JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:269 |
Critical exponent of Fujita-type for the semilinear damped wave equation on the Heisenberg group with power nonlinearity | |
Article | |
Georgiev, Vladimir1,2,3  Palmieri, Alessandro1  | |
[1] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56127 Pisa, Italy | |
[2] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan | |
[3] BAS Acad, Inst Math & Informat, G Bonchev Str,Block 8, Sofia 1113, Bulgaria | |
关键词: Damped wave equation; Heisenberg group; Critical exponent; Test function method; Energy spaces with exponential weight; | |
DOI : 10.1016/j.jde.2019.12.009 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we consider the Cauchy problem for the semilinear damped wave equation on the Heisenberg group with power non-linearity. We prove that the critical exponent is the Fujita exponent p(Fuj)(Q) = 1 + 2/Q, where Qis the homogeneous dimension of the Heisenberg group. On the one hand, we will prove the global existence of small data solutions for p > p(Fuj)(Q) in an exponential weighted energy space. On the other hand, a blow-up result for 1 < p <= p(Fuj)(Q) under certain integral sign assumptions for the Cauchy data by using the test function method. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2019_12_009.pdf | 1305KB | download |