期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:266 |
Symmetry and rigidity for the hinged composite plate problem | |
Article | |
Colasuonno, Francesca1  Vecchi, Eugenio2  | |
[1] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy | |
[2] Sapienza Univ Roma, Dipartimento Matemat Guido Castelnuovo, Ple Aldo Moro 5, I-00185 Rome, Italy | |
关键词: Composite plate problem; Biharmonic operator; Navier boundary conditions; Moving plane method; Symmetry of solutions; Rigidity results; | |
DOI : 10.1016/j.jde.2018.10.011 | |
来源: Elsevier | |
【 摘 要 】
The composite plate problem is an eigenvalue optimization problem related to the fourth order operator (-Delta)(2). In this paper we continue the study started in [10], focusing on symmetry and rigidity issues in the case of the hinged composite plate problem, a specific situation that allows us to exploit classical techniques like the moving plane method. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2018_10_011.pdf | 994KB | download |