期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:269
Critical exponent of Fujita-type for the semilinear damped wave equation on the Heisenberg group with power nonlinearity
Article
Georgiev, Vladimir1,2,3  Palmieri, Alessandro1 
[1] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[2] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
[3] BAS Acad, Inst Math & Informat, G Bonchev Str,Block 8, Sofia 1113, Bulgaria
关键词: Damped wave equation;    Heisenberg group;    Critical exponent;    Test function method;    Energy spaces with exponential weight;   
DOI  :  10.1016/j.jde.2019.12.009
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider the Cauchy problem for the semilinear damped wave equation on the Heisenberg group with power non-linearity. We prove that the critical exponent is the Fujita exponent p(Fuj)(Q) = 1 + 2/Q, where Qis the homogeneous dimension of the Heisenberg group. On the one hand, we will prove the global existence of small data solutions for p > p(Fuj)(Q) in an exponential weighted energy space. On the other hand, a blow-up result for 1 < p <= p(Fuj)(Q) under certain integral sign assumptions for the Cauchy data by using the test function method. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_12_009.pdf 1305KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次