JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:259 |
Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor | |
Article | |
Chen, Shouxin1  Han, Xiaosen1,2  Lozano, Gustavo3,4  Schaposnik, Fidel A.5  | |
[1] Henan Univ, Sch Math & Stat, Inst Contemporary Math, Kaifeng 475004, Henan, Peoples R China | |
[2] Natl Taiwan Univ, Ctr Adv Study Theoret Sci, Taida Inst Math Sci, Taipei 10617, Taiwan | |
[3] Univ Buenos Aires, FCEyN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina | |
[4] Univ Buenos Aires, FCEyN, Inst Fis Buenos Aires, RA-1428 Buenos Aires, DF, Argentina | |
[5] Univ Nacl La Plata, Dept Fis, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina | |
关键词: Chern-Simons-Higgs equations; BPS equations; Topological solutions; Doubly periodic solutions; Existence theorems; | |
DOI : 10.1016/j.jde.2015.03.037 | |
来源: Elsevier | |
【 摘 要 】
In this paper we establish the existence of vortex solutions for a Chern-Simons-Higgs model with gauge group SU(N) x U(1) and flavor SU(N). These symmetries ensure the existence of genuine non-Abelian vortices through a color flavor locking. Under a suitable ansatz we reduce the problem to a 2 x 2 system of nonlinear elliptic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solutions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained minimization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2015_03_037.pdf | 503KB | download |