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In this paper, we are concerned with the following nonlinear
Schrödinger equations with inverse square potential and critical
Sobolev exponent

−�u − μ
u

|x|2 + a(x)u = |u|2∗−2u + f (x, u),

u ∈ H1(
R

N)
, (P)

where 2∗ = 2N/(N − 2) is the critical Sobolev exponent, 0 � μ <

μ̄ := (N−2)2

4 , a(x) ∈ C(RN ). We first give a representation to the
Palais–Smale sequence related to (P) and then obtain an existence
result of positive solutions of (P). Our assumptions on a(x) and
f (x, u) are weaker than the known cases even if μ = 0.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following nonlinear Schrödinger equations with inverse square potential and crit-
ical Sobolev exponent

−�u − μ
u

|x|2 + a(x)u = |u|2∗−2u + f (x, u), u ∈ H1(
R

N)
, (1.1)

where 2∗ := 2N/(N − 2) is the critical Sobolev exponent, 0 � μ < μ̄ := (N−2)2

4 .
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The main reason of interest in inverse square potentials (Hardy term) relies in their criticality:
indeed they have the same homogeneity as the Laplacian and the critical Sobolev exponent and do
not belong to the Kato class, hence they cannot be regarded as a lower order perturbation term.
Besides, potentials with this rate of decay are critical also in nonrelativistic quantum mechanics, as
they represent an intermediate threshold between regular potentials (for which there are ordinary
stationary states) and singular potentials (for which the energy is not lower-bounded and the particle
falls to the center), for more details see [17]. We also mention that inverse square singular poten-
tials arise in many other physical contexts: molecular physics, see e.g. [20], quantum cosmology [5],
linearization of combustion models [1,3]. Moreover, we emphasize the correspondence between non-
relativistic Schrödinger operators with inverse square potentials and relativistic Schrödinger operators
with Coulomb potentials, see [13]. When f (x, u) has the form K (x) f (u), we point out that prob-
lem (1.1) arises in nonlinear optics, in plasma physics and in condensed matter physics, where the
presence of many particles leads one to consider nonlinear terms which simulate the interaction effect
among them. The function a(x) represents the potential acting on the particle and K (x) a particle-
interaction term, which avoids spreading of the wave packets in the time-dependent version of the
above equation.

Another reason why we investigate (1.1), in addition to the inverse square potential, is the presence
of the critical Sobolev exponent and the unbounded domain R

N , which cause the loss of compactness
of embedding D1,2(RN ) ↪→ L2∗

(RN ) and H1(RN ) ↪→ L p(RN ). Hence, including the noncompactness
of the imbedding D1,2(RN ) ↪→ L2(RN , |x|−2 dx), we face a type of triple loss of compactness whose
interacting each other will result in some new difficulties. In last two decades, loss of compactness
leads to many interesting existence and nonexistence phenomena for elliptic equations (see, for ex-
ample, [1,2,7,9,10,16,19,21,22,25,26,28] and the references therein). The main purpose of this paper is
to exhibit some new existence phenomena for problem (1.1).

The first goal of this paper is to provide a careful analysis of the features of a Palais–Smale
sequence for the functional related to (1.1). To this end, following the point of view adopted by
Struwe [25] for the Dirichlet problem, we employ the blow-up technique to characterize all energy
values where the Palais–Smale condition fails. More precisely, we represent any diverging Palais–
Smale sequence as the sum of critical points of a family of limiting functionals which are invariant
under scaling. Because of the inverse square potential, the critical Sobolev exponent, the nonlinear
term f (x, u) and the unboundedness of the domain, there are three types of critical points of a new
family of limiting functionals in our problem. As a by-product, we find the lowest level at which
Palais–Smale condition may fail. Thus we are able to determine safe sublevels where standard crit-
ical point theorems can be applied. For the readers’ convenience, we mentioned some literatures in
which characterization of Palais–Smale sequences were obtained. The well-known result was on the
Brezis–Nirenberg problem in bounded domains and was given by Struwe in [25], where the non-
compactness is completely described by a single blow-up profile. Zhu and Cao in [28] represented
Palais–Smale sequences for (1.1) without the inverse square potential and critical Sobolev term by
translating the ground state of the limiting equation corresponding to (1.1) to infinity. Recently, for
(1.1) with a(x) = 0 and f (x, u) = 0, Smets in [24] and Cao and Peng in [9] obtained a representation
of Palais–Smale sequences on unbounded and bounded domains respectively. Their results show that
blowing up Palais–Smale sequences can bear exactly two types of bubbles. For more results, we refer
the readers to [4,15,23,26,27] and the references therein.

Our second purpose in this paper is to obtain positive solutions for (1.1) under weaker condi-
tions on a(x) and the nonlinear term f (x, u) by applying the previous compactness analysis. First,
following a well-known strategy developed for the Dirichlet problem, we show that the functional re-
lated to (1.1) satisfies the geometrical assumptions of the Mountain Pass Theorem. Then we again
use the blow-up technique to show that the Mountain Pass level is actually below a compact-
ness threshold. Usually, to ensure that the Mountain Pass level is actually below the compact-
ness threshold, we should impose the conditions that a(x) is positive and a(x) < lim|x|→∞ a(x) or
f (x, u) > lim|x|→∞ f (x, u) (see e.g. [8]). However, in this paper, we may weaken this kind of condi-
tions.

To mention our main results, we need to introduce some notations and assumptions.
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Let H1(RN ) be the standard Sobolev space with the usual norm

‖u‖H1(RN ) =
( ∫
RN

(|∇u|2 + u2)dx

)1/2

,

and

D1,2(
R

N) = {
u ∈ L2

loc

(
R

N)
: |∇u| ∈ L2(

R
N)}

with the norm

‖u‖D1,2(RN ) =
( ∫
RN

|∇u|2 dx

)1/2

.

We assume that

(a1) a(x) ∈ C(RN ), lim|x|→+∞ a(x) = ā > 0 and there exists a constant λ1 > 0 such that

∫
RN

(
1 −

(
2

N − 2

)2

μ

)
|∇u|2 + a(x)u2 dx � λ1

∫
RN

(
ā − a(x)

)
u2, for all u ∈ H1(

R
N);

(Without loss of generality, we may assume ā = 1.)
(a2) f (x, t) is differentiable with respect to t ∈ [0,+∞) for all x ∈ R

N and continuous with respect to
x ∈ R

N for all t ∈ [0,+∞). Moreover, we extend f (x, t) ≡ 0 for all t ∈ (−∞,0), x ∈R
N ;

(a3) there exists a constant p ∈ (1, N+2
N−2 ) such that limt→+∞ f (x,t)

t p = 0 and limt→0+ f (x,t)
t = 0 uni-

formly in x ∈R
N ;

(a4) there exists a constant θ ∈ ( N−2
N+2 ,1) such that θt ∂

∂t f (x, t) � f (x, t) > 0, for all x ∈R
N , t > 0;

(a5) lim|x|→+∞ f (x, t) = f̄ (t) uniformly on any compact subset of [0,∞) and there exists a constant
ν > 2 such that for any ε > 0 we can find Cε > 0 satisfying

f (x, t) − f̄ (t) � −e−ν|x|(εt + Cεt p)
for all x ∈R

N , t � 0,

where p ∈ (1, N+2
N−2 ) is given by (a3).

Remark 1.1. Assumption (a1) is applied to prove Lemma 2.3 which gives that

( ∫
RN

(
|∇u|2 + a(x)u2 − μ

u2

|x|2
)

dx

) 1
2

is an equivalence norm of H1(RN ). We provide an interesting example in Section 5 to show that a(x)
may be negative in some bounded domain in R

N .

Remark 1.2. We can easily verify that the function

f (x, t) =
{

(1 − e−ν|x|)tq for t � 0, x ∈R
N ,

N
0 for t < 0, x ∈R ,
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satisfying our assumptions (a2)–(a5). Here ν > 2, 1 < q < p and p is given by (a3). This example
shows that f (x, u) < f̄ (u) may be permitted in our case.

The energy functional associated with problem (1.1) is defined by

I(u) = 1

2

∫
RN

(
|∇u|2 + a(x)u2 − μ

u2

|x|2
)

dx − 1

2∗

∫
RN

(
u+)2∗

dx −
∫
RN

F (x, u)dx, u ∈ H1(
R

N)
,

where F (x, u) = ∫ u
0 f (x, t)dt .

Now, we list three limiting equations related to problem (1.1).
The first limiting equation of (1.1) at infinity is

−�u + u = |u|2∗−2u + f̄ (u), u ∈ H1(
R

N)
, (1.2)

and the corresponding variational functional is

I∞ = 1

2

∫
RN

(|∇u|2 + u2)dx − 1

2∗

∫
RN

(
u+)2∗

dx −
∫
RN

F̄ (u)dx, u ∈ H1(
R

N)
,

where F̄ (u) = ∫ u
0 f̄ (t)dt .

The limiting equation of (1.1) relating to both Hardy term and critical nonlinear term is

−�u − μ
u

|x|2 = |u|2∗−2u, u ∈ D1,2(
R

N)
, (1.3)

and the corresponding variational functional is

Iμ = 1

2

∫
RN

(
|∇u|2 − μ

u2

|x|2
)

dx − 1

2∗

∫
RN

(
u+)2∗

dx, u ∈ D1,2(
R

N)
.

The last limiting equation of (1.1) relating to critical nonlinear term is

−�u = |u|2∗−2u, u ∈ D1,2(
R

N)
, (1.4)

and the corresponding variational functional is

I0 = 1

2

∫
RN

|∇u|2 dx − 1

2∗

∫
RN

(
u+)2∗

dx, u ∈ D1,2(
R

N)
.

The set of positive solutions of (1.4) is the well-known (N + 1)-parameter family of

U ε,y
0 (x) := ε(2−N)/2U0

(
x − y

ε

)
,

where

U0(x) := C(N)
(
1 + |x|2) 2−N

2 ,
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for an appropriate constant C(N) > 0. These solutions are also known to minimize the Sobolev quo-
tient

S = inf
u∈D1,2(RN )\{0}

∫
RN

|∇u|2 dx
/( ∫

RN

|u|2∗
dx

) 2
2∗

.

For 0 < μ < μ̄, it was shown in [26] that all positive solutions of (1.3) are of the form U ε
μ(x) :=

ε
2−N

2 Uμ(x/ε), where

Uμ(x) := Cμ(N)
1

|x|
√

μ̄−β(1 + |x|
2β√

μ̄ )
N−2

2

for an appropriate constant Cμ(N) > 0, and β := √
μ̄ − μ. These solutions minimize the quotient

Sμ = inf
u∈D1,2(RN )\{0}

∫
RN

(
|∇u|2 − μ

u2

|x|2
)

dx
/( ∫

RN

|u|2∗
dx

) 2
2∗

.

Clearly, Sμ is decreasing in μ, and a simple computation shows that limμ→μ̄ Sμ = 0.

Define

J∞ = inf
u∈N I∞(u),

where

N =
{

u ∈ H1(
R

N) \ {0}
∣∣∣ ∫
RN

(|∇u|2 + u2 − |u|2∗ − f̄ (u)u
)

dx = 0

}
.

It is known that N 
= ∅ since problem (1.2) has at least one positive solution if N � 4 (see [14]).
Gidas, Ni and Nirenberg [18] showed that J∞ can be achieved by a function w ∈ N , moreover

there exist a1,a2 > 0 such that for all x ∈R
N ,

a1
(|x| + 1

)− N−1
2 e−|x| � w(x) � a2

(|x| + 1
)− N−1

2 e−|x|. (1.5)

For convenience, we also define the following quantities, which will represent the amount of I
carried over by blowing-up bubbles:

D0 :=
∫
RN

(
1

2
|∇U0|2 − 1

2∗ U 2∗
0

)
dx = 1

N
S N/2,

Dμ :=
∫
RN

(
1

2
|∇Uμ|2 − μ

2

U 2
μ

|x|2 − 1

2∗ U 2∗
μ

)
dx = 1

N
S N/2
μ .

We prove that diverging Palais–Smale sequences can be represented as sums of scaled critical points
of the functional I∞ , I0 or Iμ by exploiting suitable blow-up arguments. The main result of our paper
is as follows:
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Theorem 1.1. Suppose β > 1, N � 5, a(x) and f (x, u) satisfy (a1)–(a5), {un} is a nonnegative Palais–Smale
sequence of I at level d � 0, then there exist three nonnegative integers l1 , l2 and l3 , l1 sequences {R j

n} ⊂ R
+

(1 � j � l1), 2l2 sequences {r j
n} ⊂ R

+ , {x j
n} ⊂ R

N\{0} (1 � j � l2), l3 sequences {y j
n} ⊂ R

N (1 � j � l3),
0 � u ∈ H1(RN ), 0 < u j ∈ H1(RN ) (1 � j � l3) such that up to a subsequence:

• I ′(u) = 0, I∞′(u j) = 0 (1 � j � l3);
• R j

n → 0 (1 � j � l1) as n → ∞;
• x j

n → x j ∈R
N ∪ {∞}, r j

n → 0 and r j
n

|x j
n | → 0 (1 � j � l2), as n → ∞;

• |y j
n| → ∞ (1 � j � l3), as n → ∞;

• d = I(u) + l1 Dμ + l2 D0 + ∑l3
i=1 I∞(ui);

•
∥∥∥∥∥un − u −

l1∑
j=1

U R j
n

μ −
l2∑

j=1

U r j
n,x j

n
0 −

l3∑
j=1

u j(x − y j
n
)∥∥∥∥∥

H1(RN )

= on(1) as n → ∞. (1.6)

In particular, if u 
≡ 0, then u is a positive weak solution of (1.1). Note that the corresponding sum in (1.6) will
be treated as zero if li = 0 (i = 1,2,3).

Using above representation result of Palais–Smale sequences and Mountain Pass Theorem, we can
obtain the following existence result of positive solutions.

Theorem 1.2. Assume that a(x), f (x, u) satisfy (a1)–(a5), β > 1, N � 5, 1 − a(x) + μ
|x|2 > 0. Then prob-

lem (1.1) has a positive solution u ∈ H1(RN ) which satisfies

I(u) < min

{
1

N
S N/2
μ , J∞

}
.

Compared with the global compactness results proved in [24], where the Palais–Smale sequence
was dealt in space D1,2(RN ), we investigate the Palais–Smale sequence in space H1(RN ) by using the
compactness-concentration principle of Lions in [21,22]. More precisely, we will analyze carefully the
behavior of the L2-norm of the Palais–Smale sequence to determine what kind of blow-up occurs.
We also point out here that it is the boundedness of L2-norm of the Palais–Smale sequence that
results in the phenomena that R j

n → 0 and r j
n → 0 as n → ∞ in Theorem 1.1. This is different from

the result in [24] where R j
n and r j

n may tend to infinity as n → ∞. It is also the L2-integrability
of U0 and Uμ that needs us to impose the conditions N � 5 and β > 1. Concerning the existence
result, we emphasize that, as mentioned before, compared with the known assumption 0 < a(x) < ā
or f (x, u) > f̄ (u), a(x) � ā or f (x, u) < f̄ (u) may be permitted in our case. Moreover, our a(x) may
be negative in some bounded domain in R

N .
In the sequel, we will denote by B(x, r) a ball centered at x with radius r and Br a ball centered

at 0 with radius r. For simplicity, we will use the same C or c to denote various generic positive
constants. on(1) denotes a datum which tends to 0 as n → ∞.

2. Some preliminary lemmas

In this section, we list some lemmas. The proofs of some lemmas can be found in the correspond-
ing references.

Lemma 2.1. (See Lemma 2.1 in [28].) Let {ρn}n�1 be a sequence in L1(RN ) satisfying

ρn � 0 on R
N , lim

n→∞

∫
N

ρn dx = λ > 0, (2.1)
R
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where λ > 0 is fixed. Then there exists a subsequence {ρnk } satisfying one of the following two possibili-
ties:

(i) (Vanishing):

lim
k→+∞

sup
y∈RN

∫
y+B R

ρnk (x)dx = 0, for all 0 < R < +∞. (2.2)

(ii) (Nonvanishing): ∃α > 0, 0 < R < +∞ and {yk} ⊂ R
N such that

lim
k→+∞

∫
yk+B R

ρnk (x)dx � α > 0.

Lemma 2.2. (See Lemma 2.3 in [28].) Let 1 < p � ∞, 1 � q < ∞, with q 
= Np
N−p if p < N. Assume that un is

bounded in Lq(RN ), |∇un| is bounded in Lp(RN ) and

sup
y∈RN

∫
y+B R

|un|q dx → 0 for some R > 0 as n → ∞.

Then un → 0 in Lα(RN ), for α ∈ (q,
Np

N−p ).

Lemma 2.3. Assume that a(x) satisfies (a1). Then there exist two positive constants C and c such that

c‖u‖2
H1(RN )

�
∫
Rn

(
|∇u|2 + a(x)u2 − μ

|x|2 u2
)

dx � C‖u‖2
H1(RN )

.

Proof. By Hardy inequality [1] and (a1), we find that

∫
RN

(
|∇u|2 + a(x)u2 − μ

|x|2 u2
)

dx

�
∫
RN

((
1 −

(
2

N − 2

)2

μ

)
|∇u|2 + u2 − (

1 − a(x)
)
u2

)
dx

�
∫
RN

((
1 −

(
2

N − 2

)2

μ

)
|∇u|2 + u2

)
dx − 1

λ1 + 1

∫
RN

((
1 −

(
2

N − 2

)2

μ

)
|∇u|2 + u2

)
dx

=
(

1 − 1

λ1 + 1

) ∫
RN

((
1 −

(
2

N − 2

)2

μ

)
|∇u|2 + u2

)
dx

� C‖u‖2
H1(RN )

since λ1 > 0.
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On the other hand, from (a1) we obtain that

∫
RN

(
|∇u|2 + a(x)u2 − μ

u2

|x|2
)

dx �
∫
RN

(|∇u|2 + ∥∥a(x)
∥∥

L∞ u2)dx � C‖u‖H1(RN )

for all u ∈ H1(RN ). This completes the proof. �
Lemma 2.4. Assume (a1)–(a5). Let {un} be a Palais–Smale sequence of I at level d ∈R. Then d � 0 and {un} ⊂
H1(RN ) is bounded. Moreover, every Palais–Smale sequence for I at a level zero converges strongly to zero.

Proof. It follows from (a4) that

θ

1 + θ
u f (x, u) � F (x, u) and

θ

1 + θ
� 1

2∗ .

Hence, from Lemma 2.3, we see

d + o
(‖un‖

) = I(un) − θ

1 + θ

〈
I ′(un), un

〉

�
(

1

2
− θ

1 + θ

) ∫
RN

(
|∇un|2 + a(x)|un|2 − μ

|un|2
|x|2

)
dx

−
∫
RN

F (x, un)dx + θ

1 + θ

∫
RN

f (x, un)un dx

�
(

1

2
− θ

1 + θ

) ∫
RN

(
|∇un|2 + a(x)|un|2 − μ

|un|2
|x|2

)
dx � c‖un‖2

H1(RN )
. (2.3)

Thus {un} is bounded in H1(RN ) and d � 0. Moreover, if d = 0, then

lim
n→∞‖un‖H1(RN ) = 0. �

Lemma 2.5. Assume (a1)–(a5). Let {un} be a Palais–Smale sequence of I at level d ∈ R. Then {u+
n } is also a

Palais–Smale sequence of I at level d, where u+
n = max{un,0}.

Proof. Let {un} be a Palais–Smale sequence of I at level d ∈ R. By the definition of I we have that as
n → +∞

I(un) = 1

2

∫
RN

(
|∇un|2 + a(x)u2

n − μ
u2

n

|x|2
)

dx − 1

2∗

∫
RN

∣∣u+
n

∣∣2∗
dx −

∫
RN

F (x, un)dx = d + on(1)

and

〈
I ′(un),ψ

〉 = ∫
RN

(
∇unψ + a(x)unψ − μ

unψ

|x|2
)

dx −
∫
RN

∣∣u+
n

∣∣2∗−1
ψ dx −

∫
RN

f (x, un)ψ dx

= on(1)‖ψ‖H1(RN )
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for all ψ ∈ H1(RN ). Taking ψ = u−
n we have, from (a2) and Lemma 2.3, that

on(1)
∥∥u−

n

∥∥
H1(RN )

= 〈
I ′(un), u−

n

〉
=

∫
RN

(
∇un∇u−

n + a(x)unu−
n − μ

unu−
n

|x|2
)

−
∫
RN

∣∣u+
n

∣∣2∗−1
u−

n dx −
∫
RN

f (x, un)u−
n dx

=
∫
RN

(∣∣∇u−
n

∣∣2 + a(x)
∣∣u−

n

∣∣2 − μ
|u−

n |2
|x|2

)
dx

� C
∥∥u−

n

∥∥2
H1(RN )

.

Hence, we obtain

∥∥u−
n

∥∥
H1(RN )

→ 0 as n → ∞. (2.4)

It follows from Lemma 2.3 and (2.4) that

∫
RN

(∣∣∇u−
n

∣∣2 + a(x)
(
u−

n

)2 − μ
(u−

n )2

|x|2
)

dx → 0

as n → ∞. Thus

lim
n→∞ I

(
u+

n

) = lim
n→∞ I(un) = d

and

〈
I ′
(
u+

n

)
,ψ

〉 = 〈
I ′(un),ψ

〉 + on(1)‖ψ‖H1(RN )

for all ψ ∈ H1(RN ) as n → ∞. This completes the proof. �
Remark 2.1. All nontrivial critical points of I are the positive solutions. In fact, let u ∈ H1(RN ) be a
nontrivial critical point of I . Arguing as in the proof of Lemma 2.5, we can obtain that ‖u−‖H1(RN ) = 0
which gives that u � 0 a.e. in R

N . Standard regularity argument show that u ∈ C2(RN \{0}). Therefore,
we know from the strong maximum principle that u is positive.

Remark 2.2. Lemma 2.5 and Remark 2.1 still hold for the functionals Iμ , I0 and I∞ .

Let {un} be a nonnegative Palais–Smale sequence of I . Up to a subsequence, we may assume that

un ⇀ u0 weakly in H1(
R

N)
as n → ∞.

Obviously, I ′(u0) = 0. Set vn = un − u0, then

vn ⇀ 0 weakly in H1(
R

N)
as n → ∞.

Moreover, we have
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Lemma 2.6. (See Lemma 2.2 in [28].) Suppose that f (x, u) satisfies (a3) then

lim
n→∞

[ ∫
RN

F (x, un)dx −
∫
RN

F (x, u0)dx −
∫
RN

F (x, vn)dx

]
= 0.

Lemma 2.7. {vn} is a Palais–Smale sequence for I at level d0 = d − I(u0).

Proof. For any test function v ∈ C∞
0 (RN ), we can easily prove that

∫
RN

f (x, vn)v dx =
∫
RN

f (x, un)v dx −
∫
RN

f (x, u0)v dx + on(1), as n → ∞. (2.5)

Now, using Brezis–Lieb Lemma in [6] and Lemma 2.6, we have that, as n → ∞,

I(vn) = I(un) − I(u0) + on(1) = d − I(u0) + on(1),〈
I ′(vn), v

〉 = 〈
I ′(un), v

〉 − 〈
I ′(u0), v

〉 = on(1),

which means that vn is a Palais–Smale sequence for I at level d0 = d − I(u0). �
Lemma 2.8. Let υ be a unit vector of RN and w be that in (1.5). There exist some constants C1 > 0 and C2 > 0
independent of R � 1 such that

(1)
∫
{x∈RN ||x|�1}(w(x − Rυ))2 dx � C1 R−(N−1)e−2R , for R � 1,

(2)
∫
RN e−ν|x|(w(x − Rυ))p+1 dx � C2e−min{ν,p+1}R , for R � 1.

Proof. This lemma can be proved by the similar arguments as that of Lemma 3.6 in [12]. �
3. Noncompactness analysis

In this section, we prove Theorem 1.1 by a delicate analysis of the nonnegative Palais–Smale se-
quences of I . The main idea of our proof is similar to that of [10,25] except needing to deal with the
difficulty caused by the L2-norm and the nonlinear term.

Proof of Theorem 1.1. Let {un} be a nonnegative (PS) sequence. It follows from Lemma 2.4 that {un}
is bounded. Hence, we assume that, up to a subsequence, as n → ∞,

un ⇀ u weakly in H1(
R

N)
,

un → u strongly in Lp
loc

(
R

N)
for 1 � p < 2∗,

un → u a.e. in R
N .

Denote vn = un − u. Lemma 2.7 implies that {vn} is a Palais–Smale sequence of I and vn ⇀ 0 weakly
in H1(RN ) satisfying

I(vn) = I(un) − I(u) + on(1), (3.1)

I ′(vn) = I ′(un) − I ′(u) + on(1), (3.2)

‖vn‖H1(RN ) = ‖un‖H1(RN ) − ‖u‖H1(RN ) + on(1). (3.3)
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If ‖vn‖2
H1(RN )

→ 0 (n → ∞), we see from (3.1)–(3.3) that Theorem 1.1 holds true with l1 = l2
= l3 = 0.

Now we may assume that

‖vn‖2
H1(RN )

→ l > 0 as n → ∞.

Case a: ‖vn‖L2(RN ) → 0 as n → ∞.
We first claim that ‖vn‖Lq(RN ) → 0 for all q ∈ [2,2∗) as n → ∞. In fact, since 2 < q < 2∗ , there

exists θq ∈ (0,1) such that

1

q
= θq

2
+ 1 − θq

2∗ . (3.4)

Now, using the fact that {vn} is bounded in L2∗
(RN ) and interpolation inequality, we have

‖vn‖Lq(RN ) � ‖vn‖θq

L2(RN )
‖vn‖1−θq

L2∗
(RN )

� c‖vn‖θq

L2(RN )
= on(1).

Hence, the claim follows.
Now, using the claim, we can easily prove that, as n → ∞

∣∣∣∣
∫
RN

F (x, vn)dx

∣∣∣∣ � ε

∫
RN

v2
n dx + Cε

∫
RN

|vn|p+1 dx = on(1),

∫
RN

f (x, vn)ϕ dx = on(1), ∀ϕ ∈ C∞
0

(
R

N)
.

Thus,

Iμ(vn) = I(vn) + on(1), I ′μ(vn) = I ′(vn) + on(1), as n → ∞,

which implies that {vn} is a nonnegative Palais–Smale sequence of Iμ . Hence, employing Theorem 3.1

in [24], we can find two nonnegative integers k, l and l sequences {R j
n} ⊂R

+ (1 � j � l), 2k sequences
{r j

n} ⊂ R
+ and {x j

n} ⊂ R
N\{0} (1 � j � k) such that, as n → ∞,

d = I(vn) + I(u) + on(1) = Iμ(vn) + I(u) + on(1) = lDμ + kD0 + I(u) + on(1), (3.5)∥∥∥∥∥un − u −
k∑

j=1

U r j
n,x j

n
0 −

l∑
j=1

U R j
n

μ

∥∥∥∥∥
D1,2(RN )

→ 0, (3.6)

where R j
n → 0 or ∞ (1 � j � l), x j

n → x j ∈R
N ∪ {∞} and r j

n/|x j
n| → 0 (1 � j � k).

In this case, we only need to prove (1.6) with l3 = 0. For this, we claim that R j
n → 0 (1 � j � l)

and r j
n → 0 (1 � j � k) as n → ∞. Indeed, if this claim is not true, then, without loss of generality,

we can choose Rh
n → ∞ for some h ∈ {1, . . . , l} such that, for n sufficiently large,

0 < c <
Rh

n
j
, j 
= h, 0 < c <

Rh
n
j
, j = 1, . . . ,k,
Rn rn
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where c is a positive constant. Solving (3.4), we have

θp = 1 + N

p
− N

2
.

Since U0 and Uμ are positive and β > 1, we see from interpolation inequality and (3.6) that

(
Rh

n

)1+ N
p − N

2 ‖Uμ‖L p(RN ) − on(1)

= ∥∥U
Rh

n
μ

∥∥
L p(RN )

− ‖vn‖L p(RN )

�
∥∥∥∥∥vn −

k∑
j=1

U r j
n,x j

n
0 −

l∑
j=1

U R j
n

μ

∥∥∥∥∥
L p(RN )

�
∥∥∥∥∥vn −

k∑
j=1

U r j
n,x j

n
0 −

l∑
j=1

U R j
n

μ

∥∥∥∥∥
θp

L2(RN )

∥∥∥∥∥vn −
k∑

j=1

U r j
n,x j

n
0 −

l∑
j=1

U R j
n

μ

∥∥∥∥∥
1−θp

L2∗
(RN )

� on(1)
∥∥U R j

n
μ

∥∥θp

L2(RN )

= on(1)
(

R j
n
)1+ N

p − N
2 ,

which is impossible and our claim follows. Therefore,

∥∥∥∥∥
k∑

j=1

U r j
n,x j

n
0

∥∥∥∥∥
L2(RN )

=
k∑

j=1

r j
n‖U0‖L2(RN ) = on(1),

∥∥∥∥∥
l∑

j=1

U R j
n

μ

∥∥∥∥∥
L2(RN )

=
l∑

j=1

R j
n‖Uμ‖L2(RN ) = on(1). (3.7)

Combining the fact ‖vn‖L2(RN ) = on(1) and (3.6), (3.7), we conclude that (1.6) with l3 = 0 is true.
Case b:

‖vn‖L2(RN ) → a > 0, as n → ∞. (3.8)

By Lemma 2.1, there exists a subsequence still denoted by {vn} such that one of the following two
cases occurs.

i) Vanishing occurs.
By Lemma 2.1 we have

sup
y∈RN

∫
y+B R

|vn|2 dx → 0 as n → ∞, ∀0 < R < ∞.

By Sobolev’s inequality and Lemma 2.2 we have

∫
N

|vn|p dx → 0 as n → ∞, ∀2 < p < 2∗.

R



1388 Y. Deng et al. / J. Differential Equations 253 (2012) 1376–1398
So, similar to Case a, we see

∫
RN

F (x, vn)dx = on(1),

∫
RN

f (x, vn)ϕ dx = on(1), ∀ϕ ∈ C∞
0

(
R

N)
,

and vn is a positive Palais–Smale sequence of the functional corresponding to

−�u − μ
u

|x|2 + a(x)u = |u|2∗−2u, u ∈ H1(
R

N)
. (3.9)

Proceeding as done in Case a, we can also find two nonnegative integers m, h and m sequences
{R ′ j

n } ⊂R
+ (1 � j � m), 2h sequences {r′ j

n } ⊂ R
+ and {x′ j

n } ⊂ R
N\{0} (1 � j � h) such that, as n → ∞,

d = I(vn) + I(u) + on(1) = mDμ + hD0 + I(u) + on(1),∥∥∥∥∥vn −
m∑

j=1

U r′ j
n ,x′ j

n
0 −

h∑
j=1

U R ′ j
n

μ

∥∥∥∥∥
D1,2(RN )

→ 0,

where R ′ j
n → 0 (1 � j � m), x′ j

n → x′ j ∈R
N ∪ {∞} and r′ j

n → 0 (1 � j � h).
However, in this case, similar to (3.7),

∥∥∥∥∥vn −
m∑

j=1

U r′ j
n ,x′ j

n
0 −

h∑
j=1

U R ′ j
n

μ

∥∥∥∥∥
L2(RN )

= ‖vn‖L2(RN ) + on(1) → a > 0.

As a consequence, the following nonvanishing case must occur.
ii) Nonvanishing occurs.
By Lemma 2.1, there exist α > 0, 0 < R̄ < +∞, {yn} ⊂ R

N such that

lim inf
n→∞

∫
yn+B R̄

|vn|2 dx � α > 0. (3.10)

Without loss of generality we choose |yn| → ∞ as n → ∞. Otherwise, {vn} is tight, and thus
‖vn‖L2(RN ) → 0 as n → ∞. This contradicts (3.8). Denote v̄n = vn(x + yn). Since ‖v̄n‖H1(RN ) =
‖vn‖H1(RN ) � c, without loss of generality, we assume that as n → ∞,

v̄n ⇀ v0 in H1(
R

N)
,

v̄n → v0 in Lp
loc

(
R

N)
, for any 1 � p < 2∗.

For any φ ∈ C∞
0 (RN ), we see, as n → ∞,

∫
RN

v̄nφ

|x + yn|2 dx =
∫
RN

vnφn

|x|2 dx

=
∫

|x|>R

vnφn

|x|2 dx + on(1)
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� 1

R2

( ∫
RN

v2
n dx

) 1
2
( ∫
RN

φ2
n dx

) 1
2

+ on(1),

where φn = φ(x − yn). Let R → ∞, then we have

∫
RN

v̄nφ

|x + yn|2 dx = on(1). (3.11)

Similarly we have

∫
RN

v̄2
n

|x + yn|2 dx = on(1). (3.12)

Since vn ⇀ 0 weakly in H1(RN ) and limn→∞ a(x + yn) = 1, we have as n → ∞,

∫
RN

a(x)vnφn dx =
∫
RN

v̄nφ dx +
∫
RN

[
a(x + yn) − 1

]
v̄nφ dx

and

∣∣∣∣
∫
RN

[
a(x + yn) − 1

]
v̄nφ dx

∣∣∣∣ � c

( ∫
RN

∣∣a(x + yn) − 1
∣∣2

φ2 dx

)1/2

= on(1),

that is,

∫
RN

v̄nφ dx =
∫
RN

a(x)vnφn dx + on(1) as n → ∞. (3.13)

From (a2), (a5) and Lebesgue convergence theorem,

∫
RN

f (x, vn)φn dx =
∫
RN

f (x + yn, v̄n)φ dx

=
∫
RN

f̄ (v̄n)φ dx +
∫
RN

[
f (x + yn, v̄n) − f̄ (v̄n)

]
φ dx

=
∫
RN

f̄ (v̄n)φ dx + on(1) as n → ∞. (3.14)

From (3.11)–(3.14), and the fact that vn is a Palais–Smale sequence of I , we have

〈
I∞′

(v̄n),φ
〉 = 〈

I ′(vn),φn
〉 + on(1) = on(1). (3.15)

Hence v̄n is a nonnegative Palais–Smale sequence of I∞(u), and v0 is a weak solution of (1.2).
Now we claim that v0 
≡ 0.
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In fact, from (3.8), we may assume there exists a sequence {yn} satisfying (3.10) and

∃R > 0,

∫
B(yn,R)

|vn|2 dx = c + on(1) > 0, (3.16)

where c ∈ (0,a] is a constant. If v0 = 0, we have

∫
B R

|v̄n|2 dx =
∫

B(yn,R)

|vn|2 dx = on(1),

which contradicts (3.16).
Denote zn = v̄n − v0. From (a2), (a5) and Lebesgue convergence theorem,

∣∣∣∣
∫
RN

F (x + yn, v̄n) − F̄ (v̄n)dx

∣∣∣∣ =
∣∣∣∣∣
∫
RN

v̄n∫
0

f (x + yn, t) − f̄ (t)dt dx

∣∣∣∣∣
�

∣∣∣∣
∫
RN

[
f (x + yn,mn v̄n) − f̄ (mn v̄n)

]
v̄n dx

∣∣∣∣
= on(1), (3.17)

where 0 � mn(x) � 1. Thus we have

I(vn) = 1

2

∫
RN

(|∇vn|2 + a(x)|vn|2)dx − μ

2

∫
RN

v2
n

|x|2 dx

− 1

2∗

∫
RN

∣∣v+
n

∣∣2∗
dx −

∫
RN

F (x, vn)dx

= 1

2

∫
RN

(|∇ v̄n|2 + a(x + yn)|v̄n|2
)

dx − μ

2

∫
RN

|v̄n|2
|x + yn|2 dx − 1

2∗

∫
RN

∣∣v̄+
n

∣∣2∗
dx

−
∫
RN

(
F (x + yn, v̄n) − F̄ (v̄n)

)
dx −

∫
RN

F̄ (v̄n)dx

= 1

2

∫
RN

(|∇ v̄n|2 + |v̄n|2
)

dx − 1

2∗

∫
RN

∣∣v̄+
n

∣∣2∗
dx −

∫
RN

F̄ (v̄n)dx + on(1),

where the last equality holds from (3.12) and (3.13).
As a result,

‖zn‖H1(RN ) = ‖v̄n‖2
H1(RN )

− ‖v0‖2
H1(RN )

+ on(1),

I(zn) = I∞(v̄n) − I∞(v0) + on(1) = I(vn) − I∞(v0) + on(1),

I ′(zn) = I ′(vn) − I ′∞(v0) + on(1) = on(1).
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Hence, zn ⇀ 0 weakly in H1(RN ) as n → ∞, and zn is a new Palais–Smale sequence of I . If
‖zn‖L2(RN ) → c > 0 as n → ∞, by applying the above procedure recursively, the iteration must stop
after finite steps. Moreover, the last Palais–Smale sequence denoted still by {vn} must satisfy that

‖vn‖L2(RN ) → 0 as n → ∞.

Then the proof goes back again to Case a and {vn} is a Palais–Smale sequence of Iμ . So we can
complete the proof of Theorem 1.1 by iteration. �
4. Existence of the solution for problem (1.1)

In this section, we prove Theorem 1.2 by applying Theorem 1.1 and Mountain Pass Theorem.
Since

I(tu) = t2

2

[ ∫
RN

(
|∇u|2 − μ

u2

|x|2
)

dx +
∫
RN

a(x)u2 dx

]

− |t|2∗

2∗

∫
RN

∣∣u+∣∣2∗
dx −

∫
RN

F (x, tu)dx,

we deduce that for fixed u 
≡ 0 in H1(RN ), I(tu) → −∞ if t → +∞.
Since for p ∈ (1, N+2

N−2 ) and ε > 0,

∫
RN

F (x, u)dx �
∫
RN

(
εu2 + Cε|u|p+1)dx � Cε‖u‖p+1

H1(RN )
+ ε‖u‖2

H1(RN )
,

choosing ε small enough, we have

I(u) � C‖u‖2
H1(RN )

− C
(‖u‖p+1

H1(RN )
+ ‖u‖2∗

H1(RN )

)
, 1 < p < 2∗ − 1.

Hence, there exists r0 > 0 small such that I(u)|∂ B(0,r0) � ρ > 0.
As a consequence, I(u) satisfies the geometry structure of Mountain Pass Theorem. Define

cμ =: inf
γ ∈Γ

sup
t∈[0,1]

I
(
γ (t)

)
,

where Γ = {γ ∈ C([0,1], H1(RN )): γ (0) = 0, γ (1) = ψ0 ∈ H1(RN )}. The ψ0 is chosen such that
I(tψ0) � 0 for all t � 1. From the Mountain Pass lemma without (PS) condition and Lemma 2.5 we
deduce that there exists a nonnegative (PS) sequence of {un} of I in H1(RN ) at the level cμ, that is,

I(un) → cμ and I ′(un) → 0, in H−1(
R

N)
as n → ∞.

The following proposition can be obtained by applying Theorem 1.1 and Mountain Pass lemma
directly.

Proposition 4.1. Assume a(x), f (x, u) satisfy (a1)–(a5). If

cμ < min

{
1

N
S N/2,

1

N
S N/2
μ , J∞

}
,

then cμ is a critical value of I .
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Remark 4.1. From [11], we know that Sμ < S if μ > 0.

In the following, we will verify that the level value cμ is in an interval where the (PS) condition
holds. By Proposition 4.1 and Remark 4.1, we only need to verify that

cμ < min

{
1

N
S N/2,

1

N
S N/2
μ , J∞

}
= min

{
1

N
S N/2
μ , J∞

}
for μ � 0. (4.1)

To this end, let ϕ(x) ∈ C∞
0 (B2R), ϕ(x) = 1 for |x| � R , ϕ(x) = 0 for |x| � 2R . Set uε(x) = ϕ(x)U ε

μ(x).
Denote

vε(x) = uε

(
∫
RN |uε|2∗ dx)

1
2∗

.

Then we have the following estimates (see [10, Lemma 2.4]):

∫
RN

(
|∇vε|2 − μ

v2
ε

|x|2
)

dx = Sμ + O
(
ε2β

);
∫
RN

|vε|2 dx =

⎧⎪⎨
⎪⎩

O (ε2), β > 1,

O (ε2β | logε|), β = 1,

O (ε2β), β < 1.

Now we can prove the following lemma:

Lemma 4.1. Under the assumptions (a1)–(a5), we have

max
t>0

I(tvε) <
1

N
S N/2
μ , (4.2)

for ε > 0 small enough,

Proof. Let tε achieve maxt>0 I(tvε), then tε is uniformly bounded. Hence, for ε > 0 sufficiently small,

max
t>0

I(tvε) = I(tε vε)

� max
t>0

{
t2

2

∫
RN

(
|∇vε|2 − μ

v2
ε

|x|2
)

dx − t2∗

2∗

∫
RN

|vε|2∗
dx

}

+ t2
ε

2

∫
RN

a(x)vε
2 dx −

∫
RN

F (x, tεuε)dx

= 1

N
S

N
2
μ + O

(
ε2β

) −
∫
RN

F (x, tε vε)dx +

⎧⎪⎨
⎪⎩

O (ε2), β > 1,

O (ε2| logε|), β = 1,

O (ε2β), β < 1.

(4.3)

Now we verify that
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lim
ε→0+ ε−2

∫
RN

F (x, tvε)dx = +∞, if β > 1. (4.4)

From (a4), there exist some constants C > 0 and θ ′ > 0 such that F (x, t) � Ct2+θ ′
, ∀x ∈ R

N . Then

ε−2
∫

B(0,2R)

F (x, tε vε)dx � Cε−2
∫

B(0,R)

|uε|2+θ ′
dx

� Cε−θ ′√μ̄

Rε−1∫
0

rN−1+(2+θ ′)(β−√
μ̄)

(1 + r
2β√

μ̄ )
N−2

2 (2+θ ′)
dr. (4.5)

If R � 1, obviously (4.4) holds for ε small enough. If R < 1, we have

ε−2

1∫
R

rN−1 F (x, tε vε)dr

� Cε−2

1∫
R

rN−1(|uε|2 + |uε|p)
dr

� CεN−2

1
ε∫

R
ε

(
rN−1+2(β−√

μ̄)

(1 + r
2β√

μ̄ )N−2

ε(2−N) + rN−1+p(β−√
μ̄)

(1 + r
2β√

μ̄ )
N−2

2 p

ε( 2−N
2 )p

)
dr

� CεN−2

(
(τ̄ ε−1)N−1+2(β−√

μ̄)

(1 + (τ̄ ε−1)

2β√
μ̄ )N−2

ε2−N + (τ̄ ε−1)N−1+p(β−√
μ̄)

(1 + (τ̄ ε−1)

2β√
μ̄ )

N−2
2 p

ε( 2−N
2 )p

)
(1 − R)ε−1

� Cε−2 O
(
ε2β

)
� C as β > 1, (4.6)

where τ̄ ∈ (R,1), C is a positive constant.
Hence, (4.4) follows from (4.5) and (4.6). Combining (4.3) and (4.4), we get (4.2) for sufficiently

small ε. �
Lemma 4.2. Under the assumptions (a1)–(a5), we have

sup
t�0

I(t w R) < J∞, (4.7)

for R sufficiently large, where w R = w(x − Rυ), w and υ are defined in Lemma 2.8.

Proof. Since I(t w R) → −∞ as t → +∞ uniformly in R � 1, there exists t̄ > 0 such that

sup
t�0

I(t w R) = sup
0�t�t̄

I(t w R).

To verify (4.7), we only need to show
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sup
0�t�t̄

I(t w R) < J∞ for R large enough.

Since a(x) ∈ C(RN ), we can choose a small τ ∈ (0,1) such that

1 − a(x) + μ

|x|2 � μ

2|x|2 , ∀|x| � τ .

Then, we find

∫
RN

(
1 − a(x) + μ

|x|2
)

w2
R dx �

∫
|x|�τ

μa2
1

2τ 2

(|x − Rυ| + 1
)−(N−1)

e−2|x−Rυ| dx

� a2
1

μ

2τ 2
(R + 2)−(N−1)e−2(R−2τ )

∫
|x|�τ

dx

� C1τ
N−2 R−(N−1)e−2(R−2τ ) = C̄ R−(N−1)e−2R , (4.8)

where C̄, C1 are positive constants.
On the other hand, it follows from (a5) and Lemma 2.8 that

∫
RN

(
F̄ (t w R) − F (x, t w R)

)
dx =

∫
RN

t w R∫
0

(
f̄ (s) − f (x, s)

)
ds dx

�
∫
RN

t w R∫
0

e−ν|x|(εs + Cεsp)
ds dx

� ε
t̄2

2

∫
RN

e−ν|x|w2
R dx + Cε

t̄ p+1

p + 1

∫
RN

e−ν|x|w p+1
R dx

� εB1 R−(N−1)e−2R + Cε B2e−min{ν,p+1}R ,

where B1 = C2t̄2/2, B2 = C3t̄ p+1/(p + 1) are positive constants.
Hence, noting ν > 2, we see that for R large enough,

I(t w R) � I∞(t w R) − t2

2

∫
RN

(
1 − a(x) + μ

|x|2
)

w2
R dx +

∫
RN

(
F̄ (t w R) − F (x, t w R)

)
dx

� J∞ − cR−N+1e−2R + εB1 R−N+1e−2R + Cε B2e−min{ν,p+1}R

< J∞. � (4.9)

Complement of the proof of Theorem 1.2. Choose

v0 =
{

vε, if 1
N S N/2

μ < J∞,

w , if 1 S N/2 � J∞.
R N μ
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It follows from Lemma 4.1 and Lemma 4.2 that

cμ � sup
t�0

I(tv0) < min

{
1

N
S N/2
μ , J∞

}
.

Consequently, by using Proposition 4.1 and Remark 2.1 we can find a positive critical point u of I at
the level cμ which must be a positive solution for problem (1.1).

As a result, we complete the proof. �
5. An example

In this section, we provide an example to show that the functions a(x) satisfying (a1) may be
negative in some bounded domain in R

N .

Theorem 5.1. The assumption (a1) holds naturally if a(x) ∈ C(RN ) satisfying

i) a(x) → ā > 0 as |x| → +∞;
ii) −h � a(x) and the set {x ∈R

N : −h � a(x) � 0} is nonempty and bounded, where h ∈ (0,h∗) and h∗ is a
small positive constant.

Proof. Set d = 1 − ( 2
N−2 )2μ. We first claim that there exist h∗ > 0 and λ∗ > 0 such that

∫
RN

(
d|∇u|2 + a(x)u2) � λ∗

∫
RN

|u|2 for all u ∈ H1(
R

N)
and h ∈ (

0,h∗). (5.1)

In fact, for any bounded smooth domain Λ ⊂ R
N , denote by λ1(Λ) the first eigenvalue of the

operator −� in H1
0(Λ). Then we can see from page 420 in [19] that λ1(B1(0)) � π2 and hence

λ1
(

Br(0)
)
� λ1(B1(0))

r2
� π2

r2
.

By assumptions i) and ii), we can find ρ � 0 such that

{
x ∈ R

N : a(x) � 0
} ⊂ Bρ(0)

and

inf
RN\Bρ(0)

a(x) >
ā

2
.

For R > ρ , choose ψ(x) ∈ C∞
0 (B R(0)) satisfying 0 � ψ(x) � 1, ψ(x) = 1 in Bρ(0), ψ(x) = 0 in R

N \
B R(0) and |∇ψ | � 2

R−ρ . Then for any u ∈ H1(RN ),

∫
RN

|∇u|2 =
∫
RN

∣∣∇(
ψu + (1 − ψ)u

)∣∣2

=
∫

B (0)

∣∣∇(ψu)
∣∣2 + 2

∫
N

u(1 − ψ)∇u∇ψ + 2
∫

N

u2∇(1 − ψ)∇ψ
R R R
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+ 2
∫
RN

ψ(1 − ψ)|∇u|2 + 2
∫
RN

uψ∇(1 − ψ)∇u +
∫
RN

u2
∣∣∇(1 − ψ)

∣∣2

+ 2
∫
RN

uψ∇u∇(1 − ψ) +
∫
RN

(1 − ψ)2|∇u|2

� λ1
(

B R(0)
) ∫

B R (0)

|ψu|2 − 6

R − ρ

∫
RN

|u||∇u| − 4

(R − ρ)2

∫
RN

u2

� λ1(B1(0))

R2

∫
Bρ(0)

|u|2 − 5

(R − ρ)2

∫
RN

u2 − 1

9

∫
RN

|∇u|2.

Hence

∫
RN

(
d|∇u|2 + a(x)u2) � dπ2

R2

∫
Bρ(0)

|u|2 +
∫
RN

a(x)u2 − 5d

(R − ρ)2

∫
RN

u2 − d

9

∫
RN

|∇u|2

=
∫

Bρ(0)

(
dπ2

R2
− 5d

(R − ρ)2
+ a(x)

)
|u|2 +

∫
RN \Bρ(0)

(
a(x) − 5d

(R − ρ)2

)
|u|2

− d

9

∫
RN

|∇u|2.

Choose R large such that

π2

R2
− 5

(R − ρ)2
� π2 − 5

2R2
, and

5d

(R − ρ)2
<

ā

4
.

Then

10

9

∫
RN

(
d|∇u|2 + a(x)u2) �

∫
Bρ(0)

(
(π2 − 5)d

2R2
+ 10

9
a(x)

)
u2 + ā

4

∫
RN \Bρ(0)

u2.

Setting h∗ = 9
10

(π2−5)d
4R2 , we find that for 0 � h � h∗ ,

10

9

∫
RN

(
d|∇u|2 + a(x)u2) � (π2 − 5)d

4R2

∫
Bρ(0)

u2 + ā

4

∫
RN\Bρ(0)

u2

� min

{
(π2 − 5)d

4R2
,

ā

4

} ∫
RN

u2.

The inequality (5.1) follows if we set λ∗ = 9
10 min{ (π2−5)d

2 , ā
4 } and hence our claim holds true.
4R



Y. Deng et al. / J. Differential Equations 253 (2012) 1376–1398 1397
Now we are ready to verify the inequality in assumption (a1). From (5.1), we have

∫
RN

((
1 −

(
2

N − 2

)2

μ

)
|∇u|2 + a(x)u2

)
=

∫
RN

(
d|∇u|2 + a(x)u2)

� λ∗
∫
RN

u2 = λ∗

ā + h∗

∫
RN

(
ā + h∗)u2

� λ∗

ā + h∗

∫
RN

(
ā − a(x)

)
u2.

We can complete the proof by taking λ1 = λ∗
ā+h∗ . �
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