期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:263
A non-existence result for low energy sign-changing solutions of the Brezis Nirenberg problem in dimensions 4, 5 and 6
Article
Dammak, Yessine1,2,3 
[1] Sfax Univ, Sfax Business Sch, Sfax, Tunisia
[2] Sfax Univ, Fac Sci Sfax, Sfax, Tunisia
[3] Sfax Business Sch, BP 1081, Sfax 3018, Tunisia
关键词: Blow-up analysis;    Sign-changing solutions;    Lack of compactness;    Critical exponent;   
DOI  :  10.1016/j.jde.2017.08.020
来源: Elsevier
PDF
【 摘 要 】

We consider the Brezis Niremberg problem: (P-epsilon) {-Delta u = vertical bar u vertical bar(p-1) u + epsilon u in Omega, u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-n, n = 4, 5, 6, p + 1 = 2n/n-2 is the critical Sobolev exponent and epsilon is a positive parameter. The main result of the paper generalizes the result of A. Iacopetti and F. Pacella [10]. Precisely we show that there are no low energy sign-changing solutions u(epsilon) with max u(epsilon) / min u(epsilon) -> 0 or -infinity as epsilon goes to zero. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_08_020.pdf 1700KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次