期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:252
Steady flow for shear thickening fluids with arbitrary fluxes
Article
Dias, Gilberlandio J.2  Santos, Marcelo M.1 
[1] Univ Estadual Campinas UNICAMP, IMECC, Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Amapa UNIFAP, Colegiado Matemat, BR-68902280 Macapa, PA, Brazil
关键词: Power-law fluids;    Ladyzhenskaya-Solonnikov problem;    Non-Newtonian fluids;    Shear thickening fluids;    Ostwald-De Waele law;    Leray problem;   
DOI  :  10.1016/j.jde.2011.11.025
来源: Elsevier
PDF
【 摘 要 】

We solve the stationary Navier-Stokes equations for non-Newtonian incompressible fluids with shear dependent viscosity in domains with unbounded outlets, in the case of shear thickening viscosity, i.e. the viscosity is given by the shear rate raised to the power p - 2 where p > 2. The flux assumes arbitrary given values and the Dirichlet integral of the velocity field grows at most linearly in the outlets of the domain. Under some smallness conditions on the energy dispersion we also show that the solution of this problem is unique. Our results are an extension of those obtained by O.A. Ladyzhenskaya and V.A. Solonnikov [O.A. Ladyzhenskaya, V.A. Solonnikov, Determination of the solutions of boundary value problems for steady-state Stokes and Navier-Stokes equations in domains having an unbounded Dirichlet integral, J. Soviet Math. 21 (1983) 728-761] for Newtonian fluids (p = 2). (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2011_11_025.pdf 287KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次