期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:256
On the Cauchy problem for integro-differential operators in Sobolev classes and the martingale problem
Article
Mikulevicius, R.1,2  Pragarauskas, H.1,2 
[1] Univ So Calif, Los Angeles, CA 90089 USA
[2] Univ Vilnius, Inst Math & Informat, Vilnius, Lithuania
关键词: Non-local parabolic integro-differential equations;    Levy processes;    Martingale problem;   
DOI  :  10.1016/j.jde.2013.11.008
来源: Elsevier
PDF
【 摘 要 】

The existence and uniqueness in Sobolev spaces of solutions of the Cauchy problem to parabolic integro-differential equation with variable coefficients of the order alpha is an element of (0, 2) is investigated. The principal part of the operator has kernel m(t, x, y)/vertical bar y vertical bar(d+alpha) with a bounded nondegenerate m, Holder in x and measurable in y. The lower order part has bounded and measurable coefficients. The result is applied to prove the existence and uniqueness of the corresponding martingale problem. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_11_008.pdf 381KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次