期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:264
On approximation of Ginzburg-Landau minimizers by S1-valued maps in domains with vanishingly small holes
Article
Berlyand, Leonid1  Golovaty, Dmitry2  Iaroshenko, Oleksandr1  Rybalko, Volodymyr3 
[1] Penn State Univ, Dept Math, 337 McAllister Bldg, University Pk, PA 16802 USA
[2] Univ Akron, Dept Math, Akron, OH 44325 USA
[3] BI Verkin Inst Low Temp Phys & Engn, Math Div, Kharkov, Ukraine
关键词: Ginzburg-Landau;    Superconductivity;    Vortex;    Boundary value problem;    Multiply-connected domain;   
DOI  :  10.1016/j.jde.2017.09.037
来源: Elsevier
PDF
【 摘 要 】

We consider a two-dimensional Ginzburg-Landau problem on an arbitrary domain with a finite number of vanishingly small circular holes. A special choice of scaling relation between the material and geometric parameters (Ginzburg-Landau parameter vs. hole radius) is motivated by a recently discovered phenomenon of vortex phase separation in superconducting composites. We show that, for each hole, the degrees of minimizers of the Ginzburg-Landau problems in the classes of S-1-valued and C-valued maps, respectively, are the same. The presence of two parameters that are widely separated on a logarithmic scale constitutes the principal difficulty of the analysis that is based on energy decomposition techniques. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_09_037.pdf 1368KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:1次