期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:262
Steady flow for shear thickening fluids in domains with unbounded sections
Article
Dias, Gilberlandio J.1 
[1] Univ Fed Amapa UNIFAP, Colegiado Matemat, Rodovia Juscelino Kubistchek de Oliveira S-N, BR-68902280 Macapa, AP, Brazil
关键词: Power-law fluids;    Ladyzhenskaya-Solonnikov problem;    Non-Newtonian fluids;    Shear thickening fluids;   
DOI  :  10.1016/j.jde.2016.11.007
来源: Elsevier
PDF
【 摘 要 】

We solve the stationary Stokes and Navier-Stokes equations for non-Newtonian incompressible fluids with shear dependent viscosity in domains with outlets containing unbounded cross sections, in the case of shear thickening viscosity. The flux assumes arbitrary given values and the growth of the cross sections are analyzed under different convergence hypotheses, inclusive the growth of Dirichlet's integral of the velocity field is deeply related the convergence hypotheses of such sections. We extend the results of the section 4 of [12, Ladyzhenskaya and Solonnikov] (for Newtonian fluids) to non-Newtonian fluids using the techniques found in [3, Dias and Santos]. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2016_11_007.pdf 1367KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次