期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:246
Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent
Article
Castro, Hernan1,2 
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, CMM, Santiago, Chile
关键词: Concentrating solutions;    Large exponent;    Green's function;    Finite-dimensional reduction;   
DOI  :  10.1016/j.jde.2009.02.001
来源: Elsevier
PDF
【 摘 要 】

We consider the elliptic equation -Delta u + u = 0 in a bounded, smooth domain Omega in R-2, subject to the nonlinear Neumann boundary condition partial derivative u/partial derivative v = u(p). Here p > 1 is a large parameter. We prove that given any integer m >= 1 there exist at least two families of solutions up developing exactly m peaks xi(1) is an element of partial derivative Omega in the sense that pu(p) -> 2e pi Sigma(m)(i=1) delta(xi i), as p -> infinity. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2009_02_001.pdf 421KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次