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Abstract

In this paper, we consider the Cauchy problem for the semilinear damped wave equation on the
Heisenberg group with power non-linearity. We prove that the critical exponent is the Fujita exponent
PRy (2) =1+ 2/2, where 2 is the homogeneous dimension of the Heisenberg group.

On the one hand, we will prove the global existence of small data solutions for p > pgj(<2) in an
exponential weighted energy space. On the other hand, a blow-up result for 1 < p < ppy; (2) under certain
integral sign assumptions for the Cauchy data by using the test function method.
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1. Introduction

In this paper we study the global in time existence of small data solutions and the blow-up in
finite time of solutions to the Cauchy problem

uy — Apgu+u,=ulP, t>0, neH,,
u(0,n) =uop(n), n € Hy, (D
u (0,n) =ui(n), neH,,

where p > 1 and Ay denotes the sub-Laplacian on H,, (see Subsection 1.1 for the definition of
Ap and for a short summary on the Heisenberg group).

In the Euclidean case, the critical exponent of Cauchy problem for the semilinear damped
wave equations

uy — Au—+u, =|ul?, t>0, xeR",
u(0, x) =uo(x), xeR”, (2)
ur (0, x) = uj(x), xeR”,

is the same as for the semilinear heat equations, that is, the so-called Fujita exponent

. 2
PFuj(n)Zl“';-

This fact has been proved by Todorova-Yordanov [22] for compactly supported data and by
Ikehata-Tanizawa [13] in the not-compact case. In both works, the global existence result of
small data solutions in the super-Fujita case is demonstrated in an exponentially weighted energy
space. The crucial difference consists in the choice of the exponent function for the exponential
weight. Furthermore, a fundamental tools in both these works are the decay estimates on L?(R™)
- basis for the corresponding linear homogeneous Cauchy problem, that have been derived by
Matsumura in the pioneering paper [14], by using phase space analysis.

This approach with exponential weighted energy spaces has been applied also the case of
time-dependent coefficients: see [8] for the semilinear wave equation with effective damping and
[7,17] for the scale-invariant case, respectively.

Recently, it has been shown that the critical exponent for the semilinear heat equation on the
Heisenberg group is the Fujita exponent ppyj(2), where 2 is the homogeneous dimension of
H,,, and on more general stratified Lie groups (cf. [21,10,11]).

In this paper, we will show that pg,;j(2) is the critical exponent for the Cauchy problem (1)
as well. Concerning the existence of small data solutions which are globally defined in time for
P > pruj(2), we will adapt in a suitable way the approach of [22,13] with exponential weights.
In fact, the counterpart of Matsumura-type estimates for the Heisenberg group is considered in
[18], where the group Fourier transform is employed in order to show decay estimates on L>(H,,)
- basis for the corresponding homogeneous linear Cauchy problem (cf. Proposition 6.1). On the
other hand, the non-existence of global solutions when 1 < p < pg,;(<2), under certain integral
sign assumptions for the Cauchy data and regardless of the smallness of these, is obtained by
using the so-called test function method (see [15] or, for example, [16,6,10,11]).

Finally, we point out that in [20] a global existence result for small data solutions is proved
in the more general frame of graded Lie groups for the semilinear damped wave equation with
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an additional mass term. For that model, no further lower bound for the exponent of the non-
linearity p > 1 has to be required, due to the exponential decay rate in L% - L? estimates for
the corresponding linear homogeneous Cauchy problem (nevertheless, an upper bound for p
is required, although it is a technical assumption due to the application of an inequality of
Gagliardo-Nirenberg type). We refer to [18] for further details on the differences that are pro-
duced by the absence of the mass term in the treatment of the corresponding linear problems.

1.1. The Heisenberg group

The Heisenberg group is the Lie group H,, = R?"*! equipped with the multiplication rule
(x,y,r)o(x/,y/,r/):(x+x’,y+y/,t+r/+%(x Y =x"y),

where - denotes the standard scalar product in R”. A system of left-invariant vector fields that
span the Lie algebra b,, is given by

. Vi : Xj
X/:axj_?]af,Y/:ayj_’_?ja‘[vafv

where 1 < j <n. This system satisfies the commutation relations
[X;, Yil=680; forl<j k=<n.

Therefore, b, admits the stratification b, = Vi & V,, where Vi = span{X;,Y;}1<j<; and
V, = span{d.}. Hence, H,, is a 2 step stratified Lie group, whose homogeneous dimension is
2 =2n + 2. The sub-Laplacian on H,, is defined as

n n n

n
1
Au=Y G4V =Y (03 +02) + 5 D (G0 Y (93— v 020). B

j=1 j=1 j=1 j=1

For a function v : H,, — R, the horizontal gradient of v is

n
Vhv = (X0, X0, Yoo Vo) = Y (X)X + (Y0)Y)),
j=1
where each fiber of the horizontal subbundle HH,, = U,cn,H,H, can be endowed with a
scalar product (-, -), in such a way that X (n),---, X,(n), Y1(n),---, ¥;,(n) are orthonormal
in (H,H,, (-,-),) for any n € H,. Therefore, if X =>_, (a;X; + B;Y;) + yd; is a vector
field on H, with o, B,y € €1 (H,,) for any j =1,---,n, the divergence of X is the function

n
divX =" (Xja; +Y;Bj) + .
j=1

In particular, the sub-Laplacian may be expressed also as Apgv = div(Vgv). For a function
ve L?(H,) we say that X jv,Y;v € LllOC (H,,) exist in the sense of distributions, if the integral
relations

Please cite this article in press as: V. Georgiev, A. Palmieri, Critical exponent of Fujita-type for the semilinear damped
wave equation on the Heisenberg group with power nonlinearity, J. Differential Equations (2019),
https://doi.org/10.1016/j.jde.2019.12.009




YJDEQ:10186

4 V. Georgiev, A. Palmieri/ J. Differential Equations eee (eeee) eee—esee

[ ymeman= [van (xjg)nan and

H, H,
/(Yjv)(n)¢(n)dn=/v(n) (Yi¢)(ndn
H, H,

are fulfilled for any ¢ € 4;°(H,), where X}f =—X; and Y/’.k = —Y; denote the formal adjoint

operators of X; and Y}, respectively. Therefore, in our framework, the Sobolev space H 1(H,,)
is the set of all functions v € L?>(H,,) such that X jv, Yjv exist in the sense of distributions and
Xjv,Yjve L2(Hn) forany j =1,---,n, equipped with the norm

2

I3 a1,y = 1002, + 198V 2,

n
= 10122, + 2 (150122, + 150122, )
j=1

1.2. Notations

In this paper, we write f < g, when there exists a constant C > 0 such that f < Cg. We write
f =~ g when g < f < g. Throughout the article we will denote by i the function

L xXP Iy 440

v m 8(1+1)

“4)

for any n = (x, y,7) € H,. Let 0 > 0 and ¢ > 0. Similarly to the Euclidean case considered in
[22] and [13], we define the Sobolev spaces L? and H' with exponential weight eo V()

L2y M) ={ve L2 ) : "V 0] 2, < 00},
Hy oy o) ={ve H #H,) : eV ) g, + 17V Vol 2m,) < oo},
endowed with the norms

iz, =17l

ollay,,, o) = e v 2, + 17 Vil 2.
In the local and global existence results for (1) we will consider always the special case o = 1 for
the function spaces to which solutions belong. Nonetheless, in order to deal with the estimates of

the nonlinearity, it is necessary sometimes to consider the general case o > 0. Finally, we denote
by <7 the space

o/ (Hy) = H,j o (Hy) x L3, (H,) (5)

to which initial data will be required to belong to.
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2. Main results

Let us state the main theorems that will be proved in the present article.

Theorem 2.1. Let n > 1. Let us assume p > 1 such that p < pgN(2) = 3%2. Then for each

initial data (ug, u1) € </ (H,) there exists a maximal existence time Tmax € (0, 00] such that the
Cauchy problem (1) has a unique solution u € € ([0, Tmax), H' (H,)) N € ([0, Tmax), L*>(H,)).
Moreover, for any T € (0, Tax) it holds

sup (Il @ u(t, 2,y + 1€ Vio(, D2, + 140, )2, ) < oo
te[0,T]

Finally, if Tmax < 00, then

lim sup (||e¢(”')v(t, M2, + eV I vhu(r, M2, + lle? vy, ')||L2(Hn)) = 00.

T— Thax

The previous local existence result is a preparatory result to the next global existence theorem,
whose proof is based on a contradiction argument that requires the existence of local in time
solutions for (1).

Theorem 2.2. Let n > 1. Let us consider 1 < p < pN(2) such that p > pryj (2). Then, there
exists ey > 0 such that for any initial data

(o, ur) € &/ (Hy)  satisfying || (uo, u1)ll o u,) < €0 (6)

there is a unique solution u € € ([0, 00), HI}/(Z ,)(Hn)) N1 ([0, c0), szb(t _)(Hn)) to the Cauchy
problem (1). Moreover, u satisfies the following estimates

_2
@, 2@,y S A+07 o, uD) o,
_2_1
IVau, 2@, SA+D7F "2 @wo, ud)llom,)

_2 3
loee (@ )2,y SA+07F 7 I (wo, u)ll o,y
eI Vhu(t, )l 2w,y S N wo, un) o,

¥ us (M 2,y S 1o, ) Loz,

foranyt > 0.
Remark 1. Let us point out that the requirement (1o, u1) € </ (H,) in Theorem 2.2 is stronger
than the assumption (uo, u1) € (H'(H,) N L'(H,)) x (L*>(H,) N L'(H,)). Indeed, the embed-
ding

L2 .My — L'(H,) N L*(H,)

holds for any o > 0 and ¢ > 0. By using Cauchy-Schwarz inequality and the nonnegativity of ¥/,
it results
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< Z1eoVv )
Il S A +10)+ e vliz2m,), (7
vllz2m,) < ”em/j(lﬂ)U”Lz(Hny (8)

In order to prove (7), we employed the value of the integral of Gaussian-type

o\x\z (7\,'\2 olt]
/6_2(”/’(”") dn:/e_m dx/e_‘*(l—\m dy/e_m dr

Hn R n R n R

5 2 2 2
=22 177 " T (1 +0)7.

Furthermore, by Holder’s interpolation inequality we have also the embedding of Lg v (t“)(Hn)
in each L" (H,) for any r € [1, 2], where the embedding constant depends on ¢, clearly.

Theorem 2.3. Let n > 1. Let ug, u; € L' (H,,) such that

l}eﬁiio%f/ (uo(m) +ur(n))dn > 0, 9
DR

where Pg = B, (R) x B,(R) x [—R2, R%). Let us assume that u € L{:)C([O, T) x R") is a solution
to (1), with lifespan T > 0. If 1 < p < pryj (Q), then T < 00, that is, the solutions u blows up in
finite time.

Remark 2. If we replace the initial data by eug, eu1 in (1), where ¢ > 0 is a parameter describing
the size of the Cauchy data, then, in the case 1 < p < pryj(2) we can determine upper bound
estimates for the lifespan of the solution. Indeed, by following the same approach as in [12,10,
11] one can prove that there exists g > 0 such that
,<L,§)7l ,
T() < {Ce pobo2 if 1 < p < prj(2),
exp (CeP~D) if p = pr,j(2),

for any € € (0, &9] and for a suitable constant C > 0, provided that ug, u; satisfy suitable sign
assumptions.

The next sections are organized as follows: in Section 3 we explain the strategy for the proofs
of Theorems 2.1 and 2.2 and we derive some important estimates by using some remarkable
properties of the function v; in Sections 4 and 6 we derive a weighted version of the Gagliardo-
Nirenberg inequality on H,, and we recall L%*(H,) - L*(H,) estimates (with possible additional
L' (H,) regularity) for the solution of (10), respectively; then, we prove Theorems 2.1 and 2.2 in
Section 5 and in Section 7, respectively; finally, we prove the blow-up result in Section 8.

3. Overview on our approach
We apply Duhamel’s principle in order to write the solution to (1). Because the linear equation

related to the semi-linear equation in (1) is invariant by time translations, we need to derive decay
estimates for linear Cauchy problem
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Uy — Agu+u, =0, t>0, neH,,
u(0,n) =uo(n), n € Hy, (10)
ur(0,m) =ui(n), n€H,.

Let us fix now some notations for the linear Cauchy problem (10). We denote by Eo(t, ), E1 (¢, n)
the fundamental solutions to the Cauchy problem (10), i.e., the distributional solutions with data
(ug,u1) = (80,0) and (ug, u1) = (0, o), respectively, where & is the Dirac distribution in the
variable. Also, if we denote by *(; the group convolution with respect to the n variable, we may
represent the solution to the Cauchy problem (10) as

u(t,n) =uo(n) *u) Eot,n) +ui1(n) xqp E1(t, n).
According to Duhamel’s principle adapted to the case of Lie groups, we get

t

u(t,n):/F(s,n)*(,]) Ei(t—s,n)ds (11
0

as mild solution to the inhomogeneous Cauchy problem

ull_AHu+uI:F(t7n)7 t>07 neHrh
M(O, 77)20, nEan
ur(0,m) =0, neH,.

In particular, we used the fact that the identity L(v *(;) E1) = v *¢; L(E7) holds for any left
invariant differential operator L on H,,.

Therefore, we consider as mild solutions to (1) on (0, T') x H,, any fixed point of the nonlinear
integral operator N defined as follows:

ue€ X(T)— Nu(t,n) =uo(n) ) Eot,n) +ur(m) @) E1(¢, 1)

t
+/|M(S,’7)|p *ap E1(t —s,n)ds (12)
0

for a suitably chosen space X (T) (here T denotes the lifespan of the solution).
In particular, in Theorem 2.2 the global in time solutions we are interested in are solution in
X (T) to the integral equation

t
u(t, n) =uo(m) *@ Eolt,n) +ui(n) *u E1(t,n) + / lu(s, MI? *@ E1(t —s,m)ds
0

which can be extended for all positive times.

Also, one difficulty in the proof of the local existence result for large data and of the global
existence result for small data, respectively, consists in the choice of the space X (7). In this
paper, we restrict our consideration to the weighted energy space
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X(T)=%(0.T]. Hy, ,(H)NE" ([0, T], L], ,(H,)),

both in Theorem 2.1 and in Theorem 2.2. As we will see, the crucial difference lies in the choice
of the norm for X (T) (cf. Section 5 and Section 7).

We analyze now some properties of the function i, defined in (4), that will be useful in the
proof of our main results. Straightforward computations lead to

x>+ Iy* + 4t xj — sign(z)y; yj + sign(z)x;

tv —_— NG ) X i t, e ! , Y t, P p

Vi (t,m) REDE jvm) 010 v ( 17)—74(1 D
forany j=1,---,n. Let us point out explicitly that in the following we consider weak deriva-

tives, so, the previous expressions for X ;¥ and Y are in the sense of distributions. Conse-
quently, the following inequalities are satisfied

T,
2(0+16)2 —
n Ix|? + |yl?

Ay (t,n) = e + 2040 do(7) (14)

IVay (t, > + ¥t ) = — (13)

for any ¢ > 0 and any 1 € H,,, where 6o(t) denotes the Dirac delta in O with respect to the
variable. We derive now some fundamental relations that will play a crucial role in the next
sections. The first one is the identity

9 [V ,
ezwut (U — AU +up) = P (T (|u,|2 + IVHu|2>) — dlv(ewu,VHu)
2y 2y
e e
+—u; (WHWZ + %) — e uf — 7|“thl/f — ¥ Vu|?,
t t

15)

where |Vyv|? = Z?Zl (|XJ~ v|? + |Yjv|2) is the Euclidean norm of Vv provided that we use the
identification Vygv ~ (Xqu, -+ , Xuu, Yiu, -+, You) : H, = R?" or, equivalently, we consider
on each fiber of the horizontal subbundle H;H,, the norm induced by the scalar product -, -);.
Let us verify the validity of (15). Using the fact that the sub-Laplacian can be expressed as the
divergence of the horizontal gradient and the identity

divieX) =adivX + X (a)
for any o € €1 (H,,) and any horizontal vector field X on H,,, we get
eVu, Aqu=¢e"u, div(Vyu) = diV(ez‘”u,VHu) — (VHu)(ewu,)
= div(e?” u, Viyu) — (i XX + Y)Y, )@ up)
j=1

=div(e® u, Vygu) — Z X ) (e Xj(up) +2eu X;(¥))
j=1
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=D Y@y (Y () + 267w, Y (). (16)
j=1

Since
n noo2V
€
Y XWX e = X @)l

pa =2

n 9 24
= (5 (‘“’7 X (u>|2> — eV |X; (u>l2)
j=1

and, analogously,

¢ 20 SN 2 20 2
D YiwYu)e =Z(5<T|Yj(u>| )—l/fze 1Y ()] )

j=1 j=1
it follows

n 2y
Jd (e

Z (X; )X (u)e® +Y;)Y;u)e?) = o (7 |VHu|2) — e | Vuul*. (17

j=1

On the other hand, using the (0,2) symmetric tensor (-, -) on H,,, whose restriction to each fiber

H,H, of the horizontal subbundle is the scalar product (-, -),, with orthonormal basis given by
the canonical generators of the horizontal layer (cf. Subsection 1.1), we have

n

e Vi, Y Vi) =Y (W X (0) X5 ) + urf Y () Y w)).

j=1

Consequently,

2Y M u XWX w) + eV u Y ()Y ()

j=1
2
=2 — (u;Vuy, ¥ Vuu)
Vi
e ) 2 2 2 2
=~ (W IV P o 9719 = Vi = 1 Vi), (18)

Combining (16), (17) and (18), we get

v .2y 9 (e 2 eV 22 2
¥ A = div(e Vi) — = = Vil +7(|u,VH¢—WHu| —uf|Viy ).
t

2
19)
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Furthermore,
2y 2y
e d [e
2 2 2 2
gy = =0l = o <7|ut| ) e u (20)

By (19) and (20) we find immediately (15).
The second fundamental relation is the upcoming inequality, that is obtained by plugging the
nonlinear term on the left hand side of (15). If u is a solution of the equation (1), since

20y ulp = ey, () 2 O (2w Ul g 2w Ul
p+1) "\ o P+

then, from (13) we get immediately

a (e ) ) lu|Pu
— (= \v/ )_ 2y 707
a;( 5 <|ut| + [ Vhul e p+1>

, e
= v Vi) = it (10 P01 ) + e 2+7|utvw AT
t

|u|Pu
Y Sp i M
Yre Py
24 [u]Pu
p+1

< div(e® u, Vuu) — 2ye (21)

where in the last inequality we used (13) and v, < 0. We stress that in Sections 5 and 7 an
important role in the derivation of weighted energy estimates will be played by (15) and (21).

4. Gagliardo-Nirenberg type inequalities

In the proof of Theorems 2.1 and 2.2, we make use of the following inequalities of Gagliardo-
Nirenberg type. We begin with the Gagliardo-Nirenberg inequality in Hj, (cf. [5,20]).

Lemma 4.1. Let n > 1. Let us consider 2 < q <2 + % = é—% Then, the following Gagliardo-
Nirenberg inequality holds

0(q)
L2(Hy)

1-6(q)

v
” ”Lz(Hn)

lvllzem,) < C Vvl
for any v € H' (H,,), where C is a nonnegative constant and 0(q) € [0, 1] is defined by
b =2(1-1). 22)
Lemma 4.2. Let o > 0, t > 0. Then, the following estimate
27 on (14071 vl o ) + 1VEEY 0o ) < 167V Vvl g

holds for any v € H! e )(Hn)
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Proof. Let us set f = eV v. Then, straightforward computations lead to

601//VHU =Vuf —ofVay.

Hence,

eV IVl gy = IV @ G2y, + 0 N VT oy
—20 (VHf(t’ ), (fvﬂw)(tv .))LZ(H,,)
= IV (), =20 (VRA@ ) (VR ) o, 23)

Integrating by parts, we have
Note that we may integrate by parts

/ng(n)-h(n)dn=—/g(n)~th(n)dn, /ng(n)~h(n)dn=—/g(n)~th(n)dn
H, H, H, H,
for any g,h € %01 (H,) and for any j = 1,---,n. So, using a partition of the unity we may

remove the compact support assumption while a density argument provides the result for weak
derivatives

(VHf(ts )7(f VHW)(L .))LZ(HI)

—Z/ FXGIX50 + Y5 Y0) @ d

J= 1].[

1 n

=33 [P+ v P man

]:1Hn

R 1

) /(|f|2X§1/f+|f|2¥%w)<t,n>dn=—5/(|f|2AH¢)(t,n)dn
J:IH” H,

=- 4(1 +t) “f(t )||L2(H ) (24)

where in the last step we used (14). Note that we may consider the trace of the function | f|?
on the hypersurface with equation 7 = 0, since the existence of trace operators is known in the
literature for the Heisenberg group (cf. [19,3,1,2]). Consequently, combining (23) and (24), we
get the desired estimate. O

Lemma 4.3. Let n > 1, 0 € (0, 1] and t > 0. Let us consider 2 < q <2+ % = é—% Then, the
following weighted Gagliardo-Nirenberg inequality

e ¥t vl Lo, < C( +1)10@/2 gl L2H, )||e‘b<t")VHv||(zz(Hn), (25)
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holds for any v € Hl}f(t _)(Hn), where C is a nonnegative constant and 6(q) is defined by (22).

Proof. Let us prove first that v € H]}/(t .)(H,,) implies v € Hglw(t _)(Hn) for any o € (0, 1]. By
Holder’s inequality we find

eI Vvl g, = / VD Vo )7 | Vi ()P d

H,

< eXV I Vv |||vHv|2“—">||L

L5 (H,) 5 (H,)

. 2(1—
= 1e¥ VRl 35 g, I Vvl o - (26)

In a similar way, it results

L / 27V M () 27 o () 27 dn
H,

2 . 2 2(1—
<XV ey PO
Lo (Hy) L1-0 (H,)

. 2(1—
= 1”03 g, 101 -
So, we have that f =e°¥ v satisfies f(z,-) € H'!(H,) and by Lemma 4.2
1F 2@, S A+02 eV Va2, 27)
IVES @ ) 2w, < 17 Vel 2, (28)

for any ¢t > 0. Applying the Gagliardo-Nirenberg inequality to f (¢, -) from Lemma 4.1, we have
1-6(q) 0(q)
” f(tv ) ”Lq(Hn) S./ ” f(t7 ) ”Lz(Hn) ”VHf(t’ ) ”LZ(H,,) s

where 0(q) = Q(% — %) Also, combining (27) and (28) with the last interpolative inequality,
we obtain

It e,y S A +HT @2V IG5y

_ _ 1
< L+ OV IV T, g IV g -

where in the last step we applied (26). O

5. Local existence: proof of Theorem 2.1

In the proof of Theorem 2.1, we employ the next result, which is a generalization to the
non-linear case of Gronwall’s lemma (cf. [4, Section 3]).
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Lemma 5.1 (Bihari’s inequality). Let k be a nonnegative, continuous function, M a real constant
and g a continuous, non-decreasing, nonnegative function such that

u
ds

Gu= | —
w g(s)
0

is well-defined. Let y be a continuous function such that
t
YO =M+ [k 6ds
0
for any t > 0. Then,
!
Gw) =GO + [ ksyds
0

foranyt > 0.
Using a standard contraction argument we prove now Theorem 2.1, following the main ideas
of [13, Appendix A]. Note that differently from the global existence result, in this case we do not

have to require a lower bound for the exponent p.

Proof of Theorem 2.1. Let T, K be positive constants on which will be prescribed several con-
ditions of suitability throughout this proof. We define

B ¢ ={ve%(0,T], H' ) N €' ([0, T, LXH,)) : [v]l} < K},

where the norm || - ||¥ is defined by

lolly = sup (he" 200, )l 2ga,y + 19 Viv(, )l o,y + €70 ) 2gm, )
t€[0,T]

We introduce the map
®: Bl « — (10, T], H' (H,)) N€" ([0, T], L*(H,)),
vi— u = ®(v),

where u solves the Cauchy problem

utt_AHu_'_ul:'v'pv (tan)e(O’T)XHna
u(0,m) =uop(n), neH,,
ur (0,n) =ui(n), neH,.
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We shall prove that, for a suitable choice of T and K, ® is a contraction map from BlTp x toitself.
From (15) it results

2 3 (e 2 2 2
eV u,vl? > 5(7(14, + | Viul )) —div(e® u, Vyu).

So, introducing the weighted energy of the function u

1
Eylul(t) =5 / 2V (st ) + Vi, ) )y

(29)
H,
and integrating over [0, t] x H,, the last inequality, we have
t
S0 = £l + [ [V mivts i ands,
0 H,
where we used the divergence theorem. Applying Cauchy-Schwarz inequality, we obtain
1 1
t 2 2
st =610 + [ | [ @ empepran| | [ D mPan | as
0 \H, H,
1
/ 2
< & [u)(0) + ﬁ/ /ew(s’”)lv(s, mPdy | & ul(s)2ds.
0 \H,
Thanks to Bihari’s inequality, with g(u) = (2u) %, we find
1
p 2
1
Eplul()? < & ul(0)2 + i / / V0D (s, ) 2Pdn | ds. (30)
0 H,

The condition v € BT‘”!K implies v(¢, -) € H«/l/(z,-)(H") for any ¢ € [0, T]. Also, from Lemma 4.3
we get

Loy (s, 2
/ VM (s, )PPy = ller " u(s, s, g
H,

S A+ 9PI0C 190G, I8 D e? O Vo (s, 12,

< (5P b 6 Tyu(s, )8

(Hy)

< (1 + 5)P1=0@P) g 20
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Consequently, from (30) we have

Eplul(1)? < Ey[ul(0)2 + C,T(1 4+ THPA—0C2 kP,

where C), > 0 is a multiplicative constant independent of 7 and K that may change from line to
line up to the end of the proof. Therefore, we get

le? g (2, ) g,y + e Vi, Dl 2,

< Cp&yul(0)2 + C,T (1 + T)PI=0CPN2 kP G1)

On the other hand, since

t
eV UMyt ) = eV Mug(n) + /ew(t’n)“t(s, n)ds
0

and v is decreasing with respect to #, we have

t
e udt, 2,y < le?uoll 2, + / le¥ (s, )l L2, ) d
0

t
=< ||ew(t")u0||L2(H,,) + / le¥ S u (s, N2, ds
0

< 11e¥“ugll g, + Cp&y IO T + C,T2(1 + THP-0@P 2 P,

where in the last step we used (31). So, we have just proved that

le?utt, 2, + 16 urt, 2, + e? ) Vaud, Dl 2,
1
< lle”“ugll 2, + Cp(1+ T)Eu1(0)2 + C,T>(1 4+ T)PI 0GP kP
= le? ol e,y + Cp(1+T) (1€ Vol 2y + 1e¥ 1l 2, )

4 CPTZ(I + T)P(1—9(217))/2KP.
Clearly, we may take K sufficiently large such that
£ > 1" ugll 2, + Cp (||e¢<’~>vHuo||Lz<H,,> +lle? - u,y ||L2<Hn>) :
Hence, fixing now 7 > 0 small enough so that

ET+cC,r?(1 + )P0 gr < K
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since the above estimates are uniform in ¢, it follows that ||v||‘T0 < K, that is, ® maps B¥ x to
itself.
Finally, we have to prove that ® is a contraction map, provided that 7 is sufficiently small.

Let us take v, v € B%K. If we denote u = ®(u), u = ®(v), then, w = u — u solves the Cauchy
problem

wl[_AHw+wf=|v|P_|l_)|pv (tsn)e(O7T)XHns
u(0,n) =u;(0,7) =0, ne€H,.
Using again (15) and the divergence theorem, after integrating over [0, ] x H,,, we get the in-

equality

t
st = [ [0 (1o ml? = 5617 ). dnds.

0 H,

By ||v|? — |9|”| < plv — v|(Jv] + |8])?~! and Cauchy-Schwarz inequality, we arrive at

t
-1
st 5 [ [0t = o6, mi(jo6s. i+ 156 1) ity s

0 H,

t
< / / eV w, (s, n)|*dn
0 H

n

1

2

BI—

_ _ 2(p—1)
x| [ = s mP (ol + o) | as
Hn

1
' 2
2(p—1)
< [ St | [ =56 nP (v mi+iasn) " | s
0

H)l

Applying again Lemma 5.1, we find the inequality

1
¢ 2

@%[w](rﬁs/ /ez'/’(“”lv(s,n)—ﬁ(s,n)lz(lv(s,n)l+I17(s,n)|)2(”_l)dn ds. (32)
0 H,

By Holder’s inequality it follows

le? (s, ) — (s, (v ls, )+ 106, D 2,

< 1@ PVEINu(s, ) = B, Il 2wy 1PV (ucs, |+ [9s, )P ||Lpsz](H )
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We estimate separately the two norms on the right-hand side of the last inequality. Using
Lemma 4.3 and the property ¥ > 0, we get

Ie® PV ucs, ) = (s, )l 2o,y S (14 9)TPCPI2YV IV (u(s, ) = B(s, Dl 2qa,)
and

leP=DVE (lucs, )|+ 190, D 2
LP=T(H,)

p—1

2p

_ / 2PV (o (s, m)| + 15Gs, m))2Pdy
Hl'l

. o p—
< (17006, g,y + 1Y 56, 2v )

-
S (14 ) I7@E=DL (VI (s, ) 2y, + €0 Vi (s, )l 2, )
By (32) we have

le” w2,y + e Vw2,

t
<c, / (1 -+ 5)PA=0CP2 V&IV (u(s, ) — 55, Dl 2
0

. - p=1
x (I1e¥ v (s, )l 2qa, + 16”6, )l 2qa, ) ds

t
- . _ )P
<Cp [ W+ R ju a1 (i) + 151}
0

< C, T+ T)PI=0C2 =Ty _5)Y. (33)

Furthermore,

t

eV M (t,n) = / eV My (s, n) ds
0

and the fact that i is decreasing with respect to ¢ imply

t t
le¥ I w(t, 2w, < / le¥ w5, Ml 2w, ) ds < / le? D wy (s, )l 12 s, ds
0 0

<C,T>(1+T)PI=0C2gr=1yy g%, (34)
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where in the last inequality we applied (33). Summarizing, combining (33) and (34) we arrive at
@) — @@} = llwlly < CpT (1 +T) PO gr=ljy — )17

So, choosing T > 0 sufficiently small we find that ® is a contraction. Therefore, our starting
problem has a unique solution u in €([0, Tmax), H' (H,)) N €1 ([0, Timax), L2(H,)) with finite
energy &y [u](¢) for any ¢ € [0, Tiyax), due to Banach’s fixed point theorem. Moreover Tiax < 00
implies the blow up of the energy for T — T,,,. Otherwise, if it was not so, we would have a
finite energy for u in a left neighborhood of Tr,x, and then repeating the same arguments when
the initial conditions are taken for t = 0, we could extend the solution, violating the maximality
of Thax. O
6. Estimates for the linear problem

In order to prove Theorem 2.2, we recall some decay estimates for the solution of the linear
Cauchy problem (10). In the next propositions we can relax the assumptions for the initial data,

considering a less restrictive space than the weighted energy space < (H,,). More precisely, we
may assume just data in the classical energy spaces with additional L!(H,,) regularity, namely,

(uo,u1) € (H'(H,) N L' (H,)) x (L*(H,) N L' (Hy)).
We set
Z“H,) = (H*(H,) N L'(H,)) x (L>*(H,)NL'(H,))  for «x €{0, 1}.
Clearly,
o (Hy) — 2'(H,) — H'(H,) x L*(H,). (39)

Proposition 6.1. Let (g, u1) € 2'(H,). Let u € €([0,00), H' (H,)) N €' ([0, 00), L>(H,,))
solve the Cauchy problem (10). Then, the following decay estimates are satisfied

_2
et 2,y < CA 407 [[wo, un)lgoa,) (36)
_2_1
IVate(t, 2y < CA+07F 72l wo, u) g1y, (37)
18t ) 2,y < €A +07 T o, un)ll g1,y (38)

for any t > 0. Furthermore, if we assume just (uo,u1) € H'(H,) x L2(H,), that is, we do not
require additional L' (H,) regularity for the Cauchy data, then the following estimates are sat-
isfied

lu(t, 2@, < Clliwo, ull2m,) (39
_1

IVau(t, )l 2@,y = CA+ 0721 (wo, u) | g1 1,y < 22 (H,) (40)

10:u(t, M2, < C(+ )l (uo. u)ll g1 |,y < L2 (H,,) (41)
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forany t > 0. Here C > 0 is a universal constant.

Proof. See [18, Theorem 1.1], where the group Fourier transform on Hj, is applied to prove this
result. O

Finally, let us point out explicitly that we can still employ the estimates derived in the previous
proposition in order to estimate Duhamel’s integral term (11), as the operator 8,2 — Ag+ 0 is
invariant by time translations.

7. Global existence of small data solutions: proof of Theorem 2.2

In order to prove Theorem 2.2, first we have to prove the next preliminary lemma, which
allows us to estimate the weighted energy (29) of a local (in time) solution u to (1).

Lemma 7.1. Let n > 1 and p > 1 such that p < % Let (ug, u1) € o (Hy). If u solves

MII_AHM+M[=|U|I7, (t7 rl)e(o7 T)Xan
u(0,n) =up(n), ne€H,,
u (0,m) =u1(n), ne€H,,

then, the following energy estimate holds for any t € [0, T') and for an arbitrary small § > 0
2 s\urs.. p+1
Eglul () S I3+ 107 + ( sup (1 +s)5||e(p+1+ G, e -)IleH(H,,)) .42
s€[0,7]
where
3= [0 (i + Vo) d
H,
Proof. First we prove that
t

1 2 _u(t,- 1
é",/,[u](t) S_, I§+[()[7+ + ||ep+1¢([, )M(l, ')”i:_Jrl(Hn) +//|w1(s, 77)|321ﬂ(s,n)|u(s7 77)|p+1d7]ds.

0 H,
(43)

Integrating the relation (21) over [0, ¢] x H,,, we get immediately (after using the divergence
theorem)

t
Gylu) (1) <Gy [1)(0) — 337 / / V(s )™ (s, )|Pus, n) dn ds,
0 H,

where
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Gylul(t) = E[ul(1) — 57 / e (e, )| ue, n) dn.
H)l

Consequently,

S0 =H IO+ 5y [t Pty
H,

t

=21 [ [t s miPuts. ny dnas
0 H,

t

2 .
S 1ul() + 17T ue NI / / [ (s, e P (s, )| P dn ds.
0 H,

So, in order to prove (43) we have just to show that & [1](0) < Ig + Ié’ *1 Since

Gy [ul(0) = &y [u)(0) — 547 / e O lug(m)Puo(n) dn S 15 + / e O Jug () |7+ dn,
H, H,

we have to prove only that

+1
/ VO g ()P dn < 1.
H,

Becauseof p+ 1 < —;Of +1< —25_@ , using the Sobolev embedding
2-2 22
H'(H,) — L"*'(H,)

which follows, for example, from the special case 6 = 1 in Lemma 4.1 by interpolation with the
trivial embedding H 1(H,) — L%*(H,), we find

/e‘”(o’”)luo(n)lp“dn
H,

p+1

1
L0,
= fler=1¥ ™) wollyr g,

+1 —L_y(0,)
uO”il’“(H,,) S ||el)+11//

p+1

= / e 1O (1o + Vo) + (p + D2 (0, 1) Plugn) ) dy
H,
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prl
2
290,
S| [ O (o + 1WunotP? + (P + 1y ) o))
H,
ptl
2
+1
S| [0 (o + Son?)an | <1
H

n

where n = (x, y, 7) and in the second last inequality we have used the fact that p > 1 to get the
estimate

(14 (P ) 77O g v 0.
So, we proved (43). From the relation v, (s, n) = —(1 + $)~1 (s, n) it follows
¥, (s, n)|e(2—y([’+1))1//(ss77) — %—i—sl//(s’ n)e—S([’-i-l)lﬁ(S,n) <@ —i—s)_l,
with y = % + 6 and § > 0. Therefore,

t

// [, (s, )2V S (s, n)|PH dx ds

0 H,

t
5/(1 +S)_1/e”(”+1)‘/’“’”)lu(s,n)l”“dnds
0 H,

t
< sup (145" PHDerV Oy (s, | PE] / (1+5)7 1700y
0

s€l0,7] Lo+,
p+l
< ( sE)p](l + ) 1e"V Iy s, -)||L,,+1(Hn)) . (44)
sel0,t
Finally, since y > % and § > 0, we have trivially
S2U) P+ Byt s
”ef"" M(t, -)”L[H—I(H") S ((1 + t) ”e ’ lzt(t, -)||Lp+l(Hn)) . (45)

Hence, combining (45), (43) and (44), we get the desired estimate (42). O

Combining the linear estimates from Section 6 and Lemma 7.1, we can finally prove Theo-
rem 2.2.
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Proof of Theorem 2.2. By contradiction, let us assume that for any 9 > 0 there exist data sat-
isfying (6) such that the solution u € € ([0, Tax), Hl}f(t )(H,,)) NE (0, Tmax), Lw(t )(Hn)) to
the corresponding problem, whose existence is guaranteed by Theorem 2.1, is not global in time,
that means Ti,x < 00.

For any T € (0, Tnax), we may define the Banach space

X(T)=%(0.T], Hy, ,(H)) NE (0. T1, L2, (H,)),

equipped with the norm

. . . 2
llxery = sup [1e” ™ Vi, )l o, + 1€, 2,y + (L +0 T )l 2,
t€[0,T]

§+l Q-l—l
+ A+ T Tu, 2, + A +0 T @ 2, )|

By Lemma 7.1 it follows that

le? w2, )l 2,y + ¥ Vi, )l 2,

p+1
2

p+l
Seo+e)’ +< sup (1-+5)1e(H7T)V6s u(s,-)||Lp+1<H,,))
s€[0,1]

(46)

As2<p+land p+1<2p< Q 2,weﬁndthat@(p—i—1) € (0, 1]. Besides, we may take § > 0

sufficiently small such that § + - +1 < 1. Let us stress that throughout the proof we will prescribe
further conditions that the quantity § has to fulfill. Hence, by Lemma 4.3 we obtain

||e< p+|>‘/f(Y )M(Sv’)”LP“(H,,)

5+ 2
< (420700 | Vs, )||L2(<H)”+‘>||e*”“ Wa(s,

<a +s)%(1—0([?+1))—< (H"“))(%Jr%)llullxa)

211_2 (2,1
S +s) 7H! 2+( +2)||“||X(t)

forany s € [O., t]. As we assume p > pryj(<2) (which is equivalent to require that % — % < 0),
we may consider § > 0 such that

(l? 1 0? O? 1
p+1 2 ( 4 2 1) <0.
lherefore, by (46) we have

ptl ptl

eV w2, ) 2,y + 1?7 Vau, 2, Seo+e07 + lull - (47)

Please cite this article in press as: V. Georgiev, A. Palmieri, Critical exponent of Fujita-type for the semilinear damped
wave equation on the Heisenberg group with power nonlinearity, J. Differential Equations (2019),
https://doi.org/10.1016/j.jde.2019.12.009




YJDEQ:10186

V. Georgiev, A. Palmieri/ J. Differential Equations eee (eeee) eee—eee 23

Let us proceed now with the estimate of the not-weighted L%(H,) - norms. We will follow
precisely the computations for the Euclidean case (cf. [9, Section 18.1]). Thus,

1y Vit )l 2,

<eo(l4n) T3¢

/2
—2 k4
b [t (N g+ 1005, )
0
_k_
+/(1+t—s) 2 uls ] ap g, , A (48)
)2

for k+¢ =0, 1, where we used (35) to estimate the solution of the corresponding linear homoge-
neous problem, the L' N L? - L% estimates (36), (37) and (38) to estimate Duhamel’s term on the
interval [0, 7/2] and the L? - L? estimates (39), (40) and (41) on the interval [¢/2, t]. Applying
(7) and (8) to |u(s, -)|?” with o = dp and using (25) and the definition of the norm || - || x (), we
arrive at

e, MY g,y S 49T 12O u(s, Dy 00

2P (1— 1-6
S 4T R0 g (s, 5 P e? ) Viaus, )1

2 2
<1+ S)T+g(179(217))*(178)p<7+7)|

L%(Hy)

|M”§7(1)

212 ysp(2+1
= TERE )

and

et s, I 2y g,y S €S, 2 gy

S (149 2P hu(s gy eV ) Vaus. 11

P1— —(1— =2
< (1 4 5)F0-0@M0 or( %+

L2(Hy)

1 ,J+i+5p 2,1
2)||u||§(t):(l+s) 2 4 (4 2>”u”X(t)’

where we might apply (25) thanks to the upper bound p < pgn(Z) that guarantees
0(2p) € (0, 1]. We estimate separately the two integrals on the right-hand side of (48).
Let us begin with the integral over [0, 7/2]:

1/2

_2 &y »
(14+1-5) (W, DT g,y + G Iy ) )
0

2 _2Zr, 2 2.1
5/(1+t_s)—7—§—f(1+s) 2 +2+5P(4+2)ds ”u”§([)
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12
_____ l’+§+8 Q Ey
<A+1) 5 /(1 +s5) 272 r(4 2)ds el -

0

Since p > pryj(<£) and, equivalently, —% + % < —1, we can find é > 0 such that

~22+Z+op(£+1)<-1. (49)
Consequently,
t/2
/(1 1 =) F T (s, Y gy + 1G5, I gy ) ) S (107575 lally -
0

Using again (49), for the integral over [t/2, t] we obtain

/<1+z 7l Yy g, 45

t/2
1) 2,41

5/(1+t—S)_%_£(1+S) +2+00(% 2>ds||u||x(t)
t/2

_2p,. 2 s Q
<(an THE(E /(1+r—s>-f—‘ds||ullx<t>

t/2

2 2 (2 1) kg

< THE(FR) S 0 4y el )

_2___
SA+0" T2 Yullf,)-

Summarizing, from (48) we derived

2k
A+ 070 V. M 2, Seo + lullf - (50)

Therefore, combining (47) and (50), it follows

p+l1 p+l

lullxery Seo+eg” + lullyip + lulyqr. (51)

If &9 > 0 is small enough, then, from the last inequality we get that |u| xr) is uniformly
bounded, more precisely,

lullx ) < €o (52)

for any T € (0, Tmax) (cf. [17, Section 6], for example). Besides, from
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t

e/t ) =" Mug(n) + / e’y (s, m) ds
0

and by using the monotonicity of ¥ with respect to ¢, we get

t t
e ue, 2w, S o+ / e uy (s, )l L2, ds S g0+ / le¥ S Vuy (s, ) 2 qa, ) ds
0 0

Seo(1+7),

where in the last estimate we used (52). Therefore, if Tax < 00, then, it holds

timsup (le?“u(t, 2, + 1€ Vi, )l 2qan e g0, ) 2, )

T — Tax

<e(1+4+T) < oo.

Nevertheless, this is impossible according to the last part of Theorem 2.1, so Tipax = 00, that is
u, has to be a global solution. The decay estimates for # and its first order derivatives from the
statement follows by the relation (52) which holds uniformly with respectto 7. O

8. Blow-up: proof of Theorem 2.3
Before proving Theorem 2.3, we recall briefly the definition of weak solution to (1).

Definition 8.1. A weak solution of the Cauchy problem (1) in [0, T) x H, is a function
ue Ll ([0,T) x H,) that satisfies

loc

T
//Iu(t,n)l”tp(t,n)dndt+/(uo(n)+u1(n))<p(0, n)dn—/uo(n)atw(O, n)dn

0 H, H, H,

T
= [ [t (o0 = swgte. ~ dipte.m) anar (53
0 H

n

for any ¢ € 65°([0, T) x Hy). If T = oo, we call u a global in time weak solution to (1), else
we call u a local in time weak solution.

Proof of Theorem 2.3. We apply the so-called test function method. By contradiction, we as-
sume that there exists a global in time weak solution u to (1).

Let us consider two bump functions o € 5°(R") and g € ¢;°(R). Furthermore, we require
that o, B are radial symmetric and decreasing with respect to the radial variable, « =1 on B, (%),
B=1on [—%, %], suppa C B, (1) and supp 8 C (—1, 1). If R > 1 is a parameter, then, we define
the test function ¢g € %OOO([O, 00) X ]R{Z”H) with separate variables as follows:

Please cite this article in press as: V. Georgiev, A. Palmieri, Critical exponent of Fujita-type for the semilinear damped
wave equation on the Heisenberg group with power nonlinearity, J. Differential Equations (2019),
https://doi.org/10.1016/j.jde.2019.12.009




YJDEQ:10186

26 V. Georgiev, A. Palmieri/ J. Differential Equations eee (eeee) eee—esee

wr(tx, . 1) =B ()@ (3) o (5) B (F) forany (t,x,y,7) €[0,00) x R, (54)

It is well-known that

1 1
[0jo] Sap forany 1 <j<n, [3;0p|Sa? foranyl <j k<n,

1 1
IBISB?, 1B 1SB7.

1 1
Furthermore, 0 < «, 8 < 1 implies immediately « < «? and 8 < 7. Therefore, from the rela-
tions

(3.3, 0 =R () () (7)8 ().
For(t,x,y, 1) =R*p" (L) (2) ﬂ<L>
! RS ’y’ 2 R R2 s

Augr(t.x.y.7) =R (#)Aa(%)a(%)ﬁ(%)+R—2ﬂ(#)“(%)Aa(%)ﬂ(L)

where A denotes the Laplace operator on R”, we get

1
19, 0r] S R (9R)7,
1
020x] < R4 (0r)? <R 2(0r)7, (55)

1
|Angrl S R 2 (@R) 7.

We used that suppgr C [0, R?] x B"(R) x B"(R) x [—R?%, R?] in order to estimate the polyno-
mial terms in the estimate of |Ager|.

Let us apply the definition of weak solution (53) to the test function ¢g. Hence, by (55) we
obtain

/ / (e, )P R (e, mydndi + / (o) + u1 ()9 (0, n) dn

0 H, H,
o0
s//|u<r,n>|(|af<pR<r,n>|+|AH¢R<r,n>|+|at¢R(r,n>|)dndr
0 H,
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o
5R‘Z//m(t,n)|(¢R(r,n>)%dndt
0 H,
00 1 1
< R‘2<//Iu(t,n)l”wR(t,n)dnth< // dndt> ,,/, (56)
0 H, [0,R21x DR

where in the last step we used Holder’s inequality and the support property for ¢g. Let us intro-
duce now the R-dependent integrals

IRi/ / et or(tmdndr, Jr = / (o) +u1 () @r(©, Mdn.  (57)
0 H, H,

Due to the assumption on the data in (9), we have liminfg_, o Jg > 0, which implies in turn that
Jr > 0for R > Ry, where Ry is a suitable positive real number. Indeed, from supp ¢g (0, -) C Zr
and gg(0, ) =1 on Zg/> we get trivially

Jp= / (0 () + 11 () (0, ) dy > / (o () + 11 () dn.
Dr Dr)2
Then, for R > Ry the estimate in (56) yields

72+2n+4 1 1
Ir<Ig+Jr SR " Ig =R roIg, (58)

where we applied meas(Zg) ~ R<. When the exponent of R in the right-hand side of the last
inequality is negative, i.e., for p < pryj(2), we have that

l—l) Q7=@+2
0<Ip "SR » — 0 asR— oo.

Thus, limg_, o Ig = 0. However, this is not possible, because the term Jg is positive for R
sufficiently large. So, letting R — oo in (58) we find the contradiction we were looking for. In
order to get a contradiction in the critical case p = pryj(<2) too, we need to refine the estimate

in (56). Indeed, we can use the fact that d,¢g is supported in ﬁR = [RTZ, R?] x P and AHQR
is supported in Zg = [0, R?] x (D1.rRYU D2.r U P3.R), Where

P21 r = (Ba(R)\ B4(R/2)) x By(R) x [-R* R?],
P2 R = Bu(R) x (By(R) \ B4(R/2)) x [-R*, R?],
Z5.r = Ba(R) x (B4(R)) x (I-R*, R*1\ [-R*/4, R*/4]).

Consequently, for R > Ry we may improve (56) as follows

1 1
IR<IgR+JRSIg + 1y, (59
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where
f}i//|u(t,n)|p<pR(t,n)dndt and TRﬁ//lu(l,nﬂ‘n(ﬂR(fv’?)dndL
E;TR <@JR

In the critical case p = pryj(2), from (58) it follows that /¢ is uniformly bounded as R — oo.
Using the monotone convergence theorem, we find

o0 o0
lim 7= lim //m(z,n>|f’¢R<z,n>dndr=//|u<r,n>|f’dndr51-
— 00

R—o0
0 H, 0 H,

This means that u € LP([0, co) x Hy). Applying now the dominated convergence theorem, as
the characteristic functions of the sets &g and &g converge to the zero function for R — oo,
we have

lim Tg = lim //Iu(t, M|’ r(t, n)dndt =0,
R—o0 R—00

Pr
lim g = lim //m(r, mIPer(t, n)dndt = 0.
R—o0 R—o00

Pr

Also, letting R — o0, (59) implies limg_, ~, Ig = 0 which provides the desired contradiction in
turn, as we have already seen in the subcritical case. The proof is completed. O
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