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Abstract

The existence and uniqueness in Sobolev spaces of solutions of the Cauchy problem to parabolic integro-
differential equation with variable coefficients of the order « € (0, 2) is investigated. The principal part of
the operator has kernel m(t, x, y) /|y|d+°‘ with a bounded nondegenerate m, Holder in x and measurable
in y. The lower order part has bounded and measurable coefficients. The result is applied to prove the
existence and uniqueness of the corresponding martingale problem.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction
In this paper we consider the Cauchy problem
du(t,x)=Lu(t,x)+ f(t,x), (t,x)e E=[0,T] xR, (1.1)
u(0,x)=0

in fractional Sobolev spaces for a class of integro-differential operators L = A 4 B with variable
coefficients of the order o € (0, 2) whose principal part A is of the form Av(t, x) = A; xv(x) =
A; v(x)|;=x With
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d
Aro(x) = f [vGr +3) = v(@) = %) (Vo). y)]m. 2, y)mTyw, (12)

(t,2) € E, x € RY, with x4 (y) = la=1 + la=1 1jjyj<1). If m = 1, then A = co(—A)%/? (fractional
Laplacian) is the generator of a spherically symmetric «-stable process. The part B is a perturb-
ing, lower order operator of the form Bv(t, x) = B; ,v(x) = B; ;v(x)|;=x, (t, x) € E, with

By ov(x) = / [0 + ) — 0(0) = 7 (Vo). )] 71, 2, dy)
R{

+(b(t7 2), VU(x))ll<oz<27 (1.3)

where (7 (¢, z,dy)) is a measurable family of nonnegative measures on Rg, Xa(¥) = 1y <1 X
I1<q<2,and

/ I ALmCdy), b=(b"), ey

are bounded.
In [11], the problem was considered assuming that m is Holder continuous in x, homogeneous
of order zero and smooth in y and for some 1 > 0

/!(w,sw“m(r,x,w)udq(czw)>n, (t.x)€E, 5] =1, (1.4)
gd—1

where g1 is the Lebesgue measure on the unit sphere $91in R4, In [1], the existence and
uniqueness of a solution to (1.1) in Holder spaces was proved analytically for m Holder contin-
uous in x, smooth in y and such that for some constant > 0

K>2m>2n>0 (1.5)

without assumption of homogeneity in y. The elliptic problem (L — A)u = f with B =0 and
m independent of x in R? was considered in [4]. Eq. (1.1) with & = 1 can be regarded as a
linearization of the quasigeostrophic equation (see [2]).

In this note, we consider the problem (1.1), assuming that m is measurable, Holder continuous
in x and

K >m >my, (1.6)
where the function my = mo(¢, x, y) is smooth and homogeneous in y and satisfies (1.4). The
density m can degenerate on a substantial set and is only measurable in y. On the other hand,

with m as a positive constant, (1.6) includes the case of a uniformly nondegenerate m.
A certain aspect of the problem is that the symbol of the main part A,

. , d
W56 = [ =1 = i, )]t x ) =
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is not smooth in £ and the standard Fourier multiplier results (for example, used in [11]) do not
apply in this case. We start with Eq. (1.1) assuming that B = 0, the input function f is smooth
and the function m = m(t, x, y) = m(t, y) does not depend on x. In [13], the existence and
uniqueness of a weak solution in Sobolev spaces was derived. The Holder norm estimates for
the elliptic problem in [4], show that the main part A : H7 — L, is bounded. We give a direct
proof of the continuity of A based on the classical theory of singular integrals (see Lemmas 14, 4
below). The main result of the paper is the existence and uniqueness for the operators with
variable coefficients. It is based on the a priori estimates using Sobolev embedding theorem and
the method in [9].

As an application, we construct the Markov process associated to L by proving the existence
and uniqueness of the corresponding martingale problem (see [18]). The lower part of L has
only measurable coefficients and we do not assume any smoothness or homogeneity conditions
of m(t,x,y) in y. The kernel m (¢, x, y) can be zero on a substantial set. A similar martingale
problem with all Holder continuous coefficients was considered in [15] and [1] (see references
therein as well). The case of a smooth and homogeneous in y kernel m was studied in e.g. [7]
and [12]. The methods of [1] or [15] do not allow any extension to L with a bounded measur-
able B and m only measurable in y.

The note is organized as follows. In Section 2, the main theorem is stated. In Section 3, the
essential technical results are presented. The main theorem is proved in Section 4. In Section 5
we discuss the embedding of the solution space. In Section 6 the existence and uniqueness of the
associated martingale problem is considered.

2. Notation and main results

Denote E =[0,T] x R, N={0,1,2,...}, R =R\ {0}. If x, y € R?, we write

d
EREDPE
i=1
x| = (x, x)!/2.
For a function u = u(¢, x) on E, we denote its partial derivatives by d;u = du/d¢t, dju = du/dx;,
O u = 9%u/dx;9x; and DVu = 'lu/dx]" ... 9x}", where multiindex y = (y1, ..., ya) € N,

Vu = (d1u, ..., dq4u) denotes the gradient of u with respect to x.
Let L,(T) = L, (E) be the space of p-integrable functions with norm

z 1/p
|f|Lp(T):(//|f(t,x)|pdxdt> .
0

Similar space of functions on R is denoted L p=1L p(Rd ).
Let S(RY) be the Schwartz space of smooth real-valued rapidly decreasing functions. We

introduce the Sobolev space H f_H 5 (RY) of f € S’(R?) with finite norm

s = [FH (141622 F 1),
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where F denotes the Fourier transform. We also introduce the corresponding spaces of general-
ized functions on E =[0,7] x R?: H 5 (TY=H 5 (E) consist of all measurable S"(R%)-valued
functions f on [0, T'] with finite norm

1

T
gy = {/’f(t)’[;{j dt}
0

For « € (0,2) and u € S(R?), we define the fractional Laplacian

8%u(x) = / Veu ()2 @.1)

|y|d+a’

where
Viu(x) =ux +y) —u(x) — (Vu(x), y) xa (y)

with @ (y) = 1yi<ty la=1) + lae(1.2))-

We denote C°(E) the space of bounded infinitely differentiable in x functions whose deriva-
tives are bounded.

C=C(,...,) denotes constants depending only on quantities appearing in parentheses. In
a given context the same letter is (generally) used to denote different constants depending on the
same set of arguments.

Leta € (0,2) be fixed. Let m : E x Rg — [0,00),b: E— R? be measurable functions. We
also introduce an auxiliary function mg : [0, T'] x Rg — [0, 00) and fix positive constants K
and n. Throughout the paper we assume that the function m( satisfies the following condi-
tions.

Assumption Ag. (i) The function mo = mq(¢, y) > 0 is measurable, homogeneous in y with
index zero, differentiable in y up to the order dy = [%] + 1 and

|DYmg? @t y)| < K

forall # € [0, T], y € RY and multiindices y € N4 such that |y | < dp.
(i) If « =1, then for all € [0, T']

/ wio(t, w) a1 (dw) =0,
Sdfl

where $971 is the unit sphere in R? and Ud—1 is the Lebesgue measure on it.
(iii) For all € [0, T']

int [ o) mott.w) a1 (@) > >0
gd—1
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Remark 1. Obviously, Assumption Ay is satisfied if my is a positive constant. Also, the nonde-
generateness Assumption Ag(iii) holds with certain n > 0 if, e.g.

inf mo(t, w) >0
tel0,T], wel”

for a measurable subset I' C S9! of positive Lebesgue measure. Therefore g could be zero on
a substantial set.

Further we will use the following assumptions.
Assumption A. (i) For all (r,x) € E, y e RZ,
K >m(t,x,y) 2mo(t,y),

where the function m satisfies Assumption Ay.
(ii) There is B € (0, 1) and a continuous increasing function w(§) such that

Im@t,x,y) —m(t,x",y)| <w(jx —x'|), t€[0,T], x,x",ye RY,
and

dy
— , li 8)s P =o0.
/ w(|y|)|y|d+ﬁ < oo lim w(3)
lyl<1

(iii) If « =1, then for all (r,x) € E and r € (0, 1),

dy
/ ym(l,x,Y)lleJra=0
r<lyl<1/r

For the lower order operator B we need the following assumptions.

Assumption B. (i) For all (¢,x) € E,
|b(t, x)| +/ [u|* Al 7(t, x,dv) < K.
(ii)

lim sup / lu|* 7 (t, x,dv) =0.
e—0 ¢ x
lvl<e

(iii) For each ¢ > 0,

/T/n(t,x, {|v| >8})dxdt < 0.
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We write
Lu(t,x)=Lu(x) =L u(x), L=A+B.

According to Assumptions A, B, the operator A represents the principal part of L and the opera-
tor B is a lower order operator.
We consider the following Cauchy problem

du(t, x) = (L —Mu(t,x)+ f(t,x), (t,x)€H, (2.2)
u0,x)=0, xe Rd,
in Sobolev classes H}/(E), where A > 0 and f € L, (E). More precisely, let H7 = H7 (E) be the

space of all functions u € H;‘(T) = H;‘(E) such that u(z, x) = fot F(s,x)ds, 0<t < T, with
F € L,(E). Itis a Banach space with respect to the norm

lulpe = lulug(r) + 1F L)
Definition 1. Let f € L ,(E). We say that u € Hg(E) is a solution to (2.2) if Lu € L,(E) and

t

u(t) = /((L —Wu(s) + f())dt, 0<1<T, 23)
0

in L,(RY).

If Assumptions A and B are satisfied, p > g \% %, then Lu € L,(E) (see Corollary 2 below
and Lemma 7 in [11]). So, (2.3) is well defined.
The main result of the paper is the following theorem.

Theorem 1. Let B € (0, 1), p > % and Assumption A be satisfied.
Then for any f € Ly(E) there exists a unique strong solution u € ’H‘;,(E) to (2.2) with

B = 0. Moreover, there is a constant N = N(T,«, B,d, K, w,n) and a positive number L| =
M(T,a,B,d, K, w,n) > 1 such that

0|, 7y + [ulHe () < NIfIL, ),
N :
|M|LP(T)<7|f|LP(T) Ifrzn.

We prove this theorem in Section 3 below.
In order to handle (2.2) with the lower order part Bu, the following estimate is needed.

Lemma 1. (See Lemma 3.5in [11].) Let p > d/a V 1. There is a constant Ny = N1 (p, a, d) such
that

V()]
up————| < Ni[o*

e C°(RY).
y£0 |yl* ve & (R

U|Lp’

Lp
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Consider (2.2) with Bv(t, x) = Bv(t, x) = Bffjcv(x), (t,x) € E, where

<

B%v(x) = / V;’fv(x)n(t,z,dy), (t,z) € E, x eRY, 2.4)

lyI<eo

with some &g € (0, 1].
First we consider a special case of the lower order term.

Theorem 2. Let B € (0, 1), p > % \Y % and Assumption A be satisfied. Let

/ Iy[*7 @, x,dy) <do, (t,x)€E,

lyI<eo

and 80N N1 < 1/2, where N is a constant of Theorem 1. Then for any f € L,(E) there exists a
unique solution u € M3, (E) to (2.2) with B = B#0. Moreover,

|8l (r) + ulHe(r) S2ZN|flL, 1)
2N .
|M|Lp(T)<T|f|Lp(T) ifrzi.

For the derivation of L ,-estimates in the associated martingale problem (see Section 6 below),
we need to consider (2.2) with B;v(x) = Bi ° v(x), where

B;‘,Ozv(x): ]aE(l,2)<b(tv Z)_ / yﬂ(f, Z,d)’%VU(x))

12]yl>e0

+B%v(x), (t,z)€E, xeRY, (2.5)
with some &g € (0, 1] from Theorem 2.

Corollary 1. Let B € (0, 1), p > % \Y g and Assumptions A and B() be satisfied. Let

/Iyl"‘ﬂ(t,x,dy)ééo, (t,x)€E,
lyl<eo

and SoN N1 < 1/2, where N is a constant of Theorem 1. Then for any f € L,(E) there exists

a unique solution u € ’H%(E) to (2.2) with B = B®0. Moreover, there is a positive number Ay =
M(T,a, B,d,K,w,n, &) = 1 such that

8N .
|9ulL, (1) + lulag () <8NIflL, (1), lulL, ) < T|f|L,,(T) ifa> .
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Finally, the results can be extended to
Theorem 3. Let B € (0, 1), p > % \Y g and Assumptions A, B be satisfied.

Then for any f € L,(E) there exists a unique solution u € ’H‘,",(E) to (2.2). Moreover, there
is a constant N3 independent of u such that

|, (r) + lulEa () < N3|fIL,)-
3. Auxiliary results
In this section we present some auxiliary results.
3.1. Continuity of the principal part

First we prove the continuity of the operator A in L ,-norm.
We will use the following equality for Sobolev norm estimates.

Lemma 2. (See Lemma 2.1 in [7].) For o € (0,1) and u € S(Rd),

u(x+y)—u(x):C/k(“)(y,z)E)“u(x—z)dz, 3.1
where the constant C = C(a, d) and

K (z,y) = |z + y| 79T — |z|79 .

Moreover, there is a constant C = C(«, d) such that for each y € R

/|k<“>(z,y)|dz<C|y|“.

The following estimate will be used as well.
Lemma 3. Let u, v € S(RY) and

Jx, )= /[v(x +y)— v(x)][u(x +y—0D—ulx-— l)]m(x, y)lycliTyJ”’" x,l e Rd,

= / ot / =AM, D)+ Bx, 1),

[yl>1 lyIs1

where m(x, y) is a measurable bounded function such that
|m(x, y)| <K, x,ye RY.

Then for some o' < a and a constant C = C(a, o, p,d)

//|J(x,l)|pdxdl < CKp|v|Zg|u|Z}.
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Proof. We split

J(x, )= / et f .= A(x,D+ B(x,l), x,leR?.

[yl>1 IyI<1

By Holder inequality and Fubini theorem,

dydld
/’A(x,l)|pdxdl<CK” / oG +3) — v [Jux +y — 1) —u(x — D) |y|d+ax
y
[yI>1
PiiP 1P
<CK |U|LPIM|LP'
Ifa—1<da <1< a<?2,then by Lemma 2,
: d dsd
’ ’ Z S
|B(x,l)|p<CKp/ / /|8°‘U(x—z)|p|k(°‘)(y,z)|W|V§(x+sy—l)|pMd+a—};a,

0 IyIst

and
[ 1o avar<cxripsly ot

If « € (0, 1), then by Holder inequality and Fubini theorem directly,

//|B(x, D|" dx di
dsdy

<c1<p/ / //|v(x+y)—v(x)| Ve +sy —D|" dldx T

0 |yl<l1

PP p
<CK |U|LP|V§|LI,-
The statement follows. O
For a bounded measurable m(y), y € RY and o € (0,2),setforv e S(Rd), X € Rd,
dy
Lox) = [ [vex+y) —v&x) = xa (Vo) ) M () —r= Nk
The following estimate shows that £ : H (R?) — L, (R?) is continuous.

Lemma 4. Let m(y)| < K, y eR?, p > 1, and o € (0, 2). Assume

dy
/ yfn(y)| da =0

r<lyl<R
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forany 0 <r < R if o« = 1. Then there is a constant C such that
|Lv|,, < CK|3*v| veL,=L,(RY)
P Ly’ P P :

In [4], this estimate follows as a consequence of some fine Holder norm estimates (dependence
on K not specified). In Appendix A below, we give a direct proof based on the classical theory
of singular integrals (see Lemmas 14, 15 below).

Remark 2. If ¢ € S(R?), then

dy
| |d+a

By (x) = /|¢(x +3) = @) — xa (Vo (x), )|

d
< / V§¢(X)MTme+la6(O,l) / /|V¢(x+sy)| |d+oz1

[y[>1 [yI<1 0

dsdy
+ lae(1.2) / /(l—s)max|8 d(x+s y)|| pE—g
lyI<1 0

and we have an obvious estimate
|Bylz, < Cl913
with some C = C(d, ¢, p).

Now we investigate the continuity of the main part A with m depending on x. For a
bounded measurable m(x, y), x, y € R?, consider the operator Av(x) = A v(x)|,—y, x € RY,
with v € S(RY) and

A v(x) ZAZlU(x)
d
= /[v(x +3) = v = X (VV(¥), y)]m(z, y)MTyﬂ.
Lemma 5. Assume f € (0, 1), p > d/B. Let for each y € R, m(-, y) € HI’,S RY) and
lm(z, )|+ [8Pm(z,y)| <00, zeR™

Then

Avl} | < C|8“v|€,,/ sup[|m (2. y)|" + 0P m(z. )| ] dz
y



R. Mikulevicius, H. Pragarauskas / J. Differential Equations 256 (2014) 1581-1626
Proof. By Sobolev embedding theorem, there is a constant C such that
!Axv(x)|p<sup|.,42v(x)‘p
z

< [l Ao + o Ao az

= C/[]A?v(x)‘p + ]A?f’"v(x)]”] dz, xeRY,
and by Lemma 4

Avl] < C/[LAZvlip + |Agfmv|lzp]dz
<Cla%v|] f sup[m(z. )|” + |9 m(z. )| ] dz.
The statement follows. O
The following statement holds.

Lemma 6. Let ¢, v € S(RY). Assume € (0,1), p>d/B.
(a) If

Imz, )|+ [8Pmz, )| <K, z,yeR?,

then there is a constant C = C(«, p, B, d) such that
9 AVl <CKPolf, 1017 +IVoI7 ]
(b) If m(z, y) is bounded and for a continuous increasing function w(s), 6 > 0,

Im(z,y) —m(.y)| <w(lz—2). z.7,yeR,

with

dy
/ w(|Y|)‘|y|d+ﬁ < 00,

lyI<1

then there is a constant C = C(«, p, B, d) such that for each ¢ € (0, 1],

lpAv[h < CK (g, 9)|v]a,p,

where

1591
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p p
K(e,d) =&~ |gsuplm( || +e0=P7|sup|m(., »)| Vo)
y Ly y Lp
pc(1=B)p P P1p|P P p p
+w(@) e PPV + k(@) I9I] + ek @ VYT .

dv
Kk(e)= / w(U)MT-HS'

lvl<e

Proof. Since ¢ (x) A v(x) = Afmv(x), we will apply Lemma 5 for ¢ (z)m(z, y). First, obvi-
ously,

/suplqs(z)m(z,y)}”dx <sup|m(z, y)[1¢l7 -
y 2,y
For each ¢ € (0, 1],

dv

|U|d+ﬂ

9 (pm) = / [z +vImz+v,y)—p@m(z. y)]

lu|>¢e

d
+ / [¢G+vIm@E+v,y) —d@)m(z, y)]MTUJ,-ﬁ

lu|<e
=A(z,y)+ B(z,y), z,y€R?

By Holder inequality,

/sup\A(Z,y)|pdz<8"3"[|¢(z)|psup|m(z,y)|pdz
y y
= Ce P |psup|m(, )|
y Ly
<Ce™PPigl] suplm(z, »)|”.
v,z

We split B = B + B; + B3 with

dv
Bi(z,y) =m(z,y) / [p(z+v) — ¢(Z)]|U|T+/5’

lvi<e

|U|d+ﬂ’

By(z,y) =¢(2) / [m(z+v.y)—m(z.y)]

lvl<e

dv
B3(z,y) = / [m(z+v,y) —m(z, y)][¢E+v) - ¢(Z)]|U|T+B'

lvi<e
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We have
1
dv
sup| B (z, y)| < sup|m(z, y)| |V¢(z+sv)|dsm
' ' lvl<e 0
1
< v as — Y
<we) Vo (z+sv)| S AT
vl<e 0
1
dv
+ SLy1p|m(z+su, y)}|V¢(z+sv)|dsW
lvl<e 0
and

p
[ sl | dz < clueretPrver; e suplmc | v |
y y P

<Ce"PPsuplm(z, )| 1VI] .
X,y

Since
dU B —dU
[m(z+v.y) —m(z, y)]IUIT”} =Pm(z,y) - [mGz+v,y) —m(z,y)] DA
wie lu|>¢

it follows that

| B2tz )| < [0 @) (sup[0fm(z. )| + e~ sup|m(z, )] )

and
fsup|Bz(z,y>|”dz<C|¢|’L’p(sup}afm(z,y)|”+e*ﬁ” sup|m(z, )|").
y z,y 2,y
On the other hand,
dv
By <le@] [ v gy
lvlse

and

Now,
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dsd
|B3(z, y)| < / w(v)IUI/!V¢(Z+Sv)! |d+l/}3

lvl<e

and

dv \?
/sup\&(z, | dz < C|V¢>|ip< / '“'w(”)W)
y

lul<e

<C sup|m<z 0| e =Prvel;

and the statement follows. 0O
The following is a consequence of Lemma 6.
Corollary 2. Let v € S(Rd). Assume B € (0,1), p>d/B, and
im(z, »)|+ |[8Pmz, )| <K, z,yeR%
Then there is a constant C = C(«, p, B, d) independent of v such that
|Av|L CK? |U|Ha

Proof. We split

d d
Av(x) = / .m(x, Y)| |dy+a+ / -m(x, y)| |dy+a

lyI<1 ly|>1

=Di(x)+ D>(x), xeR?.

Obviously,
|D2|7 < Clolba sup|m(z, y)|”.
p Pozy

Assume first that the support of v is in the ball centered at some xo € R? with radius 1. Let
XS C(‘)’O(Rd), 0<p <1, p(x)=1if |x| <1,and ¢(x) =0if |x| > 2. Then

X — XQ X —Xxq dy
D1(X)=¢<T)D1(x)= / ---w( 3 ) (x, y)I dra

IyI<1

and by Lemma 6 there is a constant C = C(«, p, B, d) such that

DI}, <CKPplp[l0l], +1Vel] ] (32)
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Let ¢ € C3°(RY) be such that ¢ (x) = ¢(—x), x € R?, [|¢|P dx = 1 and has its support in the
unit ball centered at the origin. Then for each x € R,

| Av() | = /|;(x —DAv(x)|" dl.
Obviously,

£ = DAV@) = AWOLC — D) = 1) AL (x 1)
+ /(v(x +3) =) (G =D = 6l = D)mle, Ve |d+a (3.3)

According to Remark 2,
[1aca=nlrar<cxrier,
D
Denoting
DG = [ (o6 +3) = 000) (3 = ) = £ = D)) 2 - |d+a

we have by Lemma 3

//\D(x, D|"dxdl <CK"pl”
V4

for some o’ < «. Therefore, by (3.2)

| Av|7 CK”[/| (wOZC=D)]% dl+|v|L |v|Zﬁ,:|.
Since as in (3.3)

() (x = D) =0%v(x)¢(x — ) + v(x)d* ¢ (x — 1)
d
+/(v(x+y)—v(x))(;(x+y—l)—c(x —l))mTyﬂ,
we derive in a similar way,
f\ VO = D)y dl = /! VR =)0 dl+/|a“ vOEC D)7 dl

< Cll..
P

The statement follows. O
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3.2. Solution for m independent of space variable
In this section, we consider the following partial case of Eq. (2.2):
Oru(t,x) = A"u(t, x) — du(t,x) + f(t,x), 34
u(0,x)=0,

where m(t, x, y) = m(t, y) does not depend on the space variable.
First we solve the problem for smooth input functions. We denote by D, (E), p > 1, the space
of all measurable functions f on E such that f € (.o H » (E) and for every multiindex y € Ng

sup |DY f(t,x)| < oo.
(t.x)eE

Obviously, ®,(E) € C;°(E).

Lemma 7. Let p > 1, f € D ,(E) and Assumption A be satisfied.
Then there is a unique solution u € ® ,(E) N ’H%(E) of (3.4). Moreover, there are constants

C=CWd,p), N=N(a, p,d, K,n) such that for any multiindex y € N4,

|Dyu|Lp(T) < CPA|Dyf|Lp(T), lulbgry < NIflL, @), (3.5)
where p),, =T A %

Proof. Uniqueness. Let u',u® € ®,(E) N H},(E) be two solutions to (3.4). Then the function
u=ul—u?e D,(E)N ’Hg (E) satisfies (3.4) with f =0 and is continuous in 7.

Let (2, F,P) be a complete probability space with a filtration of o-algebras F = (F;);>0
satisfying the usual conditions. We fix 7o € (0, T') and introduce an F-adapted Poisson point
measure p(dt,dy) on [0, p] X Rg with a compensator m(tg — t, y) dt dy/|y|¢t%. Let

dtdy

q(dt,dy) = p(dt,dy) —m(to — 1, y)W

be the corresponding martingale measure and

t t
Xt=//xa(y)yq(ds,dy)+//(l — Xa(M)y p(ds, dy)
S0 0

for 0 <t < #p. By Ito’s formula

u(ty, x) = u(to, x) — Eu(0, x + X,))e 0
0]

_ | O B _
=E | e 5 Au~+ du |(t —tg, x + X;)dt =0.

Since ty and x are arbitrary, we have u = 0.



R. Mikulevicius, H. Pragarauskas / J. Differential Equations 256 (2014) 1581-1626 1597

Existence. We introduce an [F-adapted Poisson measure p(dt,dz) on [0, 00) x Ry with a
compensator dt dz/ 22 Let

dtdz
22

q(dt,dz) = p(dt,dz) —

be the corresponding martingale measure. According to Lemma 14.50 in [5], there is a measur-
able function ¢ : [0, T] x Ry — R¥ such that for every Borel I" C Rg

d d
[y =mow ) =5 = [ 1r(ew )5

r

Let

t

t
Y, = / / (1= xa(€(s, 2))) (s, 2) plds, dz) + / / Xa (€05, 2))é(s, 2) §(ds, d2).
0

0

For f € ©®,(E), we consider the equation

atu(t,x)zAOu(t,x)—i—f(t,x—Yt), (t,x) e E, (3.6)
u(0,x)=0, xeR?,

where A? = A™0 (m is from Assumption A). In terms of Fourier transforms, for v € S(R?),

F(A%) (1, §) = yot, §)Fv(®)

with

Yo, ) =—C / |(w,s>|“[1—i(tan%sgn(w,sna#
gd—1

2
— o sen(w, £)In|(w, S)|1a:1)]mo(t w) pa—1(dw)

and the constant C = C(«) > 0. By Lemma 7 in [14], there is a unique u € C,‘;"(E ) continuous
in t and smooth in x solving (3.6) in classical sense. Moreover,

t
u(t, x) = / f Gy, () f(s,x—y—Yydyds, (t,x)€E,
0

where

G ()= ™M79G,,(x), Gy () =F 'Ky,

t
Ks,z(§)=exp{/%(r,§)dr}, s <1
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According to Assumption Ay, f |Ks:(§)|dé < o0, s <t,and Gy, is the density function of a
random variable whose characteristic function is K ;. Hence,

Gy >0, / Goy)dy=1, s<t. 3.7)

By (3.7), we have for any multiindex y,

DYu(t, x) = // ,(y)Dy f(s,x —y—Yy)dyds, (t,x)€E. 3.8)

Therefore (3.7) and (3.8) imply that

essup sup|D}/u(t,x)| < 00, (3.9
weR t,x
and
essup| D" u < Cpy|DY f (3.10)
o | |L,,(T) | |L,,(T)

with C = C(p, d). By Theorem 2.1 in [11], there is a constant N = N («, p,d, K, n) such that

essup|”|H°‘(T) NIflL, - (3.11)

weS2

Let A= A™—mo, According to (3.6) and the Ito—~Wentzell formula (see [10]),

t
u(t,x+Y)—u@,x)= /[asu(s,x +Y,) + Au(s, x + YS)] ds + M,

0
t

= /[Au(s,x +Y)—Au(s,x +Yy) + f(s,x)] ds + M;, (3.12)
0

where
M, = / /[u(s X+ Yy +(t,2) —uls, x +Y,)]|q(ds, dz).

Taking expectation on both sides of (3.12) and using (3.9)—(3.11), we conclude that the func-
tion v(t, x) = Eu(t, x + Y;) belongs to D ,(E) N H‘I",(E) and solves (3.4). Moreover, (3.10),
(3.11) imply that v satisfies (3.5). O
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Passing to the limit we prove the following statement.

Proposition 1. Let p > 1, f € L,(E) and Assumption A be satisfied.
Then there is a unique solution u € 7—[‘[)‘7 (E) of (3.4). Moreover, there are constants Co =
Cola, p,d, T, K,n) and Copo = Coo(p, d, K) such that

lulrgry < Col flL, ()

and

lulr, ) < Coopal flL, 1)
where p;, =T A %

Proof. Existence. There is a sequence of input functions f, € ©,(E),n=1,2,..., such that

\f = fulL, ) — 0 (3.13)

as n — 00. By Lemma 7, for every n there is a unique solution u, € ©,(E) N ”Hg(E) of (3.4)
with the input function f,. Since (3.4) is a linear equation, using the estimate (3.5) of Lemma 7
we derive that (u,) is a Cauchy sequence in H;‘ (E). Hence, there is a function u € Hg(E ) such
that [u, —ulge(r) — 0asn — oo.

Passing to the limit in (3.5) of Lemma 7 with u, f replaced by u,, f,, we get the correspond-
ing estimates for u.

Denoting (f, g) = f fgdx and using Lemma 4, we pass to the limit in the definition equal-
ity (2.3)

(un(t,), )= /(A—A)un(s,~>+f<s,->,so)]ds, ¢ € S(RY),
0

as n — oo and see that the function « is a solution of (3.4).
Uniqueness. Letu € ”Hg (E) be a solution of (3.4) with zero input function f. Hence, for every

peSRY) andr €0, T]
(ut, ), ¢) = /u(s, ), A% — rg)ds. (3.14)
0

Let ¢, = ¢.(x), x € R%, ¢ € (0,1), be a standard mollifier. Inserting ¢(-) = L(x — )
into (3.14), we get that the function

Us(tvx) ZM(I, ) *{g(.x)

belongs to ©,(E) N ”Hg(E) and
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t
Ve (t, x) = /(A —Mue(s,x)ds, (t,x)€E.
0

By Lemma 7, v, =0 in E for all ¢ € (0, 1). Hence, u(¢, -) = 0 and the statement holds. O
4. Proofs of main theorems

We follow the proof of Theorem 1.6.4 in [9]. In order to use the method of continuity, we
derive the a priori estimates first.

Lemma 8. Suppose Assumption A holds, B € (0,1), p > d/B. There are ¢ = e(d,a, B, K, w,
T,n) €1, C=Cd,a,B,p,K,w,T,n) and o = ro(d,a, B, p, K, w,T,n) > 1 such that

forany u e ®,(E)N 7—[‘; (E) satisfying (2.2) with B = 0 and with support in a ball of radius &
(u(t,x) =0 for all t if x does not belong to a ball of radius ¢),

lulbery < ClfIL,m),
C :
[ulL, ) < x|f|L],(T) ifA=ho.
Proof. Let the support of u be a subset of the ball centered at xo with radius & € (0, 1]. Then

Ou=Ap xou(t,x) + Ap xu(t, x) — Ay xou(t, x) — Au+ f,
u(0)=0.

Let ¢ ngo(Rd),Oggo <1, px)=1if |x] <1, and p(x) =0 if |x| > 2. Denote

X — X0
<ps(x)=go< ) R
2¢e

D(t,x) = e (O Arxu(t, x) — Ay yu(t, x)],

mo(t,x,y)=m(t,x,y) —m(t,xo,y), (t,x)€E, yeRd.

According to Lemma 6(b) with ¢ = ¢, m = mo(t, x, y), there is a constant C = C(«, p, B,d)
such that

D@, )|}, < CK@|u, )|
with

K(s)=¢ PP

gesuplmoC, || +e172|sup|mo (., )| Vee|
y P y P

+w(@)’ e PPV D+ y ()P lpelh + Py ()P Ve b,



R. Mikulevicius, H. Pragarauskas / J. Differential Equations 256 (2014) 1581-1626 1601

Thus
D17, 7y < Clutlfy ) K (). “.1)
Obviously,
A A D <c | |v¢ A g lg=1lV
|At xtt — At xott — Dlpg (1) < | y”(')|L,,(T)yd+a\ e [|M|LP(T)+ a>1l uIL,,(T)].
lyl>e

So, by Proposition 1 and (4.1), there are constants C; = Cy(«a, p,d,T,K,n) and Cj; =
Ci1(a, p,d, K) such that

lul g () < Ci[lfI, ) + K (&)|ulug (r) + & (lulz, ) + las11VulL,m))]
with K(e) > 0as e — 0 and
lulr, ) < Cuupa[Ifle,a) + Kelulmgry + e~ (ule, ) + la=11Vulz,m)],
where p; = % A T. We choose ¢ so that C1K (¢) < 1/2, K(¢) < 1. In this case,
lulme(r) < 2C1[I1f 1L, + &4 (lulL, ) + Las1IVulL, )]
lulz, ) < Ciu(L+2C0)pa[I f 1L,y + & (lulL, 1) + la=11VulL,m)]-

By interpolation inequality, for « > 1 and each « € (0, 1) there is a constant C = C(«, p, d)
such that

1
IVulp, ) < «lulpe ) + CxaTlulp, 7).

o

Therefore choosing « so that 2Cje %k < % (if @ > 1), one can see that there is 6’1 = C’l (a, B,

p.d, T, K, w,n) such that
lulme () < Ci[IflL, ) + lulz, )], lulr, ) < Croa[lfL, ) + UL, ]-
The statement follows by choosing A so that Cir g % (r=2CH™YH. O
Now we extend the estimates.
Lemma 9. Suppose Assumption A holds and p > % There is a constant C =C(d, o, B, p, K, w,
T,n) and a number Ay = A (o, B,d, K,w,n,T) > 1 such that for any u € ©,(E) N ’Hg(E)

satisfying (2.2) with B=0and A > A1,

lulger) < ClLfIL, )

C .
lulL, ) < xlflem frzh.
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Proof. Take ¢ € C° (RY) such that f |¢]? dx = 1 and whose support is in a ball of radius & from
Lemma 8 centered at 0. Then

|8“u0,xﬂp==/waau0,xx(x——vﬂpdv 4.2)
and
%u(t, x)s(x —v) =09% (u(t, x)C(x — U)) —u(t,x)dgs(x —v)

d
+/[u(t,x+y)—u(t,x)][§'(x+y—v)—§'(x—v)]MTera. 4.3)

Since

3 (ut, )¢ (x —v))
=(x —v)Au(t,x) — A (x —vu(t, x) + {(x —v) f(t, x)
= A(g“(x — U)u(t,x)) — XM —vult,x)+¢(x—v)ft,x) —u(t,x)Al(x —v)

d
- /[u(t,x +y) —ut, 0)][¢x+y—v) —(x —v)|m(, x, Y)MTera’

it follows by Lemmas 8 and 3 and Remark 2 that there is C = C(d, o, 8, p, K, w, T, n) and
ro=xto(d,a, B, p, K, w, T,n) such that

/|M§( U)|pa(T)d <SClAIL, ) + iz, (T)—Hu'H“ )

C .
/|u§( U)|L (T) X_[|f|L (T)+|M|L (T)+|M|Hm (T)] if A > Ao,

for some o’ < a. According to (4.3) and (4.2),
|8a”|L (T) [|f|L »(T) + |”|L »(T) + |”|Ha (T)] (4.4)

C .
17,y < 55 U1y W12y + 0l )] 165> 20

By interpolation inequality, for each « € (0, 1) there is a constant K = K (x, &', «, p, d) such
that

|M|Ha ) S Klula,p + Kilulz, 1)

Therefore, choosing « so that Ck < 1/2, we get by (4.4) that there is a constant C| =
Cid,a, B, p, K, w, T,n) such that

|”|Zg(T) <C1[|f|Zp(T)+|M|L,,(T)], 4.5)

Cy
p p p
|u|p < )L_])[|f|Lp(T) + |”|LP(T)]~
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We finish the proof by choosing X so that f—; < % or A > (2C)YP = iy. Thus by (4.5),

2 i 2Cl P
|M|L (T) |f|Lp(T)’ AZ A1 |u|H°‘(T) Ci p |f|Lp(T)'
1

The statement follows. O

Corollary 3. Suppose Assumption A holds, p > % andu € D ,(E)N H‘;‘,(E ) satisfies (2.2) with
B =0.Then thereis C =C(d,«, B, p, K, w, T, n) such that

lulbar) < CLfIL,T)-

Proof. For A > 1| (A is from Lemma 9), the estimate is proved in Lemma 9. If u € ’H?‘](E)

solves (2.2) with A < A1, then @i(r, x) = e*1 ™My (s, x) solves the same equation with A = A;
and f replaced by e~ f_ Hence

lulge(r) < lulHe () < Ce™M™ A)TlflL (T)
withC=CWd,q, B, p, K, w, T, n) from Lemma 9. So, the estimate holds forall A > 0. O
4.1. Proof of Theorem 1
We use the a priori estimate and the continuation by parameter argument. Let
Miu=tLu+ (1—-1)0%, te€l0,1].

The space ’H%(E) is a Banach space of all functions u € Hg(E) such that u(r) = fé F(s)ds,
0<t<T,with F € L,(FE) and finite norm

lulpg = lulmg(r) + 1F|L,1)-
Consider the mappings Tr : H,(E) — L(E) defined by

'
u(t,x):/F(s,x)dSHF—MTu.
0

Obviously, for some constant C not depending on T,
|Teulr,(ry < Clulny.
On the other hand, there is a constant C not depending on 7 such that for all u € 1}, (E)
lulpg < ClTeulL, 7). (4.6)

Indeed,



1604 R. Mikulevicius, H. Pragarauskas / J. Differential Equations 256 (2014) 1581-1626

t t

u(t,x):/F(s,x)ds=/(M,u+(F—Mfu))(s,x)ds,

0 0

and, according to Corollary 3, there is a constant C not depending on t such that

lulaary < ClTrul|L, ) = CIF — MrulL (7).

Thus,

lulpe = lulme ) + 1 FlL, ) < lulmg ) + 1F = Meulp, ) + | MculL, )

< C(lulmecry + |F = Meulr,r)) < CIF = Mculp,ry = ClTeulL,, 1),

A.7)

and (4.6) follows. Since Ty is an onto map, by Theorem 5.2 in [3] all the 7; are onto maps and

Theorem 1 follows.
4.2. Proof of Theorem 2

Letu e ®,(E)N "H‘[",(E) satisfy (2.2) with B = B®0. By Theorem 1,

=z

|8rutl L, (ry + |l e ry < N[1flz,r) + |B€0”}L,:(T)]’

| =

lulr, )y < —[If1L,@) + |BSOM}LP(T)] ifA >,

> >

where .1 = A1 (T, o, B,d, K, w,n) > 1. According to Lemma 1, for each ¢,

P
|Bfou|§p</( f |v§fu(r,x)|n(t,x,dy)) dx

lyI<eo
IVSu(t, x)I\?
<55f<supy7a> dx <SYNP[%u(t, )P .
y20 Iyl P
Therefore
1 o
|l (r) + ulHe )y < NIflL,a) + 5|8 u\LP(T),
N 1 .
lule, ) < 7|f|L,,(T) + ﬁ|8“u|Lp(T) if A > A,
and

9;ulL,(ry + lulag(r) S2NIfL, (1),

2N .
lulL, ) < T|f|Lp(T) if A > 2.

(4.8)
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If u € D, (E) NHY(E) satisfies (2.2) with B = B%, < Ay, then i(t, x) = eP1=My(r, x)
satisfies the same equation with A1 and f replaced by e*1 =% £ By (4.8),

lulpa(ry < lilggry <2Ne™ 2T flL, ). 4.9)

The statement follows by the a priori estimates (4.8)—(4.9) and the continuation by parameter
argument, repeating the proof of Theorem 1 for the operators

M;,=A+1tB%, 0<7t<]l.

4.2.1. Proof of Corollary 1 ~
Letu € ©,(E) NH},(E) satisfy (2.2) with B = B#0. By Theorem 2,

|0ulL, ) + lulmgry <2N[1f1L,) + | (B — BSO)M|LP(T)]’
y
A

lulL, ) < =—[1flL, ) + | (B — Bgo)u|Lp(T)] if A > A

By interpolation inequality, for each « € (0, 1), there is a constant C, = C (K, &) such that
|(é€0 - BSO)M|LP(T) < K|u|Hg(T) + CK|M|LP(T)'
Choose « so that 2N« < 1/2. Then
||, (7) + ulHe(r) < 4N[|f|Lp(T) + CK|M|LI)(T)]»
4N .
lule, () < T[mL"(T) + Celulp,m] ifA=n

and for 4NC, /A2 = 1/2 we have

8N .
lulL, 1) < T|f|Lp(T> if A > A2, 9culL,ry + lulag )y <8N flL, ). (4.10)

If u € D ,(E) NH%(E) satisfies (2.2) with B = B0, A < Ay, then i (t, x) = e ™M u(z, x) satis-
fies the same equation with A, and f replaced by e*1 =% £ By (4.10),

lulge )y < liil e cry < 8Ne™ T £ ). (4.11)

The statement follows by the a priori estimates (4.10)—(4.11) and the continuation by parameter
argument, repeating the proof of Theorem 1 for the operators

M, =A+1B%, 0<t<l.
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4.3. Proof of Theorem 3

Again we derive the a priori estimates first and use the continuation by parameter argument.
There is g9 € (0, 1) such that

Iy|* 7 (t,x,dy) <8, (t,x)€E,

[yI<eo
where &g is a number in Theorem 2. Let u € D ,(E) N Hg(E) satisfy (2.2). Let
Lv(r,x) = Av(t,x) + B®v(r,x), (t,x)€E,
where B%v is defined in (2.4). Applying Theorem 2 to L, we have
10|, (1) + [ulHe(r) < 2N[|f|Lp(T) + (L - Z)M|LP(T)],
2N
A

lule, ) < S=[1f 1Ly + (L= Dyl 0] if 2>,

where N and A are the constants in Theorems 1, 2. There is @’ < a such that p > d/a’ and by
Sobolev embedding theorem there is a constant C such that

T 1/p
|(L—I:)u|Lp(T) <C|u|Hg,(T)<//n(t,x,{|y| >£o})pdxdt>
0

+ Cey“lac.2)IVulL,(1)-

By interpolation inequality, for each x > 0 there is a constant N = N(x, €9, a, o', p,d) such
that

|(L = Lyu|, ) <wluligry + NlulL, ).
Choose «k so that 2N« < 1/2. Then
|0rutl L, 7y + lul e ry AN fl,cr) + Nlulz, )]
4N i .
lulL, ) < T[|f|L,,(T) + Nlulp,r)] A=A

Choosing A > 1 = 8NN, we derive

N
lulL, @) < =1 f 1L 9rulr,cry + lulmg ) <8NIflL, -

Multiplying u by e*~*2) we obtain the a priori estimate for all A > 0 as in the proof of
Corollary 3 above.
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The statement follows by the a priori estimates and the continuation by parameter argument,
repeating the proof of Theorem 1 for the operators

Mpv=Lv+t(L—Lw, 0<t<1.
5. Embedding of the solution space

The following Holder norm estimates of the solutions should be known in one form or another.
Following the main steps of Section 7 in [8], we provide the proofs for the sake of completeness.
Since the solution of (2.2) u € H},(E), we derive an embedding theorem for 7 (E).

Remark 3. If u € H%(E), then u € H;‘(E) and

t
u(t):/F(s)ds, 0<r<T,
0

with F' € L, (E). Itis the H-solution to the equation

du=9%+ f, (5.1)
u(0) =0,

where f = F —0%u € L ,(E) with |f|Lp(T) < |F|LP(T) + |a°‘u|LP(T) < ||ullg, p- In addition (e.g.,
see [13]),

t
u(t, x) = / Gios(x =) f(s,y)dyds, 0<t<T, xeR% (52)
0

where
G =F '[e7E"], >0 (5.3)

(here F~! is the inverse Fourier transform). The function G, is the probability density function
of a spherically symmetric a-stable process whose generator is the fractional Laplacian 9¢:

fthle, t>0. 5.4)
Remark 4. Note that for any multiindex y € Ng there is a constant C = C(«, y, d) such that

Dgefléla gceflfla Z |€:|ka7|y|. (5.5)
1<k<y|



1608 R. Mikulevicius, H. Pragarauskas / J. Differential Equations 256 (2014) 1581-1626
Lemma 10. Let K (x) = G| (x), x € R?. Then:
(1) K is smooth and for all multiindices y € N¢ ke 0,2),

/|3KDVK(x)|dx < 00.
(i) Fort >0, x eRY,

Gi(x) =17k (x/1"/*)

and for any multiindex y € Ng and k € (0, 2), there is a constant C such that
|9“DY G, % v L, < ct= Wy, o 1>0, veL,(RY).
(iii) Let k € (0, 1). There is a constant C such that for v € S(Rd), t >0,
|Gy v —v]g, < CtK|8“"v|Lp.

Proof. (i) For any multiindex y € Ng,

sup| DY K (x)| < f|(is)ye—'5'°‘|d§ < o0.

Let ¢ € CP(RY), 0 < ¢ < 1, p(x) = 1if |x] < 1, 9(x) = 0 if x| > 2. Then K (x) = K; (x) +
K> (x) with

Ki=F (e @),  K=F'([1-e®] " ")

Since ¥ = F1p € S(R?), we have K| (x) = K % ¥ (x). Therefore, by (5.4), for any multiindex
y €Nf, k €(0,2),

sup|8’(DyK1(x)| < sup|3KDy1//(x)| < 00,
x x
[|8KD7’K1(x)|dx < /\aKDVw(x)wx < 00.
By Parseval’s equality and (5.5), for any multiindices y, i, ¥ € (0, 2),
[19 07 ko x = [ [y 1611 = p(@)]e ™ < o,

/|(ix)“8"DVK2(x)|2dx - /|D”((i$)”|§|"e’|5|a)}2[l — ¢(§)]dE < oo.
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Therefore, by Cauchy—Schwartz inequality with dj = [%] +1,

1/2 12
/|3KDVK2(x)|dx < {/(1 + |x|2)2d1|DVK2(x)|2dx} x {/(1+ x|?) 7> dx} .

(ii) Changing the variable of integration in (5.3) we get G, (x) = t~%/*K (x/t'/%), x e RY,
t > 0.Forany ve S(RY), y e NZ, k € (0,2),

3DV Gy xv(x) = [ 3*DY G (x — y)v(y)dy
— —d/a=(y|+K) /e f I DVK((x — y)/tl/"‘)v(y) dy
= /ey / 9D K (v/1"*)o(x — y)dy

and the statement follows.
(iii) Since for v € S(RY)

t
Gt*v—vzfa"‘Gx*vds, 0<1,
0

it follows by part (ii),

t t

G xv—vlL, </|3“Gs *v|Lpds=/|8“(l_")Gs 0|, ds

0 0
t
g/sx—lds|a‘“v|Lp <Crfo™ |, . O
0

We will need the following embedding estimate as well.

Lemma 11. (See Lemma 7.4 in [8].) Let w € (0,1), up > 1, p> 1, k € (0, 1]. Let h(t) be a

continuous H,’f(l K)(Rd)—valued function. Then there is a constant C = C(d, ) such that for
s <t

0“0~ [hn) ~ h(©)]|] < =)0 lf P / [0 [hw + 1) = kW7, dv.

We apply Lemma 11 to u.
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Proposition 2. Let up > 1, k € (0, 1], kp > 1, k > . Assume f € D ,(E), and

t

M(l)=/Gz—s*f(S)ds, 0<r<T.
0

Then there is a constant C such that for all 0 <s <t < T,
- p - p p
0“0 [u) —u ][], <Ca =) P[] )+ [0 o]

Proof. We apply Lemma 11 to u(t) = fé Gi—s*x f(s)ds,0<t <T.Since G,y = Gy * Gy, it
follows for v, r >0,

v+r v

U+ 1) — uv) = / Gu+r,f*f<r>dr—/GM*f(r)dr
0 0
v+r v v
- f Guare # (D) dT + / Gupree # f(T)dT - / Gor * f(0)d
v 0 0

=/Gr_f*f(v+r)dr+Gr>ku(v)—u(v).
0

By Holder inequality and Lemma 10 for» > 0,and any 1 —k <6 <1 —1/p,

r

a““—”/GH * f(v+1)dT
0

r

p
< (/rer_gwa(l_'()Gr_f *f(u+r)|Lp dr)

p

Lp

0
A rla T,
< (/reth) /r9p|8°‘(17’()GT *f(u+r—t)|i dt
[7
0 0

,
<Cr(l_e)p_l/191’_(1_")1’|f(u+r—r)|€ dt
P
0

,
< r“—@)f’—lr@f’—(l—'f)f’f\f(u +r-o] de
0

r

=r<pl /|f(v +r—n) dt.

0
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By Lemma 10, for r, v > 0,
0°070[Gr % u() —u@)]|] < Cri¥fa®u)ly .

Therefore for a fixed up > 1,k € (0, 1], kp > 1,k > u,

/rlﬂw f|3“(1 K)[u(v+r)_u(v)]|l7 dv

<C / 1+M,/ Kkp— l/|f(v+r—r)|1’ drdv—i—/ 1+W/ "p|8°‘u(u)|p dv:|
ri—s d rot—r+t t—s 4 t—r
r » , )
<C /m/ / |f(v)}Lpdvdr+/m/wau(v)hpdv}
-0 0 s+t 0 "

p p -
C[|f|L,,(T) + |8au|Lp(T)](t — )k,
and by Lemma 11,

P ) —u@l, < CO= DTN, oy + [0l ] O

Corollary 4. Let u e H%, 0 <y <8 =a(l — 1) — 4 5 (. Then there is a Hélder continuous
modification of u on E and a constant C independent of u such that

lus, x) —u(t, x)| lu(s, x) —u(s, x)|
s —t|y/e

sup }u(t,x)] + sup

<Clulya.  (5.6)
(t.x)eE st | P

s,x7#x [x —x'|¥
Proof. By Proposition 2 with k =1 and k =1 — y /o — d/(pa) > n > 1/p, Remark 3 and
Sobolev embedding theorem,

lu(s, x) —u(s, x")|
sup |u(s,x)| + sup p < Clu|ye.
0<s<T soxx! lx —x'|Y g

F0r0<g<1—%—$thereare 1/p<u,<f<<l—%suchthat;c:,u—i—g.Sincea(l—

K) — % > 0, by Sobolev embedding theorem and Proposition 2,
|u(s, x) —u(t, x)| < Clu(s, ) —u(t, -)!ng—w
_ oY/ p a, |P
< Cle—s| [|f|L,,(T) +9 “|L,,(T)]
and the statement follows. O

Remark 5. Following the proof of Morrey’s lemma we could show with § = (1 — %) - % >0
that
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lu(t, y) —u(s, x)|
sup |u(t, x)| + sup Tz < Clulwe,

(t,x)eE S;ﬁl‘x(lt_s|+|y_x| ) P ap

where

t, _ p
ulfyy = //f/ et ) =S O s dy e+ ul? .
(It —s| + |y — x[o)PH1+e

0 0 R4 R4

Since the embedding Wy 2 H is continuous for p > 2, inequality (5.6) holds for y =4 if
p=2.

6. Martingale problem

In this section, we construct the Markov process associated to L = A + B by proving the
existence and uniqueness of the corresponding martingale problem (see [18]). A similar martin-
gale problem with all Holder continuous coefficients was considered in [15]. Proposition 3 below
shows the existence and uniqueness of the Markov process corresponding to L with Holder con-
tinuous A and measurable B (m(t, x, y) is only measurable in y).

Let D= D([0, T], R¢ ) be the Skorokhod space of cadlag R?-valued trajectories and let X, =
X:(w) = w, w € D, be the canonical process on it.

Let

Di=o0(X,, s<t), D=\/D, D=(Dy), t€l0,Tl
t

We say that a probability measure P on (D, D) is a solution to the (s, x, L)-martingale problem
(see [18,12)if P(X, =x, 0<r<s)=1andforallv e C(‘)’O(Rd) the process

t

M,(v):v(Xl)—/Lv(r, X, )dr 6.1)

N

is a (D, P)-martingale. We denote S(s, x, L) the set of all solutions to the (s, x, L)-martingale
problem.
A modification of Theorem 5 in [12] is the following statement.

Proposition 3. Let Assumptions A and B(i)—(ii) hold. Then for each (s, x) € E there is a unique
solution Py, to the martingale problem (s,x, L), and the process (X;,D, (Psx)) is strong
Markov.

If; in addition,

T
lim suprr(t,x,{|u| >l})dt=0, (6.2)
X

[— 00

0

then the function Py . is weakly continuous in (s, x).
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6.1. Auxiliary results
We will need the following L ,-estimate.
Lemma 12. (Cf. Lemma 3.6 in [12].) Let Assumptions A and B(i)—(ii) hold. Let p > % \Y za—d V2,

(50, x0) € E, P € §(s0, x0, L).
Then there is a constant C = C(R, T, K, n, B, w, p) such that for any f € C(C)’O(E),

T
EP/f(r, Xp)dr < CIflL,m)-
50

Proof. Let ¢ € Cgo(Rd), £20,¢(x)=¢(x]), ¢(x)=0if |[x] > 1, and f{pdx =1.Foré§ >0
denote £5(x) = e~4P¢(x/8), x e R?. Let

w0 = [ux =/ Mdy. G ek,
Let
Lv=Av + B%v,
where B®0 is defined by (2.5) with &g so that the assumptions of Corollary 1 hold. Then
Lv=Lv+Rv
with

Rv(t,x) = / [v(x +y)— v(x)] w(t,x,dy).

[ylI>¢0
Define L%v = Av + B9y, where

EP[¢) (X, — x) B}’ v(x)]

B3y (1, x) =
EP (X, —x)

(here we assume 8 = 0). Since for L’ the assumptions of Corollary 1 hold uniformly in 8, there
isu=ule HE(E) solving

du(t,x) + Lou(t,x) = f(t,x), (t,x)€E,
u(T,x)=0, xeR

Moreover, there is a constant C independent of § such that

§
|” |Hg(T) SCIflL, - (6.3)
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In addition, by Corollary 4 and (6.3), there is a constant independent of § such that

sup|u® (s, )| < CIf 1L, 1) (6.4)
5,X

Applying Ito formula to ug (t,x) = f Cf (x —2ul(t,2)dz = f Csp(z)u‘s(t, x —z)dz, we have

T
—ug(so, X0) = /[Btu‘s(r, )+ (A + Bgo"s)u‘s(r, Z)]Ka(l, 2)dz

S0
T T

+EP/Ru§(r, X,)dr—i—/Rz(r)dr
S0 50
T T T
EY f5(r, X,)dr+EP/Ru§(r, X,)dr—i—fRz(r)dr, (6.5)
S0 50 S0

where «5(t,z7) = EPg'ap(X[ —z)and forso <r <T,
Ry(r) = / EP[¢f (X, — ) Arx,u’(r.2) — ¢ (Xr — D) Ao’ (r,2) ] dz

—EP//V“us(r 2) m(r X, y) —m(r,z, y)] dy { (X, —2)dz
" |yl '

By Holder inequality, for any r € [so, T,
P _ P @ dy |7
|Rx(r)|” <E Veul(r,2)[m(r, Xy, y) —m(r, z, y)|¢s(X, — z)W dz.
According to Lemma 6(b) withe =6 and ¢ = ¢s(X; — ), m =m(r, X, y) —m(r, 2, y),

|[Ro()|” < Clo*u®()]? KO,

with
5 p
—Bp p
K(8)<C[8 w(8) +< / w(v )| |d+ﬁ> }
lv|<8
Therefore by (6.3),

T
/|R2(r)|pdr -0 asd—0. (6.6)

50

Since
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T T T

EY f5(r, Xr)drz—<u§(s0,xo)+EP/Ru§(r, Xr)dr—i-/Rz(r)dr)

S0 S0 50

(see (6.5)), the statement follows by (6.4) and (6.6) passing to the limitas 6 — 0. O

Corollary 5. Let Assumptions A and B hold, (so, xo) € E. Then the set S(sq, xo, L) consists of
at most one probability measure.

Proof. Let f € Cj°(E), p > % \Y za—d Vv 2. By Theorem 3, there is u € ’H‘;‘,(E) solving

ou(t,x)+ Lu(t,x)= f(t,x), (t,x)€E,
u(T,x)=0, xeR%

Letp € CP(RY), 9 >0, [pdx =1, g, (x) =c 9p(x/e), x € RY, and

et x) = / u(t.x — Ve dy,  (t.x) €RY.

Let P € S(s, x, L). Applying Ito formula,

T
—ug(s,x) = EP/[atug(r, X))+ Lug(r, Xr)] dr.

s

Using Lemma 12 and Corollary 4 to pass to the limit we derive that

T
—u(s,x)=EP / f@r, X,)dr. 6.7)

Suppose Py, P> € S(so, x0, L). We show that
P](Xt] EF],...,th EFn)ZPQ(Xt] EF],...,th EFn)
forany so <t; <--- <t, < T and Borel I;; C RY, 1<i<d.Forn=1,the equality is an obvi-
ous consequence of (6.7). If it is true for n, then by Theorem 1.2 in [ 18], the regular conditional
probabilities P}” and Py’ of Py and P, with respect to D;, belong to S(#,, Xy, (w), L). Since for
i=1,2,
P, (X; eln,..., X, €Iy, X1 € 1)

= / Xy (X, ) s, (Xo, ) EX xr (X4, ) Pi(dw)

the equality follows for n 4 1 because of the induction assumption and the proved case with
n=1. O
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Now we can construct a “local” solution of the martingale problem.

Lemma 13. Let Assumptions A, B(1)—(ii) hold, 7 (¢, x, dv) = xqx|<ry 7 (t, x,dv), (t,x) € E, for
some R > 0.

Then for each (s, x) € E there is a unique solution Ps y € S(s, x, L) and Py y is weakly con-
tinuous in (s, x).

Proof. Letp € CP(RY), 9 >0, [pdx =1, g, (x) = 9p(x/e), x € R?, and

e (t, x,dv) =/7r(t,x —2z,dv)ps(2)dz, (t,x)€E.

Let &, — 0 and let L" be an operator defined as L with 7 replaced by 7, . It follows by The-
orem IX.2.31 in [6] that the set S(s, x, L") # @. Since by Lemma 12, for P’;)x e S(s,x, L"),
denoting Ef | the expectation with respect to P ,

T T
E?yx/ngn(r,X,,{|v|>l})dr<C//n(r,x,{|v|>l})dxdr—>0 as | — oo,
N

N

the sequence {Pf ,} is tight (see Theorem VI.4.18 in [6]). Obviously, for each v € Cg® (RY)
and p > 1, [L"v — Lv|, — 0 and L"v is uniformly bounded. Suppose P{ , — P weakly. Let
s<qg<t<T,

1 t

Mt”(v)zv(X;)—/an(r, X,)dr, Mt(v)zv(X;)—/Lv(r, X,)dr

s N

and ¢ be D,;-measurable P-a.s. continuous. Then for each m > 1
0=E{, [qb(Mt”(v) — M;’ (v))]
t
=E}, [o(M"(v) — M (v))] + E} . / (L"v — L"™v)(r, X, dr.
q

Obviously,

E! [o(M]"(v) — MJ ()] - EF[¢p(M]" (v) — M} (v))]

as n — oo and

t
EP[p(M]" (v) — M ()] = EP[¢(M, (v) — My (v))] + EP¢/(Lv — L™v)(r, X,)dr.
q
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By Lemma 12 for large p,

1
EP¢/(LU—Lmv)(r, Xp)dr| < ClLv—=L"v|; ;).
q

v|Lp(T) — C|Lv— Lmv|Lp(T)

t
E?,mf(L”v —L™v)(r, X,)dr| < C|L"v — L™
q

as n — o0o. Since m, q, t, v are arbitrary, P € S(s, x, L). By Lemma 12, it is unique. Similarly,
we see that P , € S(s, x, L) is continuous in (s, x). O

Corollary 6. Let Assumptions A, B(1)—(ii) hold. Then for each (s, x) € E, there is at most one
solution Pg , € S(s, x, L).

Proof. The statement is immediate consequence of Lemma 13 and Theorem 1.6(b) in [12]. O
6.2. Proof of Proposition 3

The uniqueness follows by Corollary 6. In the first part of the proof we assume that (6.2) holds
and use weak convergence arguments. In the second part, we cover the general case by putting
together measurable families of probability measures.

(i) Assume (6.2) holds. Let L" be an operator defined as L with m replaced by x{|x|<n)7.
According to Lemma 13, for each (s, x) € E there is a unique P{ € S(s,x, L") and P{ , is
weakly continuous in (s, x). By Theorem V1.4.18 in [6], {P{ .} is tight. Since L"v — Lv point-
wise and L"v is uniformly bounded for any v € C§° (RY), by Lemma 3.7 in [12], the sequence
P?,x — Ps € S(s,x, L) weakly (Ps x is unique by Corollary 6). The same Lemma 3.7, [12],
implies that Py , is weakly continuous in (s, x).

(ii) In the general case (without assuming (6.2)), we split the operator Lu = Lu + Bu, where
L is defined as L with 7 (t, x, dv) replaced by x{jv|<1y 7 (¢, x,dv), and

Et,xu(x)z / [u(x+v)—u(x)]7r(t,x,du), (t,x)eE,ungo(Rd).
lu|>1

Let (£22, F2,P») be a probability space with a Poisson point measure p(df,dz) on [0, c0) x
(R\{0}) with

dzdt

Epdt,dz) = —.
p( ) EE

According to Lemma 14.50 in [5], there is a measurable RN {lvu| = 1}-valued function c(¢, x, z)
such that for any Borel I

dz
/X{|U|>1}n(t,x,dv):/Xp(c(t,x,z))z—z, (t,x)€E.

r
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Consider the probability space

(2,F,P,)=(2:x D, @D, P, ®Py ).

Let

t
HIZ\/“/‘C(raer,Z)p‘“(drvdZ)5 s<t<T7

SNt
t=inf(t >s: AHi=H;, — Hi_#0) AT,
K = X{e<s)s
Y = Xine + Hinew, 0<2<T.
Note that t =inf(r > s: AH;#ZO)AT =7 =inf(t >s: |AH;| > 1) AT. Let D= D([0,T],

R? x [0, 00)) be the Skorokhod space of cadlag Rf’ x [0, oo)-valued trajectories and let Z; =
Zi(w) = (v (w), kr(w)) = wy € R? x [0, 00), w € D be the canonical process on it. Let

Di=0(Zs. s<n, D=\/D. D=Dy). tel0.T].
t

Denote f’slx the measure on D induced by (¥;,K;),0<t<T.Let

Tp=inf(t >s: Ak, 2D AT, ...,
Tpr1 =1Inf(t > 7,0 Ak 2> D AT,

ﬁfn=U(ZIATn’ Ogth), I’lZl.
Then (IA’} ) is a measurable family of measures on (D, D) and for each v € Ccse (RY),

AT,
Mipg, () =v(Ying,) — / Lv(r,y.)dr, s<t<T, (6.8)

N
is (lA’;’x, ]ﬁ))—martingale with n = 1. Let us introduce the mappings

wy ift < 11(w),

o (w0, = |

w,ifr > (w),

and let

Q(dw,dw’) =P

pl Dl
7] (w),Xrl(w)(w) (dw/) Ps,x (dw)

Then Pfyx = Jr,(Q), the image of Q under J;,, is a measurable family of measures on D,
M, ATy 1S @ (13% o D)-martingale and 13% clp = IA’! «Ip_ - Continuing, we construct a sequence of
? w 1 o |

measures PY . such that
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pr+1
Ps,x

A
. =P"
DTn $,x

DTn

and A;It AT, 18 (IA’_” Iﬁ))—martingale. Since

§,X°

T Aty

P (00 < T) =P kg, > 1) <! / 7 (r, v, {01 > 1) dr

N

én_lKT—>0 asn — oo,
there is a measurable family (lA’M) on D such that

A
71

PS,X'@M ZPS’X @fn’ n 2 11

and ]\7It ATy 18 (IA’M, @)—martingale for every n. Obviously, y. under IA’M gives a measurable fam-
ily P » € S(s, x, L). The strong Markov property is a consequence of Theorem 1.2 in [18]. The
statement of Proposition 3 follows.
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Appendix A

For « € (0, 1) and a bounded measurable function m(y), set for v € SRY), x eRY,

d
Lo(r) = / [0 + ) — v ]m )~

|y|d+a‘
By Lemma 2,

d
gv(x):g%/fk@(z,y)a“u(x—z)dzme(y)—|y|dy+a

zlim/./k(“)(z,y)mg(y) dy 0%“v(x —z)dz,

e—0 |y |d+a

where m(y) = X(z<jyj<e—1ym(y). Fore € (0, 1), v € S(R?), consider
Kfv(x) =/ks(z)v(x —2)dz =/ka(x —2)v(2)dz
with

d
ke(x) :/k(o‘)(x, y)mg(y)MTy_m, x eR?,
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Obviously,
Lv(x) = lirr(l)ngao‘v(x), xeR?,
E—>

and to prove the continuity L : Hg (R - L p(Rd), we will show that there is a constant C,
independentof ¢ € (0,1) andv € S (R?), such that

|IC‘9v|Lp < Clg,. (A.1)
According to Theorem 3 of Chapter I'in [17], (A.1) will follow provided

|Kfv],, < Clol, (A2)

and

/ ke (x —5) — ks (x)|dx < C forall s € R%. (A3)

|x|>4]s|
Remark 6. For any 7 > 0, we have k@ (tx, ty) = t*~9k® (x, y). Therefore

dy

ke (1) =177 / K@ (x, yyme (ty) i = ke (1, %)
with
ke (1, ) = / k<“><x,y)mg<ty)|yT’Tyﬂ.
Note that for x # 0,
dy

ke (x) = ke (|x|%) = |x|—dfk<“’<£, y)me(|x]y) = x|k (Ix], %),

|y|d+oz
where x = x/|x]|.

Lemma 14. Let « € (0, 1), |m(y)| < 1, y € R%. Then for each p > 1 there is a constant C
independent of u and ¢ such that,

|IC£v}LP <Cll,. veLy(RY).

Proof. By Theorem 3 of Chapter I in [17] it is enough to show that (A.2) and (A.3) hold. By
Lemma 1 of Chapter 5.1 in [16], it follows

195(5)=fe"'<"f>kg(x)dx:C|s|‘“/[e—i<s,y) _ 1]’"8(”%

- d
_ /[efz(é,y) — 1]mg(y/|§|)|y|Ty+a,
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where .f,? = &/|£|. Therefore, by Parseval’s equality, (A.2) holds for v € S(R?). The key estimate
is (A.3). By Remark 6, denoting § = s/|s|, we have

‘/|@u—g—@unm:=t/ @OnG%-Q)-@Onﬁ)dx
s s
|x|>4]s] lx1/1s|>4
=Is|’ f [Ke (Is1(x = $)) — ke (Is|x) | dx
|x|>4
=‘/Mme—®—@mp@wx
|x|>4
and it is enough to prove that
ke (Is], x = §) — ke(Is], x)|dx <M foralls e RY, §=s/s]. (A4
|x|>4
We will estimate for [x| >4, s € RY 5= s/|s|, the difference
k(s x —5) —k(Isl,x)| = | [k (x =5, y) =k (x ﬂm(u|le—
s s - >y >y & y |y|d+“
= / ot / .= A1+ A
IyI<Ixl/2 [yl>lx1/2
Let
F(t) = 1 1 t<1
oy =Syl |x —gsdme’ T T
If a segment connecting x and x — § does not contain zero, then
1
K =35, y) =k (x, »)| = [F(1) = FO)] < /|F/(r)|dr (A5)
0
with
1 — 15 , S 1 — 15,5
Fl1)= (@ —d)| - ] (x s:{—y s) | (x sAs) ’
|x —t§ + yld—o+l |x —15 4+ ] |x —z§|d—a+l |x — 5]
and

1 1
|x—t§+y|d_0‘+1 |x—t§|d_“+l

+ ! 1+ ! (IyIA1) (A.6)
x — 15[d—a+1 x—z5 )W '

[F'(n]<C
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Estimate of A;. Let |x| >4, z=x —1t5,t €[0,1], and |y| < |x|/2. In this case, |x + y| >
x| — Iyl = |x1/2 22,

Clx| =2z +yl = Ix]/4 > 1,
Clx| =2zl =2 x| =1 23|x|/4 >3
and (A.5) holds. Since
1 1 dy
|z + yld—et] - |z|d—a+1 | |y|d+a
[yI<Ix]/2
o 1 / 1 _ 1‘ dy C
= |Z|d+1 |2 +y|d—a+1 |y|d+oz = |x|d+1 ’
ly1<2/3
and
dy
/ (Iyl A 1)|y|T+0t <C
lyI<Ixl/2
it follows by (A.6), that
1 d
Al <C R Iyl A1) |2
|Z +y|d7a+1 |Z|dfot+1 |Z|dfot+1 |y|d+a
yI<Ixl/2

1 1
S C|:|x|d+l + |x|d—a+1:|'

Estimate of As.Let |x| >4, |y| > |x|/2. In this case we split

. dy
M= [ KOG =50 KO (i) =0
[yI>1x1/2
_ / o
{IxI=3/2Z21y|>1x|/2}U{|y|>]x[+3/2} {Ix|=3/2<|yI<Ix[+3/2}
= B + B».

If x| —3/2 > |y| > |x|/2 or |y| > |x|+3/2, then we can apply (A.5) and (A.6). For z = x —¢§
we have |z 4+ y| > % and

1 1
\Fﬁﬂgc[ ]

|Z + y|d—a+l + |Z|d—o¢+1

Therefore
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Bil<C 1 dy 1 dy
1Bl < |Z|d—a+1 |y|d+oc + |Z+y|d—a+l |y|d+a
{5y BlyIixi-3)
S ]
|z+y|d —a+1 |y|d+a
{Ix]+3 <yl
= By1 + Bi2 + Bis.
Now
1 dy C
B =C / |Z|a’—a+1 |y|d+a = |x|a'+1 ’
{5yl
and
1 dy

By < Clz|™4! - ,

= |Z+y|d7a+l |y|d+a

<y Ux=3)/121)
1 dy
—d—1

Bl3 < C|Z| f |2 +y|d—<x+l |y|d+°‘

-+ <o

by 3 <|yl,then |z + y| > % and |y| > 1/3.

3
<(|x|_j)/|z|0r T2

with Z =z/|z|. If 2
Therefore

dy
B < Clz| ™! / _—
| | |Z_|_y|d—oc+1
{12+y1> 77}

<Clz| 47 < Cx| 74

and

B3 < Clz|™! ;d
13 % Z |2+y|d—oc+l y

1
Z 27|

=Clz|™ " < Clx|79.

Now we estimate By. If |x| — % <yl < x|+ % then we estimate directly. First we have

1 dy a—d
/ e yjare S CH

{Ix1=3 <IyI<Ixl+3)

1 1

(x| =) (x| +3)e

< Clx|747@.
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Then,forz:x—tfwithte[0,1],wehave%gl—ég%gl%—%g%and
/ 1 dy
|z + yld—o |y|d+e
{xl—-3 < IyI<Ixl+3)
1 d
—d y
<z / =
sl |2 4 yld= |y|d+e
1= <IyI< 1+ 275}
< e / ot /
{1= 5 SIS U . JatyI> [z ~o/4) (1= 5 SIVIS T 57 a4y ) =2/4)
a d dy
clurtaies et [ ]
[l el Jyld+e |2+ yld—

=g <IyI< T+ 57} |2+yI<z|=a/d
< C|Z|7a2/d7d <Clx[™ 2/d—d
with Z = z/|z|. Therefore,
|Ba] < ClJx 74~ x|=4-1].
The statement follows. O

For a bounded measurable m(y), y € RY and o € 0, 2), setforv e S(Rd), xeRY,
dy
Lvu(x) = /[v(x + ) —v(®) — xa (M (Vox), y)]m(y)W-

Lemma 15. Let [m(y)| < K, y € R p>1,anda € 0,2). Assume
y y P

dy
/ ) i =0
r<lyI<R
forany O <r < R if o = 1. Then there is a constant C such that
|Lv|p, < CK|[d“

U|Lp’ v ELP(Rd).

Proof. If « € (0, 1), then for v € S(RY) we have
Lou(x) = lim K*8%v(x), xeRY,
e—0
and by Lemma 14 there is a constant C independent of u such that

-1
|K £v|Lp < C|8°‘U|LP
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or

|LvlL, <CK[o%], . veS(RY).

If ¢ € (1, 2), then it follows by Lemma 2 that for u € S(RY),

1
dsd
Ev(x):/f(Vv(x—i—S}O—VU(X),)’)m(Y)J[Tja
0
:f(Vv(x+y)—Vv(X) L>M()’)d—y
"yl |y[dte=t

with
1

M(y):/m(y/s)s_1+°‘ds, y € R%.
0

1625

Therefore, the estimate reduces to the case of o € (0, 1): there is a constant C independent of

v € S(RY) such that
Lol < CK[6°7'Vo|, < CK[™], .
If o = 1, then for v € S(RY),
Lo = lim [[[o0e+3) = 000 ] ) 5
=0 Iyl4+
with m(y) =m(y)1.-15 -, ¥ € RY. Since for v € S(RY), x € R,

d
/[v(x +y) - v(x)]ms(y)MTyH

dy
://‘k(l/z)(z,)’)31/21)()c—z)dzmg(y)mTJrl

://k(l/z)(z,y)[8l/2v(x—z)—al/zv(x)]dzmg(y)%
y

(see Lemma 2), it follows that

. d
cutoy = Jiny [ [ KO ms ()= [0 s = 2) =0 o) .
Obviously,
dy 1 1 dy 1
P yme ) = [ < —1>m 2y) o = —
f ST s S\ syt ol )Iyl‘“rl Iz)4+2

M (2),
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where Z = z/|z|. For ¢ € (0, 1/2), we have |M.(z)| < CK and limy,_o M.(z) = M(z), 7 € RY,
where

_ - “Ne _dy_

(Iy1<$)

1 dy
+ / <——1>m lzly .
12+ y|9—z ( )Iyl‘“rl

{Iy1> 4}

Therefore, fora =1,

dz
[4+5

Lvu(x) = /[31/21)()6 +2z) — Bl/zv(x)]M(—z)
|z

with [M (z)| < CK, z € R? and the estimate follows from the case &« = 1/2. O
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