期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:253
Solutions of Schrodinger equations with inverse square potential and critical nonlinearity
Article
Deng, Yinbin1  Jin, Lingyu2  Peng, Shuangjie1 
[1] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
[2] S China Agr Univ, Coll Sci, Guangzhou 510642, Guangdong, Peoples R China
关键词: Compactness;    Critical Sobolev exponent;    Nonlinear Schrodinger equation;    Positive solutions;    Palais-Smale sequence;   
DOI  :  10.1016/j.jde.2012.05.009
来源: Elsevier
PDF
【 摘 要 】

In this paper, we are concerned with the following nonlinear Schrodinger equations with inverse square potential and critical Sobolev exponent -Delta u - mu u/vertical bar x vertical bar(2) + a(x)u = vertical bar u vertical bar(2)*(-2)u + f(x, u), u is an element of H-1(R-N), (P) where 2* = 2N/(N - 2) is the critical Sobolev exponent, 0 <= mu < <(mu)over bar> := (N-2)(2)/4, a(x) is an element of C(R-N). We first give a representation to the Palais-Smale sequence related to (P) and then obtain an existence result of positive solutions of (P). Our assumptions on a(x) and f(x, u) are weaker than the known cases even if mu = 0. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2012_05_009.pdf 246KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次