into (4.9) implies that

1) x (0, )l g1 < Co (L+ 11{y) i1l g3) - (4.10)

On the other hand, by the definition of ¢, we have

T 0
Y =—u’ ¢(§4x0’)2)d9,
Y
which implies that
) 0o
vp =Yy =u2/ uO/ ((u0)2) (4.11)
y y

Then, we get

1) vp (0, )l g2 < € (IK)" by (0, )l 2 + 1{3) D (0, M 1) -
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This estimate, together with (4.8) and (4.10), derives (4.5).
Moreover, applying 9, to (4.7) yields

Grxx = _ugxy’»” + ugyvp - [ng + v, Jupy + [Ug + 0, 10pyy — Upyyy + Fpa.
Then we obtain that
1) @xx (0, ) g1 < Coll{y) w1l g2 + Coll(y) vp (0, Il g4 + 13" Fpx (0, )l 1. (4.12)
It should be noted that
1) Fpx (0, Ml g1 < Co(l + 1 (0, )| 1) (4.13)

In addition, it follows from (4.3) that

n n n u(}),yvp nUpy
{0 vp 0, Il ga < N1V Gp (O, )l g2 + 1{y) T(O’ M2+ 1{y) F(O’ N g

< Co (1" Fp(0, )l g3 + 1) @l s + 1) vp (0, )l y2)
< Co(1+ )" i1l ). (4.14)

Therefore, in view of (4.11)-(4.14), we have
1) 0px (0, I g2 S ) By O, Il 2 + 1) Dx (0, )l g1+ [1{3)" B (0, )l 1
< Co (14 10"t s + e 0.1 ) (4.15)
This completes the proof of this lemma. O

Step 2, we give the following auxiliary lemma.

Lemma 4.2. For any L > 0, denote Q := [0, L] x R. Assume that 8){]‘, BJ{g €L*(Q), j =
0, 1, decays fast as y — oo. Then the following fourth order partial deferential equation

0
Uy, v
Uy + v+ (%)W =fy+g (4.16)

on Qoo has an unique smooth solution satisfying initial data v(0, y) = vo(y), boundary condi-
tions v=vy =0o0ny=0and y = 00, and the estimate

J J
sup ||9x vyy ()|l g2 + 195 vxy ll L2,
0<x<L

J
. . 3. .
<3 (103 0l 2 + 18] Fll2ian) + 10V 08l 20 ) =01 @17)
i=0

Moreover, there holds the weighted estimate
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sup [1(3)" 87 vyy ()l 2 + 15" 85 vyyy ll 12 ()

0<x<L

<CZ(||<y )"0 0,2+ 100" 3%l 2+ 10" 058l 200y ) - = 0, 1. (4.18)

Proof. First, restrict the domain on Qy := [0, L] x [0, N] and give the approximate boundary
conditions v =vy, =0o0n y = N, instead of y = co. We introduce the inner product on H 2(0, N):

u(y)y
[[u,v]] = /[uyvy + Fuv]dy 4.19)

for any u, v € H?(0, N). Let {ei (y)}l?’i1 be an orthogonal basis of H?(0, N) satisfying the same
boundary conditions as v doing. Here the orthogonality is obtained with respect to the inner
product defined in (4.19) and it holds that

[le'. e/ N =28ij.i.j > 1.
Base on (3.20) and (3.21), one can show that [[-, -]] is equivalent to the usual inner product on

H'(0, N). Then such an orthogonal basis exists.
Now we introduce the weak formulation of (4.16) as follows

[[vx. €' + / e w f (— fvxy + geH)dy (4.20)

for any e/(y),i > 1. We will construct an approximate solution in Span{e’ (y)}f.‘:1 for (4.20)
defined as

k
v, y) =) al (el (y),

j=1
for each k. Substituting v* into (4.20) in place of v, with the orthogonality of {¢! (Y)}, 1» yields

k

[0, 11 + / O gy = f (—f ¢} + ge)dy, “.21)

which is equivalent to a system of ODE equations:

d +Za// by ”d /( feél +gehdy. (4.22)
j=1
Since f, g € LZ(QN), there exists an unique smooth solution (al, a, ... ,ak) for (4.22), that is,

there exists an unique smooth solution v¥ for (4.20). In order to take k tends to infinity, we need
some energy estimates.

Please cite this article in press as: Q. Li, S. Ding, Symmetrical Prandtl boundary layer expansions of steady
Navier-Stokes equations on bounded domain, J. Differential Equations (2019),
https://doi.org/10.1016/j.jde.2019.09.030




YJDEQ:10000

28 Q. Li, S. Ding / J. Differential Equations eee (eeee) eee—see

Multiplying (4.21) by afc and take the sum over i from 1 to k, we get

1d [ )2 1
oy, vill+ 5 | =5 dy=/< fViy +8v% +2< )( )2) . (423)

Similar to the analysis in (3.18) and (3.19), we have

[[ xv x]] - (ZHUX\ ”LZ(O N)* (424)

Then, applying the Gronwall’s inequality gives that

Sup ”v»y”LZ(O N) + ||vx} “LZ(QN) 5 ||vv) (0 )”LZ(O N) + ||(f ( ) g)”iZ(QN) (425)

x€[0,

Taking k — oo yields the weak solution v(x, y) to (4.16), which satisfies

3
XESE'(l)p ||vxy ”LZ(O N) + ”v)C} ”LZ(Q ) ~ < ”vyy (0’ ')”iZ(O’N) + ” (fa (y) 2 g) ”iZ(QN) (426)

Next, we should derive higher regularity for the weak solution. Applying 9y to (4.21), multi-
plying the result by a’, and take the sum over i from 1 to k, we have

k k ( xn)z
[[vxx,vxx]]Jr de 0
0
1 1 u 1
1 ) o () o ()
X
+/(_fxv§x}v+ngl;x) dy =N +D+ T3+ Ts 4.27)

Note that
d 1 koK 1 ko k
Nh+T3= I 5 | Vyy Uy dy + 5 VyyVxyydy + 371
X XX

u
d 1 k ok 0 k 2 k 2
S _d_x / <_O)x vyyvxyy + C(I/t )(||nyy”L2(0,N) + ”vyy”Lz(o,N))’ (428)
and that

T+ T = 8010k 120wy + CWO) (105 1200 ) + 1 00380100 5 ) - (429)

In addition, similar to (4.24), we have

AT e

XX}’HLZ(QN) (430)

Then substituting (4.28)-(4.30) into (4.29) and applying the Gronwall’s inequality gives
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sup
0<x<L

k 2 k ik 2 k 2
|vxyy ||L2(O,N) + ” vxxy ||L2(SZN) ~ Z ” ax U)y(o, ) ||L2(O,N) + 02?2[4 ”Uyy ”LZ(O,N)

3

vk 1720, + 1 (9280172, )0

which together with (4.25) gives

Sup ”ny} ||L2(O N) + ”Uxxy ”LZ(Q )
x€[0,L
1 ‘ ,
S (1005, 00. 9122 gy + 10L £ (D200 122 ) (4.31)
i=0

Again, taking k — oo yields

sup (104 vyy 1220y + 18 vy 112
xel0.L] YYULz0,N) XYNL2(Qp)
J
. ; 3. .
<Y (||a;vyy(o, M2 + 105 () za;g>||iz(9m) ,j=0,1. (4.32)
i=0

It should be noted that all the constants C in the estimates above are independent of N, and hence
the unweighted estimates (4.17) is proved as taking N — oo.

Finally, let us derive the weighted estimates. The readers should notice that the weight func-
tion for diffusion terms is y”, but we sometimes write the other terms by weight function (y)”"
since y" < (y)".

On one hand, multiplying (4.16) by y> vyy and integrating by part over R, we get

1d 2 |ynvyyy|2

L4 fimt [ 358

/ﬂvxvyyy +/(—0y) vyy(y ")y + /( O)ZU}Vvyyyy

[ o+ [ fon e, + [ o —yK. 4.33)
i=1

Note that
0 2 0 2n+1
K1 S/IM,MIIUxIIUnyy " S, ”ny||1}/|upyy||vyy|<y> mt

Slvay l21) 1l 12 01(y) vy 2 < CIEY vy 115 + Cllvgy 3.
K Ca < 2n 2.2n <3 n 2 C n 2
2+ K33 |Uyyy||vyy|y + |vyy| y"<dly vyyy||2+ 1{y) Uyy”zy

6
K g/|f||vyyy|y2”+/|f||vyy|y2"+/|g||vyy|y2"

<811y vyyyll3 + CIY) vy I3+ CI" F1I5 4+ CllY)" g3
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Substituting these estimates into (4.33) with taking 6 small enough yields

d
Iy Uy I3+ 1" 0yyy 13 S I 0yy I3 + oy I3 + 1) £13 + 1) g l13,

applying Gronwall’s inequality to which, together with estimate (4.17), implies that

sup (19" vy I3 + 15" 030y 132y S 1Y 03 0,915 + 1) (£, D2y, (434)
xel0,L]

On the other hand, applying 9, to equation (4.16), multiplying the result by yz"vxyy and
integrating by part over R, we have

Y Uryyy |2
/'y xyy| / X}yy

:/ < P‘ﬁ ) ny"yzn_ vyngx xyyyyzn_ nyy“?,y nyyyy
u . w02 (u%)?
1 2n Uyy 2n
_/ <m>xv UyyUxyyyY _/(W)xy Uryy (Y)y
7
+/fx(vxyyy2n)y_/ngxyyyzn ::Zﬂi' (4.35)

i=1
Similar to the estimates on /C;, we infer that
0 0 0 0 2
Ly 5/(|u,,xyy||vx| 1S 1, el + 1 [ [Vre D lveyy |9

2 2 2
S ”vxy”z + ”vxxy”z + ”(y)nvxyy”za
4

> L N/<|vm||upx| F Vg ] 4 [yl T+ Toyy 10, 118, D [ Vryyy |y
i=2

= 815" vy I3+ ClY vy 13 + € (1) 0y 1 + 109 033 13)
0 0 2n—1
£5 /(lu ||u ||Uyy| + |Mxv||vyy| + |ux||vyyy| + |nyyy| + |uy||vxyy|)|vxyy|y
n 2 n 2 n 2 n 2
<élly nyyy”z +Clly Uyyy”z +C (||<Y> nyy”z + 11{y) Uyy”z) ,
L < 2n 2n 2n
i |fx||vxyyy|y + |fx||vxyy|y + |gx||vxyy|y

< 815" vy 13+ € (1) v I3 + 100" (o 8013) -

Substituting the estimates of £; into (4.35) with § sufficiently small, we get
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d n 2 n 2
— v + v ,
dx lly xyy”z lly Xyyy ”2
1
S Y Bvyy I3 + 105 vy 13) + 13" vyyy 13 + 1) G fe 8015 (4.36)
i=0

Finally, applying Gronwall’s inequality with using estimates (4.17) and (4.34) derive (4.18). O

Step 3, with these two lemmas in hand, we are able to prove the existence of smooth solutions
for system (4.2) on Q :=[0, L] x R.

Lemma 4.3. Under the assumptions in Theorem 1.1, there exists an unique smooth solution
[up, vp] to system (4.2) satisfying that

”[up, Up]”LDO(Qoo) + sup | (y>nvpyy||L2(]R+) + ”ynvpyyy”LZ(Qoo) <C(L,k)e™*, (4.37)

0<x<L

for some k > 0 small sufficiently. Moreover, the following higher regularity estimate

sup || <y)nvpxyy||L2(R+) + ||ynvpxyyy”L2(Qoo) = C(L)g_l (4.38)

0<x<L

holds uniformly in small €, in which the constant C(L) depends only on [u°, vg], the given
boundary data and L.

Proof. Denote
V= vp_yx(y)u;x(xﬂo) = v[7+ﬁ‘ (439)

Then v =vy, =0o0n y =0 and y = oo. Furthermore, v satisfies equation

. uy, Uyy u, 1
_nyy—’-FUx—f- u_o :pr— F Up+ I/tpy m
yy X X7yy

0 ~
Uy _ v
+vxyy—%vx—{%} =fy+sg, (4.40)
Yy

where we denote

u u

0 1 1 5
1 ve +v 1 v, U F
fz:(””{‘o}) +pioevpyy+2va{—o} — AP =) S @44
<y u u-Jy u i=1

1 0 0, .1 1 v,
8= { u_o} [pr T Uplyy + (VU )Upyy — */Ev”””y] o |,
X Y

vf,), + v} 1 1 1
|\ o) Yoy~ Zupwy 151 U170 Uy 170
u y U ) xy U ayy Uy
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1 1 NG
0 0 0 1 1
- FPX <u0 - 10 (”P)Cuxy + Uplyyy + prupyy) - 40 (vexzupy + vez”l’x}')
y

uyy - uj, U»y
— u—d Up + nyy —_ va Zglv (442)
X i=1
with
F,= —u(,)) ul _ u([))u — (v + yupx)uez yu(,),yv;Z + E;.
Due to the divergence-free condition, we infer that u ,y = —vpy, = —v, + vy. We shall work with
the norm:
=112 — n= 2 n= 2
B = sup 110)" Tyy (3 + 17" Dyyy 22 - (4.43)
0<x<L

In view of Lemma 4.2, we have

I < € (161" 803 0.3+ 10)" £ 2ig ) + 1) 82200 )) (4.44)

with (f, g) being defined as in (4.41) and (4.42). Recall that v = v, + 0. Then by the definition
of v and estimate (4.5), it follows that

1) 0yy (0, )2 < 1) 0pyy (0, )2 + € < Co(l + {3 a1 [l ). (4.45)

where we have used the fact that

w;mﬁnsfu@—ndgaom&snwwmansc

Next, let us give bounds on f and g. We infer that

Wﬂsfwmwsmw%mmwﬂ“, (4.46)
o0
-s/wwwsmw%mmwﬂ“. (4.47)
Thus, we obtain
o0 o0
/wFsCMwth/@F”%smeﬁ
0 0
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0]

o0
/ 5y]% < C||<y>"ﬁyy||§/<y>—2"+2 <CllIvll?,
0 0

for some n large enough. In addition, there hold that

0 [’} oo L

2 - 2 2
/|up| §/|u1| +L/ ]
0 0 00

s||ﬁ1||%+L/|ﬁy|2+Lf 15,12

Qoo Qoo

<CL|||0|*+C (||<y>"ﬁ1 15+ llug (x, o>||iz(0,L)) :

o0
/ D)2y 1> <N )"y 15+ L / ) |t pay |
0 Qoo

<CLIBIE +C (10)"@ 1 + by (6. Ol 1))

Hence, in view of equation (4.2), we get

2 0 0 0 0, .1 2
//|Mpyy| = | lupys +upuy +vpuy + v, +vplupy — Fpl
o0

Qoo Q
5]/ (185 185+ lup P + 152+ 15 + P+, )
Qoo

<CLIBIE +C (10" 131 + by (5, Ol 1) +1)
Therefore, we have

L [’}
//<y>2"|f1 +f4|25// |upyy|2+f ||v;x||§o/<y>2"|u,,y|2
Qoo

Qoo 0 0

< CLINBIIP +C (10" ) + by (. O)a ) + 1) (448)

/f<y>2"|fz + 3PS //<y>2"|vpyy|2 < CLINIBIIP + Cllug (8, 012 1) (449)
Qoo Qoo

L
//<y>2”|f5|25f<||ué||§o+ v 12 + vl I12) + 1
0

Qoo

<CA+ vl yse) < CL,k)e™ (4.50)
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Similarly, it follows that

// 2"|g1|2</f<|pr| 1P+ Lty )+e/||vcz /|upy|

= CLITIE+C (I0) @111 + N . Ol ) + 1), @51

L e’}
/ / MM gl < / (llvl 12 + vl 012 / ) | py I
Qoo 0 0

< CLIBIP+C (I0) @111 + b . Ol ) + 1) (452)

/f< 1832 < (elolo 1% + vt oo + 1 / ()" [vpyy
Qoo

Qoo

<CL||o|I*+C (||u;x(x, Nl72001) + 1) : (4.53)

6
Z//<y>2"|g,-|2 s//<y>2"(|upy|2+ [Vpyyl?) +// i pyy|*
=495 Qoo Qoo

<CL||o|I*+C (||<y>"ﬁ1 31+ g (6, O3 o ) + 1) . (454

/ / "*"g71* < / / MIfs1> < C(L, k)™, (4.55)
Qoo Qoo

/ / () gsl? < f (0py P + [ + Lt pyy )

Qoo Qoo

= CLITIE+C (10) @111 + N . Ol + 1), (456)

// 2"|gg|2<e/||vm||mo/ >2"|um|2+e||vez||Loc<Qo)// 2 opyy?

<CL|l|3|l*+C (||<y>"a1 [ RN UL 1) . 457

Zf/ )21 g1 2<//|v| +f<|uex<x 02 + ul,, (v, 0))

=108

< CLIBIP + Cllug (07210 1) + Cllug 8, 01720 1) (458)
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It should be noted that

Znax (06, 017201, = Znax Ve (%, 017201,
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<Zf/|[<z—1><am) |<Z/f| V| +fo| v llolvl,.|

i=0 Q0 i=0 Q0 i=0 ol
< ||8 113 + ||8 llplldivg llg < Ce™
—= xVezll2 xVez X ezz q £ ’

for sufficiently small x > 0. In conclusion, we obtain
IIIo]]] < CLI||v]|| + C(L,k)e™™,

which with sufficiently small L give the uniform bound for ||[v]]].

(4.59)

(4.60)

Furthermore, since equation (4.40) is linear with respect to v, together with estimate (4.60),
it is easy to apply the contraction mapping theorem to show the existence of the unique solution

for (4.40) and hence (4.4). Then, it follows from the boundedness of |||v]||| that

sup  [[(3)" v pyy I3 + f 13" Vpyyy I3 < C(L, k)e 2.
0<x<L o

The boundedness of v, follows by the calculation similar to (4.46) and (4.47):

oy (x, )] < / [vpyld6 < / Y O) 0 lady < CIOY Vpg 2,
Ry

which implies that

lvplloo < sup ||<y>nvpyy”2 <C(L,k)e™ .

0<x<L
Similarly, the boundedness of u, follows from the definition

X

up(x,y)=u(y) — / Upyds’

0
which gives that

L

lup(x, )| < lur(y)] +/|vpy|dx = |I<y)"ﬁ/1||2+C/ 1) vpyy 2.
0 0

4.61)

(4.62)

Navier-Stokes equations on bounded domain, J. Differential Equations (2019),
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Then, we have

lupllo S ) iy ll2 4 sup [1(¥)"vpyyll2 < C(L,k)e™™.

0<x<L

To complete the proof of the lemma, we are now concerned with the higher regularity estimate.
Again, applying Lemma 4.2 to equation (4.40), we also get

L
sup. (10" By 12 + / 1" By I3
0

0<x<L
1 L L

<CY | 1) alay, 0, ~>||%+/||<y>”a;;f||%+/||<y>”a;;g||% :
=0 0 0

which, in view of estimate (4.60), is reduced to

0<x<L

L
n= 2 n= 2
sup [I{y) nyy||2+/||y nyyy”z
0

L L
S )  Bayy (0, I3 + / 1) fell3 + / 13" g2 113 + C(L, k)e <. (4.63)
0 0

Recalled by (4.6) that

1(9) By (0, M2 < {3 Vpyy (0, Y2 + Cluel, (0, 0)]
ST+ Jul (0,0)] + llul, (0, Ve I 1.

Note that
L

Lf*(0)=— / 0 [(L —x) f2(0)ldx < | fII72 + 2L1 fll 21l fll 22
0
which gives

1/2 1/2
LZ(O,L) ” fx ”LZ(O,L)‘

£ O < L2 fll 20,y + V2I £

Then, using the estimate of v! in Section 3, we have

43, (0. V/EN | 2R,y < CE™ 00 (0, )l 201y
—1/4 1 1 1/2 1 1/2
= Ce™* (ke iz + 10kl gy 10k | o)
<C(L)e Ve V4 < c()e™ 12,

1 1/4..1
142y 0. VE) 2R,y < CEH 1000, ) 20,1
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14 (1.1 112 1 12
S C(L)S / (”vexzzlle(Qo) + ”vexzz”LZ(Qo) ”vexeZ”LZ(Q()))

<CL)e e <c(Lye 4.
Also, there holds
i (0, 0)1* < [l (0, M 1200, 1) gz (0. Il 20,1y

< 10220, 201y Ve 0. Il 20,1
<C(L)e Ve < c()e™3/2.

These implies that

{3) Bayy (0, )|l < C(L)e /4,

and hence it follows from (4.63) that

L
sup ||<Y>nvpxyy||§+f”ynvpxyyy”%
0<x<L
0
L
SCWe ™24 sup g, (6, 017 + llutgy (6, 01720 1, + / 1) (fro 813 (4.64)
0<x<L ’
- 0

‘We infer that

1 2 1 1 1 1
”uexx (x’ 0)”142((),1‘) = 2/ |Mexxuexxz| = 2/ |vexzvexzz|
Qo Qo

1 1 —1/2
< Cllvey 220y Wexz: l22(0) = C€ 2,

1 2 1 1 1 1
”uexxx (x, O)HLZ((),L) = 2/ |Mexxxuexxxz| = 2/ |Uexzzvexxzzl

Qo Qo
1 1 -2
= C”vexxz ”LZ(QO) ||vexxzz”L2(QO) <Ce 7,

and then

sup (i} (6, 0015 < Ll (8, 017 2q, ) + 181 (0,0) < C&™2.

exx
0<x<L
Substituting these estimates for boundary terms into (4.64), we obtain

L L

e 1) Vpyy 13 + / 15" Vpxyyyll5 < C(L)e™2 +C / ) (fe, g) 3. (4.65)
<x<
- 0 0
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Since that the estimates for fy, g, are similarly as done above, we omit the details here. The
proof of this lemma is completed. O

Since we will use the estimates on v! , v!  and v! pxx i estimating the L? norm of R and

px> Upxy> app &
v . .
R;p,p» we give the following

Corollary 4.4. Let v p be the solution constructed in Lemma 4.3, then it follows that
ll (Y>n (pr, pry) ”LZ(QOO) <C(L, K)e " , | <y>n(vpxm prxy) ”LZ(QOO) = C(L)8_1 , (4.66)
foranyn e N,.
Proof. By virtue of (4.17), we have
J

1070y l22 0 S Z(Ia’vyyw M2+ 1011 010Dl 2 )
i=0

M\

( )05y (0, )2 + 100" 01 £ 8 @)l 20 ) - T =01,
1=O

where f and g are defined as in (4.41) and (4.42), respectively. Then we can deduce the un-
weighted estimates from estimates (4.60) and (4.65) that

lvpeyllz2(@.) = C(L, K)e ", 10xvpxyll 2y < C(Lye™". (4.67)
For the corresponding weighted estimates, we recall the notations in the proof of Lemma 4.1
px.y) i =1ulup —uy, ¢y =uup, —ud ¥
e = =100 — W5+ v)upy + tpyy + Fp,

0 0 0 1 0, .1
Gxx = —Upp ¥ F Uy Vp = [V + Vo Jupy [V, + 0 10pyy — Vpyyy + Fpx,

where ¥ (x, y) := — fy"" u,(x,0)do and

Fp= _M(I))xu; - ”g”;x - (Ug + yu(l)zx)ugz - p} ez +E1.
It is easy to see that
L
1) Fpllza gy ST+ lugl3 + fsgpw;f <C,
0

L
1" Fpellag, ST+ / (sup|v3|2 +sup [vg, | +sup|v3xz|2) <C(L, ),
Z Z Z
0
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where we have used the inequality

1 1
If O = /[(z — DIfF@PLdz < I F13+ 1 F Il follgs i L.

Then, thanks to Lemma 4.1, there holds
15"yl L2 (00 S N il 1 + sup [0 vpyylla < C(L, k)e™",
17" b ll L2y S ) it +Sl;p [ vpyyll2 + 1) Fpll 120y < C(L, €)™,
19" bexll L2y S WY 01 g1 + (1 + [lvg IIHZ)Sl;p 1) vpyyll2

+ ”ynvpyyy“LZ(Qoo) + | <Y)anx||L2(gzoo) <C(L,k)e™"

Here we again remind the readers of the fact that y" < (y)”, for any n € N Further, note that

= s /u°>2d9+“0/<(u°)2)
y y

Thus,

—K

”ynvpxy”LZ(Qoo) Sy” (&ys Ox, ¢xx)”L2(Qoo) <C(L,k)e ",

which, together with (4.67) gives [[(y)"vpxyll2(q.) < C(L,k)e™™, and hence

1) Vpell 20y < CHOY P2 pry 1200 < C(L. k)™
In addition, applying 90, to ¢, yields

0 0 1 0 1
¢XXX - vxxv w + ”xvvpx - [vpxx + vexx]upy + [vp + ve]vlm}’)’ — Upxyyy + F[’XX’

in which we infer that

_3
1) Fpacll gy S 14875 (108l 2g) + 10kl 2@) + 10herc 20 ) < €73
Further, there holds

L

||yn¢xxx||L2(Qoo) S|+ / Suplvgx_xl ||()’>nvpyy||L2(Qoo) + ”()’)nvpxy”H(Qoo)
0

+1 (y)nvpxyy”LZ(Qoo) + ”ynvpxyyy”LZ(Q&) +1 (y>anxx ”LZ(QOO)
<C(L)e™!
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Therefore, we get

1" pery 1200y SV @y, S B, S 12y < C(L)e™
Similarly, one can deduce the second part of (4.66) and hence finish the proof of it. O
Now, similar to Section 2, we cut-off the solutions from Q2 to €2, and prove the following

Proposition 4.5. Under the assumptions in Theorem 1.1, there exists smooth functions [u},, vll,],
defined in 2., satisfying the following inhomogeneous system:

Moul +MOM1 +MOU1 +[U +U ] u})y}/:R’;)’],
px+Upy_0’

up (0, y) = i1 (y), up(x,0) = —uy(x,0),

tpy (x, =) =0, (x,0) = v (x, 72) =0

(4.68)

where the inhomogeneous term R}‘,’l is a higher order term of /¢. In addition, there holds that

Iy, vl + sup 140) vy 2 1V @ vy 120, SC (L, K)E™, (4.69)

0<x<L

sup 1) vy llz2y + 10V @ s V) 20,y < C(L)E, (4.70)

0<x<L
for any given n € N.

Proof. Let [u,, v,] be constructed in Lemma 4.3 and define that

y
uy(x,y) = x (Veyup(x, y) — Vex' (Vey) f up(x,0)do,
0

vy (x, y) 1= x (Vey)vp(x, y).
Then it follows directly from calculation that [u },, v 11]] satisfies (4.68) with
y

R”1 =ex'u vp+\/gxlu2/u do +2/cx’ [v + 0 lup — 3 x U py

0

y y Yy
+JngfX’d9+eX’/[vg+v;]/u,,d9—3ex”up —83/2X”’/upde. 4.71)
0 0

Clearly, by the estimates in Lemma 4.3, we get
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y
[VEr W/En [ uptr.0)d6] < VEyix Vel = CCLo0E™
0

Hence, (4.69) and (4.70) follows from Lemma 4.3. The proof of this lemma is completed. O

Corollary 4.6. Assume that [u},, U117’ p},] is the solution to (4.68), where pll, is an absolute con-
stant. Then, for any k > 0 small sufficiently, there holds that

~ 1_ 1
IR N 20 + I1RY 12,y < C(L. k)T, [Pl 120, < Ce™4 (4.72)

where Ié’f p%, are defined as in (4.1) and (3.8), respectively is a small enough constant.

Proof. Thanks to Lemma 4.3, there holds that

IR 17200, S&" 210V Vpyy 172 eI T 20,1y &2 0 p I3l 120 1
<C(L,k)er ™, (4.73)

IIRZ’IHLZ(Q)NIL||vp||oo+e||u,,||oof/

+8||up||00[/|v +v, |2+8/f|upy| +8// |F |2

2 0 12 3/2 2
+s||up||oo/ vp + v, 1P+ 2 up i3
Qe

<C(L.k)e2 . (4.74)
In view of equation (3.8), we get

NG
Pl = / [(uS +ud)0l, +Fudul + @0+ vl - pm] (x,0)do. (475
’

Note that

G
[ g = Oy o ()"

/e
f W) < OV U0 2 ]1vg, (. VE 2,

y
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1/4/€
/ W+ D00 < Y + 1S ool ()00,
y
/e
V0 ey < COV Y o
y

Hence, taking n > 3, we have
1Pl L2, < Ce™ V™ (4.76)
The proof of this corollary is completed. O
With the zeroth order Prandtl profiles, first order Euler correctors and the first order Prandtl
corrector in hand, together with those various estimates on the approximate solution, we are able

to give the error estimates as follows.

Proposition 4.7. Under the same assumptions as in Theorem 1.1, there exists approximate solu-
tions [Uapp, Vapp, Papp] such that

IRzl L2 (20 + VelRG Il L2, < C(L, ©)ed ™, 4.77)
where C depends on initial data and L, k.

Proof. Collecting errors from R in (2.3), R”’0 in (2.47), R{ in (3.26), Iif in (4.1), R%’] in

(4.71), and the remaining e-order terms in R}/ ppe We yield

RY,, =Eo—eul, +eEy+ JVeR| + VER} + VeRY!
+ 1 1 1 1 1 2 2 0 1 1
e\ (u, —i—up)ax + vpay (u, —}—up) +epp. €05 u,+ \/E(ue +up)
In view of (3.28), (3.26), (3.27), and (4.72), we immediately get
~ 3
1Eo — eul.. + VeRY + &R} + VeRY +ep? |12, < C(L.k)eT ™. (4.78)
Similarly, using the estimates for [ul,, vj], [u},, vll,], and ”(;)7’ we have
1 1 1 1 1 1
el + up)deul + ub)ll g,y < e (lndlloo + N lloo) (Nulyll2 + vpy12)
<C(L.x)e'™",
ellopdy (ul +ull 2, < ellvhllos (VEllll2 + llu, ) < C(L, k)",
el 07 @) + Veuy + Veup)l2q,) < ellud, Il +e? (IIvmllz + ||v,,xy||z) <Ce3,

where we have used Proposition 4.5 with /2.
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In addition, recalling the definition of E5 in (2.47), one has

12l 20y ST 210 oo + 16112+ 1) 210512

1 (05l + 032 ) + 1) 2

<C(L).

Thus, we deduce that

Ru < C L %—K
” app”Lz(Qs) = ( 7K)‘9 .

Next, we will give estimates for R, .

definition of Rgpp, we infer that

Recalling the remaining terms of R in (3.9) and the

Riyy =R + 2 [ @+ 0+ Vel +ubDa + (5 + vl +vEv))a, | o)
+ [(u; +ub)o, + v},ay] W) + vl — Vvl —ed? [(ug +ol)+ ﬁu},] .
Similarly as above, we have that

Ve H [(ug +ud) + Veluy +up Dy + () + vy + \/Evé)ay] vll)‘

L2(R)

0.0 0 1 1 1 1 -
<Ol uy, o8,k oo (o) llz + Iopyll2) = €L, 05,

and that

N H [(u; +ul)a, + v},ay] W +v)

L2()
1 1 1 0 1 0 1
<Ot wh, vpllloo (0, + vlsllz + 105, + VEvL2)

<C(L,K)ei™*.

Moreover, one has

1 20,0 1 1 i-
||«/§UPW —&0; (v, + ve+\/5vp)||Lz<QS) <C(L)e*™".

Putting these estimates together and using the estimate (3.27) yield

1_
||Rzpp||L2(Q£) <C(L,k)e®™",

which completes the proof of this Proposition. O
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5. The existence of remainder solutions

Now we are on the final step to prove the main theorem: the existence of the remainder solu-
tions. Denote that

us(x, y) = ug(Vey)+ul) (x, y) + Veuy(x, V/e), v(x,y) =0 (x, y) v, (x, /2y). (5.1)

Then the remainder solutions [u®, v®, p®] solves

usut +ufug, + vsui + v%usy + pl — Agu® = Ry (u®, v°%),
usvy +uvsy + vsv§ + 0705y + pi/e — Agv® = Ra(uf, v%), (5.2)
up +v5 =0,

where
1
& E\._ o~ V—75 pU __ 1 Y, EN,,E e 1 1 Y. .EN,,E e 1
Ry(uf,v*):=¢""2Ry,, \/E[(up—i—e ufyus +ufuy,, + (v, +e"vul +ofu, |,

1
& L EY._ o—V—5 PV _ 1 Y. E\.,E e..1 1 Y €Y. ,E e..1
Ry(u®,v®):=¢ 2Rapp ﬁ[(up—l—a u”)vy +u vpx—l—(vp—l—a v)vy+v vpy].

The errors R;,, and R;,, in Ry and R> have been estimated in Proposition 4.7. It should be
noted that, since miny {u%(/ey) +iio(y)} > 0 and [|u}|lo < C, the known function u; in (5.2) is
strictly positive as ¢ and L small sufficiently. This is very important in using the positivity as is
done in (3.18) and (3.19).

Before begining to prove the existence of the remainder [u®, v¢, p®], we first give the fol-
lowing two Propositions, the proof of which are stated in Section 3 and Section 4 of [13],
respectively, and hence we omit the detail here.

The first proposition gives the linear stability estimates for (5.2):

Proposition 5.1. For any given f, g € L*(Q2,), there exists some positive number L such that the
linear problem

UsUy + Ulsy + VsUy + VUsy + Dy — Agu = f,
UgVx + UVsx + VgVy +VUsy + Py /e — A =g, inQQ, (5.3)
ux + vy =0,

together with boundary conditions

[M, U]y:O = 07 [uyy v]y:% = 07

5.4)

[, v]x=0=0, [p—2¢euyx,uy+evilr=L =0,

has an unique solution [u, v, p] defined on Q2. In addition, there holds
IVeull 2,y + IVevll 20, S I 2, + Vellgll2g,)- (5.5

The second one provides L°° estimates of the solution to the corresponding Stokes problem:
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Proposition 5.2. For any given f, g € L>(Q2), consider the incompressible Stokes equation

—Agu+ Px = fv
—Agv+py/e=g, inQ, (5.6)
uy +vy =0,
together with the same boundary conditions as in (5.4). Then, for any y > 0, there holds that
lullzo g, + ellvllze @,

_Y
<Cyre” (IVeull 2y + 1Vevll 2,y + 1 f 2o, + VElgl2@y) s (5T)

for some constant C,, | depending only on y and L.

Proof of Theorem 1.1. With these two propositions in hand, we are able to apply the standard
contraction mapping principle for the existence of solutions to the nonlinear problem, which is
consisted of several steps.

Step 1. We introduce the function space 2~ endowed with the norm:

I, v 1l 2 = Vet | 120,y + VeVl 1200, + 108 Lo, + Vellv Loy, (5.8)
where V, := 9, + /€d,. And, we choose the following subspace of 2~ with K to be determined:
2k ={u’ v e 2|’ vl 2~ < K}.

Step 2. For each [i?, v°] € Zk, we solve the corresponding linearized problem for [u®, v°]:

us”i + ulugy + vsui + vausy + Pfc — Au® =Ry (ﬁs’ 68);
usvy + uvge + o505 + 0005y + pi/e — Agv® = Ra(i®, 0°), (5.9)
uy +vi =0,

equips with the same boundary conditions as (5.4). Then, by Proposition 5.1, there exists an
unique strong solution [u?, v®, p?] satisfying that

||Vs”£||L2(QS) + ”ste”LZ(QS) = ||R1(L_l€, 68)”[,2({25) + \/E||R2(ﬁg, zj€)||L2(§z£)- (5.10)
Now, we give estimates for Ry, R». In view of Proposition 4.7, for any « > 0, it follows that
—r=3 [ |R JEIRY <C(L,k)st ¥ 5.11
& || app”Lz(Qg) + 8” app”Lz(Qg) = ( 1K)8 . ( . )

In addition, using the estimates for [u;,, vll,] in Proposition 4.5 and the divergence-free condition
us + vi, =0, we infer that
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Velluy, + €7 )i, + (v, + " )it |l 12q,)
sﬁ[(ﬂu},nw + & i@ o) 155112+ (v lloo +ey||68||oo>||a;u2]
<Velluy, vyllloollli®, 01 2 + &” [, 5°111%
<C(L,k)e? ™ K +&” K2, (5.12)
and that

Vellatub, +5ub Nl 2, < CVE [muz Sup | ()" o+ 155 2 sup ||<y>"u},y||z}

1_ —s - 1_
<C(L,k)ex""|[u*, v°]ll 2» < C(L,Kk)e>""K, (5.13)
in which we have used the fact that |[u®, v®]| < ﬁ“[u;, v;] 2.
Similarly, for the term in R», there holds that
Vel + e’ a®)ig + (v, + " 50l 12,

<l lloo + €7 17 o) IVETE 12 + V0] lloo + €7 15 o) 155 12

<Cllup. vy lloolllie®, 51l 2 + & [, 5°11%

<C(L,k)e ™ K +¢"K?, (5.14)

and that
\/5”126 Uzljx + 'l_)‘,3 Uzljy ||L2(Qg)
<CJe [Ilﬁgllellv},xllz + 119y 12 sup ||<y>"v},yy||z}
1 . 1
<C(L,k)e>""||[u*, v°]ll 2» < C(L,k)e>""K, (5.15)
where the estimate ||v113x l22(q,) < Ce™ has been used.
In conclusion, we yield
IR @, 5 20 + VEIR @S, 5912,
<C(L,k)ed™ 7 + C(L,k)e? K +e” K2, (5.16)
which implies the estimate for the gradient of [u?, v¢]:
Vel 12(q,) + VeIl 120,
(5.17)

<Clus,vs, L k)& ™Y 4+ Clug, vg, L. k)2 K + Cuy, v5)e? K2
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It remains to estimate the L® norm for [u®, v®]. Recalling Proposition 5.2 with

€_

P & € -
[ =R —usuy, —usu® — Vsl

&
Volgy,

— &€ &€ =& &
g8:=Ry —usvy —vgu” — VsV, — U Vgy,

it follows from (5.7) that
[ | o< ) + VeIV [ Lo,

_Y —
Scy,Lg 4 (”Vs“g”Z + ||V8U8||2 + IRy — “sui - “sx’/‘g - Usui - Ususy||2>

1_v _
+Cy 1827 7| Ry — usvy — vgu® — vsv; —v¥ugy 2. (5.18)

Since that (5.17) and (5.16) have give the desired estimate for [V.u®, V.v°] and [R], R2], re-
spectively, it remains to estimate the rest terms with respect to [u;, vs]. Indeed, note that

sup [l /Yitsxll 21,y < sup 1{)ulll2 + sup [[vl, 12
X X X

< sup [[(y)u), 12+ llvg., ll2 + 11 Veoll2.
X

0 0 1

sup [|lv/yusyllr2(r,) < e ll2 4 sup [[{y)upy ll2 + sup [lu, 2

X X X

<11y 0 1 1

< Nugll2 +sup [{y)upy ll2 + Ny M2 + llve . ll2,
X

0 0 .0 11
s s Moy < Nullloo + 118, 0 lloo + 11l vl Tl

we have

luscu® +usyv®|l2(q,) < <||M§,||2 sup [l/yusxll2 + [[v§ll2 sup ”ﬁ“sy”Z)
X x

= C||[V£u8s ng8]||2,

litsu’, + vt |20, < Mt vl v3Tl2 < CIVeu®, Ver©lll2.

Similarly, there holds that

vscu® + vsyv¥ll 2, < (IIM? 2 sup ll/yvsxll2 + lv5 112 sup [l /yiusx |I2>
X X

1
< Ce2|[[Veu®, Veu'lll,
_1
lusvy + vsvill 2,y < s, vsllloolllvy, vi1ll2 < Ce™2[[[Veu®, Vevlll2,

in which the following estimate has been used:
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_1
Sup (/Y sl 27, < 5up Il (3) 05, Il + £ 72 sup [[u, (x. )2
X X X
0 . 1
=sup [(y)vp,ll2 + & 2 llvgll2llveell2.
X
Substituting these estimates together with (5.17), (5.16) into (5.18) then gives

4[| Lo () + VEIV Il Lo ()

5 3
<Cluy, v5, L, K)e* ™ % 4 Clug, v, L, 1)s2 5K + Clug, v5)e ¥ K2 (5.19)

Now, adding up (5.18) and (5.19), noting that % —K— %V >0and ¢ K 1, we get

3
I, v° 1l 2 < Clag, vy, L, 1) + C s, vy, L, )e 3K + Clus, v)e ¥ K2 (5.20)
Then, we take K := C(us, vg, L, k) + 1 and hence ||[u?, v¥]|| 2~ < K, for any small ¢ so that
1 v 9
C(ug,vs, L,k)e* K + C(ug,v5)e* K~ <1.

This proves that the operator M : [u?, v¢] — [u®, v®] maps Zk into itself.

Step 3. In order to apply the contraction mapping theorem, it remains to prove that the operator
M is a contractive mapping. Indeed, for any two pairs [i], v]] and [i5, v5] in 2, it follows
from the similar approach that

1_,_r 3y _ _e - _
(] — u5, v] — V5127 < Clus, v, L, k) (€274 + 4 K)||[u] — 5, 0] — 051l 2,

which at once implies the contraction of M, for any & small sufficiently.
This proves the existence of the unique solution to (5.2) via standard contraction mapping
theorem and hence completes the proof of the Theorem 1.1. O
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