期刊论文详细信息
Advances in Nonlinear Analysis
Concentrating solutions for a planar elliptic problem with large nonlinear exponent and Robin boundary condition
article
Yibin Zhang1  Lei Shi1 
[1] College of Sciences, Nanjing Agricultural University
关键词: Concentrating solutions;    large exponent;    Robin boundary condition;    finite-dimensional reduction;   
DOI  :  10.1515/anona-2015-0153
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

Let Ω ⊂ ℝ 2 be a bounded domain with smooth boundary and b ( x ) > 0 a smooth function defined on ∂Ω . We study the following Robin boundary value problem: Δu+up=0in Ω,u>0in Ω,∂u∂ν+λb(x)u=0on ∂Ω, $$\begin{array}{} \displaystyle \left\{ \begin{alignedat}{2} &{\it\Delta} u+u^p=0 &\quad& \text{in }{\it\Omega},\\ &u>0 &\quad& \text{in }{\it\Omega},\\ &\frac{\partial u}{\partial\nu} +\lambda b(x)u=0 &\quad& \text{on } \partial{\it\Omega}, \end{alignedat} \right. \end{array}$$ where ν denotes the exterior unit vector normal to ∂Ω , 0 1 is a large exponent. We construct solutions of this problem which exhibit concentration as p → +∞ and simultaneously as λ → +∞ at points that get close to the boundary, and show that in general the set of solutions of this problem exhibits a richer structure than the problem with Dirichlet boundary condition.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000678ZK.pdf 4171KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次