期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:250
Spectral theory of Hamiltonian systems with almost constant coefficients
Article
Behncke, Horst2  Hinton, Don1 
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Osnabruck, Fachbereich Math Informat, D-49069 Osnabruck, Germany
关键词: Hamiltonian systems;    Spectrum;    Asymptotic solutions;    Titchmarsh-Weyl functions;   
DOI  :  10.1016/j.jde.2010.10.014
来源: Elsevier
PDF
【 摘 要 】

We derive the spectral theory for general linear Hamiltonian systems. The coefficients are assumed to be asymptotically constant and satisfy certain smoothness and decay conditions. These latter constraints preclude the appearance of singular continuous spectra. The results are thus far reaching extensions of earlier theorems of the authors. Two-, three- and four-dimensional systems are studied in greater detail. The results also apply to the case of the Dirichlet index and Dirichlet spectrum. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2010_10_014.pdf 245KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:1次