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Abstract

In this paper we establish the existence of vortex solutions for a Chern—Simons—Higgs model with gauge
group SU(N) x U(1) and flavor SU(N). These symmetries ensure the existence of genuine non-Abelian
vortices through a color—flavor locking. Under a suitable ansatz we reduce the problem to a 2 x 2 system
of nonlinear elliptic equations with exponential terms. We study this system over the full plane and over
a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the
existence result and derive the decay estimates of the solutions. Over the doubly periodic domain we show
that the system admits at least two gauge-distinct solutions carrying the same physical energy by using
a constrained minimization approach and the mountain-pass theorem. In both cases we get the quantized
vortex magnetic fluxes and electric charges.
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1. Introduction

Magnetic vortex configurations were investigated by Abrikosov [1] more than fifty years ago
in the context of Ginzburg-Landau theory of superconductivity. Sixteen years later Nielsen and
Olesen stressed the relevance to high-energy physics of vortex-line solutions of the Abelian
Higgs model in the context of dual string models [39]. Since then the interest on vortices has
continued to grow both in condensed-matter and particle physics.

Very early it was observed that when the Ginzburg-Landau free-energy parameter ratio takes
the critical value bordering type-I and type-II superconductivity one can find the BPS (named
after the famous works of Bogomol’nyi [8] and Prasad—Sommerfield [42]) equations which
are equivalent to the more involved second-order Ginzburg—Landau equations [27]. These BPS
equations were rediscovered in the context of high-energy physics in [8,16] with the Ginzburg—
Landau parameters identified with the gauge charge and the symmetry breaking potential cou-
pling constant of the Abelian Higgs model. A rigorous study of the self-dual equations with the
coupling constant ratio at its critical value was presented in [46] where it was proved that the
self-dual vortex solutions are uniquely determined by a set of N not necessarily distinct points in
the plane corresponding to the zeros of the Higgs field. Every set of N points determines exactly
one such solution.

Interestingly enough, as first pointed out in [16], the value of the parameter ratio leading to
the BPS equations is precisely the one required to extend the Abelian Higgs model to an N =2
supersymmetric model in d = 3 space-time dimensions. This supersymmetry connection opened
the way to the computation of some data (like the exact particle spectra in certain gauge theories)
at strong coupling even when the full theory is not solvable (see [43] and references therein).

In (2 + 1) space-time dimensions the usual Maxwell term of the Abelian Higgs model can
be replaced by a Chern—Simons (CS) term [14,15] leading to the so-called Abelian Chern—
Simons—Higgs theory. Also in this case a specific choice of parameters and of the Higgs potential
(a sixth-order one) leads to the BPS equations [13,29,30]. The presence of the CS action dras-
tically changes the vortex solutions which carry in this case both magnetic flux and electric
charge. A major interest in the CS theories is closely connected to several problems in planar
matter physics. In particular, large scale properties of a Quantum Hall system can be described
in terms of a CS theory with the Hall conductivity related to the inverse of the coefficient of the
CS action [21]. Also, the central role played by the CS term in bosonization of massive [20] and
massless [3,37] fermions has also been revealed.

The existence of self-dual vortex solutions of the Abelian Chern—Simons model with bound-
ary conditions on R2 has been established in Refs. [44,48]. The model was also studied in the
case of gauge-periodic boundary conditions defined on a periodic cell [28,49] and in this case it
has been proved that there is a critical value of the CS coupling parameter above which vortex
solutions do not exist [10,45]. The existence of a critical value of the parameter is related to the
area of the periodic domain and has been observed also in Abelian and Yang-Mills—Higgs sys-
tems in different compact geometries [9,23,35]. Let us point out that periodic field configuration
is particularly relevant in the context of condensed matter systems where vortices appear as a
lattice array (the Abrikosov lattice) [1].

Topologically stable vortex solutions in SU(N) gauge theories with both Yang—Mills and
Chern—Simons terms were constructed in [17,18] with the scalar fields breaking the symmetry to
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Zy and gauge fields restricted to the Cartan subalgebra. Under the same assumptions self-dual
equations for the pure non-Abelian Chern—Simons—Higgs model were studied in [34]. A proof of
the existence of vortex solutions with the Cartan restriction was given in [50]. Because in these
models the vortex magnetic fluxes turn out to be in the Cartan subalgebra direction the solutions
can be seen as the result of an Abelian embedding [43].

It is known that adding flavor to the Yang—Mills—Higgs theory one can arrange the symme-
try breaking so that some global diagonal combination of color and flavor groups survives. This
pattern of symmetry breaking is known as color—flavor locking procedure (see [43] and the ref-
erences therein) and leads to genuine non-Abelian vortices with an orientational moduli related
to the presence of the surviving symmetry subgroup. Existence and uniqueness theorems for the
solutions of this model were presented in [33]. In an independent study [38], Navarro-Lerida
and Tchrakian considered genuinely non-Abelian Yang—Mills—Higgs vortices for which the flux
fields do not lie in a fixed direction of the Cartan subalgebra.

It is interesting to note that a bi-level Chern—Simons—Higgs theory was recently developed
in Aharony-Bergman—Jafferis—Maldacena [4], known as ABJM theory. Various BPS structures
for this theory were discovered by the work of Auzzi and Kumar [7] and Kim—Kim-Kwon—
Nakajima [32]. On the other hand, the existence and uniqueness theorems for the corresponding
BPS equations have been established in [11,26].

Within the color—flavor locking symmetry breaking pattern referred above and an appropriate
cylindrically symmetric ansatz, genuine non-Abelian vortex solutions were constructed numer-
ically for the SU(N) x U (1) Chern—-Simons—Higgs theory with SU(N) flavor in [34]. It is the
purpose of this work to present rigorous existence theorems for this problem which can be re-
duced to a 2 x 2 system of nonlinear elliptic equations with exponential terms.

It is worth noting that we mainly establish the existence results for the BPS type equations. For
the existence results for the non-BPS equations, we mention the work by Chen—Guo—Spirn—Yang
[12].

We shall consider the model defined in two types of domains: over the full plane and over a
doubly periodic domain. Over the plane, this type of system (with different symmetry groups)
was studied in [50] in a general form by using the Cholesky decomposition of a positive definite
matrix to find a variational structure. However, for our concrete 2 x 2 system, we find a more
explicitly variational structure than that of [50] without using the Cholesky decomposition. Over
the doubly periodic domain, we find a sufficient condition on the coupling parameter such that
the system admits at least two different solutions as in [41,45], which are obtained by using
a constrained minimization approach [10,24,25,41] and the mountain-pass theorem. These two
solutions are necessarily gauge inequivalent. Since they both carry the same electric charge and
magnetic flux and are of self-dual type, they have the same energy. This phenomenon is in sharp
contrast with that in the classical Abelian Higgs model [31.47].

The rest of our paper is organized as follows. In Section 2 we introduce the non-Abelian
Chern—Simons model with gauge group SU(N) x U (1), reduce it to a 2 x 2 system of nonlinear
elliptic partial differential equations with exponential terms, and state our main results. In Sec-
tion 3 we establish the existence result for the planar case and derive the decay estimates of the
solutions. Section 4 is devoted to the existence result for the doubly periodic domain case.

2. The model and main results

In this section we follow [34] to derive the non-Abelian Chern—Simons—Higgs self-dual equa-
tions and state our main results. We study the bosonic sector of the A" =2 SUSY SU(N) x U(1)
Chern—Simons—Higgs action in 2 + 1 dimensions
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where €912 = 1, goo =1, f”K are the structural constants of SU(N), u, v, p =0, 1, 2 are Lorentz
indices, I, J,K =1,..., N?> — 1 are the SU (N) “color” group indices, t; are the anti-Hermitian
generators of SU(N). The covariant derivatives and field strengths are defined as
Dyl =0,8] + (ASUINbg] 4+ (AU ),
ASUN) — gLy, AU 2 f0 7
0 I IIK 4J 4K
F;w =8[MAV0], Flwza[ﬂAvll—Ff Ap,Av ,

where 70 and ¢/ are the U (1) and SU(N) generators.
The potential V[¢, ¢ '] is a sixth order polynomial of the form

1 t
Vie.9= 1o ZNZ #7810 =N+ Lozt T @l 4@ o)
2(plg® — NE). 2.1
T i N(¢ t'¢l) (oi0 £) 2.1
The scalar complex multiplets have both the gauge index a,b,c =1,..., N and flavor index
f,g,h=1,..., N,and can be written as an N x N matrix. The choice of the sixth order potential

is dictated by the aim of getting the BPS equations whose static solutions correspond to a lower
bound of the energy. As it is well known, the existence of BPS equations is directly related to the
N =2 supersymmetry of the theory, with the central charge of the supersymmetry algebra related
to the topological charge of the corresponding BPS solutions [43]. It is precisely supersymmetry
which requires the particular choice of the potential which, in contrast with the usual forth-order
one, has two phases. Indeed, up to gauge transformations, the minima of the potential are given
by

qbf =0 symmetric phase

¢f¢T = &diag{l, ..., 1} asymmetric phase
In the asymmetric phase, where the original gauge symmetry is broken, topologically non-trivial
solutions can be found (see the discussion below). In what follows we set, without loss of gener-
ality, £ = 1.

The Euler-Lagrange equations of the theory are

ki€ Foy =) = ¢11°Dyg! — (D97 %7,

kretP Fly =) =¢17' Dy’ — (D) o' g,
0 V
8¢> f

D DM¢f —
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Using the Gauss law,
k1 FYy = Jg = ¢}t Dog” — (Dog )29/, 2.2)
2 Fly = Jf = ¢}t Dog! — (Dop!)' 2! ¢, 2.3)
one finds that the energy density is given by
H = (Do¢p”)' (Dod”) + (Di¢”) (Di¢”) + VI, ¢'].

One can see that the energy can be written as a sum of squares

1 1 f
_ 2 _ 2 Fril —— (T f_ gt g f
H—/d xH—/d x“:Do(ﬁ :F1<4K1N(¢g¢g)¢ 2K2qjgr ¢ >i|

_ | | . ¥ .
x [Dwf ¢1<m<¢;¢g>¢f - %@r’w )} + (Dz¢”) (Dx¢”) + ~/2NF1°2} ,
where

Dy =D £iD;.
Energy minima are then obtained by solving the BPS equations
Do’ Fi( (919597 — s—lr 8" ) =0 2.4)
41N 78 2up 8 ’
Dz¢/ =0. (2.5)

Note that because of the presence of the Chern—Simons term, magnetic vortices are electrically
charged and their magnetic flux F

.FOE/F]Ode, fIE/Fllzdx

and electric charge Q

QOE/Jgdx, QIE/JOIdx
are related. Indeed, one has from Eqs. (2.2)—(2.3)
L=0F, ' =F

Since the BPS equations (2.4)—(2.5) are difficult to deal with directly, we make the following
ansatz, which coincides with that in [34] except that cylindrical symmetry is not assumed



S. Chen et al. / J. Differential Equations 259 (2015) 2458-2498 2463

& =diag{p, ..., P, PN}, (2.6)

A= ——fo, AV= \/7fl, (2.7)

Al =o, A’ o NE=2, (2.8)

AN2—1 [N -1 N2 I AN2—1 _ /2(NN— 1)fiN2—1, (2.9)

where ¢ and ¢y are complex-valued functions, fo, fi, f, N2 1, fl.N -1 are real functions and we

have chosen

0 i . N2_1 i .
T’ = ——diag{l, ..., 1}, T =——— diag{l,..., 1,1 — N}.
o g{ 1 AN D) g{ 1

In (2.6) we have written the Higgs fields in terms of an N x N matrix ® with entries @,y = qbf
where a runs over the gauge group indices and f over the flavor indices. The gauge and flavor
groups act on @ according to & — UPV with U an element of the gauge group and V an
element of the flavor group. The choice of ansatz for ® produces, with appropriate boundary
conditions for ¢ and ¢y, the spontaneous breaking of both gauge and flavor symmetries with
a surviving diagonal global SU(N)c+r in what is known as a color—flavor locking in the vac-
uum [43] that will ensure topological stable solutions. Indeed, for the asymmetric phase the
first and third terms in the potential (2.1) force ® to develop a vacuum expectation value while
the second one forces it to be diagonal. Such vacuum expectation value is preserved only for
transformations in which U = V~!, which corresponds to performing a global gauge transfor-
mation and a related (inverse) global flavor transformation. The relevant homotopy group is then
IT; (SU(N) x U(1)/Zn), leading to Zy non-Abelian vortices. Let us finally note that the choice
of a different non-trivial Al.l component together with the corresponding column permutation in
® in ansatz (2.6)—(2.9) leads to other Zy vortex solutions.

With the above ansatz, the Gauss law (2.2)—(2.3) and the BPS equations (2.4)—(2.5) can be
simplified as

K1y = ——Wlm ([tv = 109 + 19w P] fo + IV = 1116 — tgwl?] 7).

2.10)

Ffy = %([w —low | fo+ 1P + IV - 1en?] 7). @1
o —ing = ([n- 1] -1[n- ")), 2.12)
@ —imow = ([A+ V=17 =i+ v =15 ]) o, @.13)
fo= 50 (IN = DI6P + 6w = ). 214

R = 5 (108 = 19nP). 2.15)
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Without loss of generality we have chosen the upper sign in parameter € = %1 introduced when
we wrote the energy density as a sum of squares. The lower sign will just correspond to vortex
magnetic fluxes with opposite sign.

From Eqgs. (2.12)—(2.13) of ¢ and ¢y, we see that the zeros of them are isolated. For topolog-
ical solutions (¢, ¢ — 1 at infinity), the zeros are finite. We denote the zero sets of ¢ and ¢y
by

Zi={pis,s=1,...,n;}, i=1,2.

Let

and note

_ 1 - 1
0= —(0 i02), 00=00=-A
2(1+12) 1

By a direct computation, we obtain

Aln|g|? = \/712 ,/N(N 5 FN-L (2.16)
Aln|g]? = fﬂz ,/2(N D gt @2.17)

Then, from (2.10)—(2.11), (2.14)—(2.15) and (2.16)—(2.17) we have, away from the zeros of
the Higgs fields

Aln|gl? = 4;2{ (IN = 1181 +1gw %) (IN = 118 + gw > = N)
+ N—; (19~ 1gw ) + i (I¥ = 18P + lon 2 = N) (101 — low )

+K—1% (162 + v = 1ligw?) (101 - |¢N|2)}, 2.18)

1

Al 2 -
nlgnl =

{ (IV = 1181 + len ) (IV = 111 + 18 = N)

(10l ~1on )" - ]Zl—;zl (v = 11162 + 19w = V) (1 — ow )

K1K2

N2 (10 + 3 = 1iowl?) (191 - |¢>N|2)}. (2.19)

19
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Let

1 K1
up=In|p%,  us=In|py|>, h=og K=
1

We can rewrite the above equations (2.18)—(2.19) as
1
Auy = A{m([zv — 1+ k1P — [k — 1(N — [N = 2][x — 1])e"1T2
1
+ 1= k](1 [N = 1le)e? ) — ﬁ<[1v S g /{]6”2)}

n
+4x 6y, (220
s=1

NS :A{%([N — 101 — k][N — 1 +«1e® — [N — 1]k — 12+ [N — 2]k )e" 1

+ (14N - 1]K)262u2> - %([N — 101 — ke + (14N — 1]K)e"2)}
ny

+AT Y 5, (2.21)
s=1

We are interested in the existence of solutions of (2.20)—(2.21) for two cases. In the first case,
we consider the system (2.20)—(2.21) over the plane with the topological boundary condition

ur—0, wuy;—>0, |x|]— 4o0. (2.22)

In the second case we study the equations over a doubly periodic domain €2, governing multi-

ple vortices hosted in €2 such that the field configurations are subject to the 't Hooft boundary

condition [28,49,51] under which periodicity is achieved modulo gauge transformations.
Defining the matrix K as

_ 1 N—-1+4« 1—«
KZN((N—l)(l—K) 1+(N_1)K>v (2.23)

the system (2.20)—(2.21) can be rewritten in a compact form as

2 2 2 n;
Aup =2 [ 3N eiKye K — Y Kije | +4ny 8, i=1,2. (2.24)
j=1k=1 j=1 s=1

Thus, our model has equations of motion with the same structure as those studied by Yang [50]
in connection to the Non-Abelian Chern—Simons—Higgs model with matter in the adjoint repre-
sentation. Indeed, setting N =2 and x = 3 in (2.23) gives the same equations as those arising in
the SU(3) model studied in [40,50,51],
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nj
Auy =i <462u1 _etitur _po2ur _ natn 4 eMz) + 47 Z(S/’”’ (2.25)
s=1
ny
Auy = A (_262u1 —etituz 422 el — 2e”2) + 4 Z Sps- (2.26)

s=1

As already pointed out in [50], an existence theorem for the system (2.24) in R? can be
established for more general matrices K not necessarily connected to a specific SU(N) model
with adjoint matter. Our equations provide an explicit realization of this idea. Notice though, that
even if the existence of solutions for the system (2.24) in R? can be established as a result of
the theorem shown in [50], our matrix K does not satisfy the hypothesis used in [50] to derive
the decay estimates (the symmetrization of K is not positive definite). It should be stressed that
this decay estimates are relevant to make the connection between the topological charge (the
magnetic flux) and the number of zeros of the components of the Higgs fields. We will then
present in this paper a direct variational argument by using an explicit variational structure to
get the solutions. More importantly, we will be able to get the decay estimates of the solutions
and quantized fluxes. In addition, it is interesting to get an existence theory for the problem
(2.20)—(2.21) over a doubly periodic domain. We modify the approach in [10,24,25,41] to deal
with this case. Although the abstract approach [25] may be applied for this case, we present
in this work more simplified estimates than that in [25], which is of independent interest. This
motivates us to give a complete analysis of the nonlinear elliptic system (2.20)—(2.21) in both
cases.

Our main results read as follows.

Theorem 2.1. Consider Egs. (2.20)—(2.21) over the full plane subject to the topological bound-
ary condition (2.22). For any distribution of points p;1, ..., Pin; € R% i=1,2 k>0 A>0,
there exists a solution (u1, uz) for Egs. (2.20)—(2.21) realizing the boundary condition (2.22).
Moreover, there hold the following decay estimates: for any small € € (0, 1), the solution satis-

fies

(N = Dy +uzl? + [uy — un|? < C(e)e 20VU-0)xl 2.27)
IV(IN = 1uy + u2) 2 + V(g — un) 2 < Ce)e 00V2A0-o)lx| (2.28)

as |x| is sufficiently large, where C (&) is a positive constant depending only on g, o9 = min{1, k}.

Theorem 2.2. Consider Egs. (2.20)~(2.21) over a doubly periodic domain Q in R%. For any
given points pi1, ..., pin; € 2,1 =1, 2, which need not to be distinct, A > 0, and k > 1, we have
the following conclusion:

1. Every solution (uy, u2) of (2.20)—(2.21) satisfies

u; <0, i=1,2. (2.29)
2. If Egs. (2.20)—(2.21) admit a solution, then

167 ([N — 1
Py N|Q]|’“+”2). (2.30)
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3. There exists a positive constant A1 > Ay such that when A > A1 Egs. (2.20)—(2.21) admit at
least two distinct solutions over 2, one of which satisfies the behavior

e -1, as l—4oo, i=1,2 (2.31)
pointwise a.e. in Q and strongly in LP(2) for any p > 1.

Theorem 2.3. In both planar and doubly periodic cases, for the solutions (uy,us) obtained
above, the vortex magnetic fluxes take the quantized form

4
fU(l)EfFdez—([N—l]n +n7), (2.32)
12 /N L
-1
FSUN) = f Fﬁz_ldx =4r (ny —n2). (2.33)

3. Planar case

In this section we aim to find solutions of (2.20)—(2.21) under the topological boundary condi-
tion (2.22) and establish the decay estimates of the solutions, which allow us to get the quantized
fluxes stated in Theorem 2.3 for the planar case.

3.1. Existence of solutions
Following [31], we introduce at this point the background functions
n;
=Y W +px—pil™, u>0, i=12
s=1

which satisfy
n;
Au) =47 "8, — hi, (3.1)
where

i=1,2. (3.2)

Z

,LL + |x - p15|2)2’

Writing u; = u? + v;, we then recast (2.20)—(2.21) into
1
Avy = ,\{ 3 ([N — 1+ kP2 e — 1N — [N — 2][kc — 1])e“dHeatorte

_ _ 2u9+2v _ i _ u?+v] _ ud+v
+ 1= k](1+[N = 1 )e™ 2) N([N L w]e T 4 [1 — ke 2)}

+ hy, 3.3)
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N —1][1 —
Avy = A{ # ([N — 14+ K]62u9+2v1 + (2 +[N — Z]K)eu?+ug+v1+v2
1+[N —1]«)*
+LiL;£Lywﬂ
N2
+ha. (3.4)

B %([N —1[1 = k1T 4 (14 [N — 1]/<)eu3+”2>}

The boundary condition (2.22) now reads as

vp—>0, v»—>0, |x]—> +o0. 3.5)

To see the variational structure of (3.3)—(3.4) clearly, it is convenient to rewrite them equiva-
lently as

1
(N—1+—>Av1+<1 )sz—
K

1
— NeMT [ — 1] +"z+”1+v2 + (N -1+ )hl + (1 - —) hy, (3.6)
K

1 1 0
O L e L (R

N e 1]e"?+"3+”1+”2) + (1 - 1) hi+ (ﬁ + 1) hy. (3.7
K

-1 +K]62M +2v;

We will work on the space WL2Z(R2) x WE2(R2). Let us define

N—1+1 1-1
A(N,K)E< L« L 3 1) (3.8)
- T+
and introduce the notation
VO = (1, 02), UT = (@070, 342 T = (hy, ho), 17 = (1, 1). (3.9)

Then, it is straightforward to see that Egs. (3.6)—(3.7) are the Euler—Lagrange equations of the
following functional

1 2 t A T —1 t
I(vl,vz)E/ EZBiVA(N,K)BiV+§(U—1) AN,k )U—-1)+h A(N,k)v

R2 i=1

(3.10)

Then, to solve Eqs. (3.6)—(3.7) (or equivalently (3.3)—(3.4)), we just need to find the critical
points of the functional / defined in (3.10).

To seek the critical points of the functional 7, we first show that it is coercive over W 2(R?) x
Wh2(R?).
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Itis easy to see that A(N, k), as defined in (3.8), is positive definite, and its smaller eigenvalue
is

[\

1{(N=12+1 2 N2(N —2)2 1\?
ap(k) == (N——)l-’_;_\/ﬁ-’_“-(l_;) >0 3.11)

forany N > 2,k > 0.

Then
A 2 2
[0, v2) > “‘);K) (||Vv1||§ + ||Vu2||§) + an(/c_l)/ {(e"?+vl _ 1) T (e“3+vz _ 1) }dx
R2
+/h’A(N,/<)vdx. (3.12)
R2
From the expression of 4; (3.2), we see that
C
lhill < —, i=1,2, (3.13)

—_— \/ﬁ b
where and in the following we use C to denote a generic positive constant independent of pi.
Then it follows from the Holder inequality and (3.13) that

1 1 C
/([N—1+—]h1+[1——}h2> vidx > ——|lv1]l2, (3.14)
K K S
R2
/11h+ l—l—lh d>C|||| (3.15)
<M No1 '« 2U2x_ﬁ022- .
R2
Next we need to estimate the L>-terms in (3.12). Noting the fact el —1e L*(R?) and using
the elementary inequality |e! — 1] > %, t € R, we have
2 2
/(e”?+”f - 1) dx =/ (e”?[e”" 1] 4e — 1) dx
R2 R2
1 2
> z/ez"f) (e 1)2dx—/(eu?_1> dx
R2 R2
1 12
> —/ezu?dex —C, i=1,2 (3.16)
2 ; (I + vl
R

.. o . 0 . .
From the definition of u?, we see that 2 satisfies 0 < e2"i < 1 and vanishes at the points
Dil, - Pin;» 1 = 1,2. To proceed further, we use a decomposition of R? as in [31]
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RZ=Q\UQ), i=1,2,
where

. 1
Q’lz{xeR2|ezu?§§}, Q’Z_{xeR2|ez"

l\)l'—

Next we need the inverse Holder inequality (see [2]).

Lemma 3.1. For any measurable functions g1, g2 over 2, there holds

1

q/

é
f|g1gz|dxz /|g1|qu f|gz|qu ,
Q Q Q

whereq,q’eR,O<q<l,q/<0with%+%=l.

} i=1,2.

(3.17)

(3.18)

(3.19)

i 0 0 .
On Q’l, we have 0 < e?i < % and e approaches (0 at most 4n; order near the vortex points

Pisss=1,...,n;,i =1,2. We choose g/ to satisfy —ﬁ < g} < 0. Then the integrals

7,0
/ezqf”idx, i=1,2

@

exist and are positive constants. In view of the inverse Holder inequality (3.19), we obtain

1 L
qi ql(
12 - 24i
/62”?7“)1' dx > B L] dx /eZ(if“?dx
(14 v )? (1 + Jv;[) 2
o o 2
1
qi
|vl|2q' —12
1=
(1 + |vi |)2q’ ’ o
1 .
WhereO<qi < rzn[,l =1,2

[vil

Since 0 < o]

< 1, using the Young inequality, we have

1 1

qi qi

/ Jv; |24 i / Jvi |2 dx
(0 v )24 ) a+1un?

Qi i

>1/ L
—2) Atpuh? '

2

(3.20)

(3.21)
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Inserting (3.21) into (3.20), we find that

2u |U1 / |Uz .
e —-C, i=1,2. (3.22)
/ I+ z|)2 (1+|Uz|)2

£

On Qé, we have

o0 Jvil? 1/ |2 .
eti——dx>=- | ———=dx, i=1,2. (3.23)
/_ A+ub2 =2 a+ph?

2 2
Combining (3.16), (3.22) and (3.23), we finally obtain
2 12
f (e”?+”f - 1) wec [ g e izt (3.24)

(1+ [vi])?
R2 2

Let us now analyze ||Vv; ||%. Noting the interpolation inequality over W12(R2):

/w4dx §2fw2dx/|Vw|2dx, vwe WH2([R?), (3.25)

R2 R2 R2

we obtain

2
/ Jv; |*dx
]RZ

2
il
[ e s
R2 l
Jvi |2
m (|U1|+|Uz| )
R2 R2

|vi 2 / /
<4 | ———dx v;|“dx Vo |+ 1
< (1+I )2 v |2 |V |2

2 4 4
5 |vi |2 2
lvi|“dx | +C — _dx | + [Vui|"dx | +1|, (3.26)
2

IA

N =

[1+ [v;[1?
R2

which implies
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Jvi]? / 2 .
Vil < x + Vvil“dx+11], i=1,2. 3.27
| t|2 /[]+| z | l| ( )
R2

Then from (3.12), (3.14), (3.15), and (3.24), we conclude that

() 2 2 o1 _wl?

1o 2 55 (190l + 1Vuil3) + €
2 ? ? TR T+ [l
R2

c
- ﬁ(llvlllfr [vall2) — C. (3.28)

At this point, taking w sufficiently large in (3.28) and using (3.27), we have

I m) = C (||w1||%+||sz||%)+fL22dx+ L ——
[1+ vl [T+ |val]
R2 R2
(3.29)
Thus, from (3.29) and (3.27), we get
1(v1,v2) > C (|lvy lwi2we) + ||U2||W1-2(]R2)) -C, (3.30)

which gives the coerciveness of the functional I over WLZ(R2) x WLZ(R2).

It is easy to see that the functional / is continuous, differentiable, and weakly lower semi-
continuous on Wl’z(Rz) X W1’2(R2). Then by (3.30), we infer that the functional / admits a
critical point (vy, v2) € WI2(R?) x W12(R?), which is a weak solution of Egs. (3.6)—~(3.7).

Using the well-known inequality

le" = 1ll2 = Cexp(Cllwlgy1age).  Ywe W R,

we see that the right hand sides of Egs. (3.6)—(3.7) belong to L?(R?). Hence using the L>-elliptic
estimates we conclude that (v, v2) € W22(R?) x W>2(R?), which gives the desired boundary
condition (3.5) at infinity. Similarly, we obtain that d;vy, d;vo — 0 (i = 1,2) when |x| - co. O

3.2. Decay estimates and quantized fluxes

In this subsection our purpose is to derive the decay estimates of (N — 1)u| +u, u; —up and
their derivatives when |x| — oco. As an application of the decay estimates we may calculate the
quantized fluxes stated in Theorem 2.3 for the planar case.

To establish the decay estimates, it is convenient to write the equations in a vector form. We
will use the notation (3.9) and

u=(u,u)", U=diag{e"!,e"?}. (3.31)
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Then away form the vortex points Egs. (2.20)—(2.21) can be rewritten as
Au=AKUK(U-1), (3.32)

where K is defined by (2.23).
Let

05<N1_1 _11) W= (w. w)" = Ou. (3.33)

When |x| > R with R > 0 sufficiently large such that R > |p;s| fors =1,...,n; andi =1, 2,
we have

Au=ArKUKUzu=AK?u+ A(KUKUzu — Ku), (3.34)

£ &
where Ug = diag{e”1, e"2}, and uf lies between O and u; for i =1, 2. From (3.34), we see that
when |x| > R

AW=210K?*0"'w+A(OKUKU; O~ 'w— OK?*0~'w)
=ADw+ L(OKUKU; O~ 'w — Dw), (3.35)

where D = diag{1, «?}.
Then as |x| > R we have

Alw]? > 2w Aw =2)w" Dw + 4w" (OKUKU; O ~'w — Dw)
> 2h05 1WI> — f(x)|w]?, (3.36)

where o9 = min{l, «}, f(x) — 0 as |x| — oo. Therefore, for any sufficiently small ¢ € (0, 1),
there exists an R, > R such that

2 2 € 2
AW = 2407 (1= ) WP, 1x] > R, (3.37)

Noting that |w|2 = 0 at infinity, we conclude from (3.37) that there exits a positive constant C (¢)
such that

W% < Ce)e@VPI=all 5 Ry, (3.38)
which gives the desired estimate (2.27).

To get the decay estimate for the derivatives of w; and w;, we follow the same procedure. Let
d be any one of the two partial derivatives 01 and 9. Then from (3.32) we get

A(@u) = AKUVK (U — 1) + AKUKUdu
=ArK?*3u+A(KUVK (U~ 1) + KUKUdu — K*3u), (3.39)

where V = diag{du, dus}.
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Hence we have

A@W) =10K?07'9w+ A(OKUVK (U - 1) + OKUKUO™'dw — OK?0~'ow)
=2Ddw+ AL(OKUVK(U— 1) + OKUKUO 'gw — Daw). (3.40)

Then as |x]| is sufficiently large we get

Al(@w)[?
> 2(0w)° A(dW)
=A(@W)"DaW + 1(dW)" (OKUVK (U — 1) + OKUKUO 'gw — Daw).  (3.41)

Hence, similar to (3.37), for any sufficiently small ¢ € (0, 1), there exists an R, > R such that
2 2 g 2
Alow] = 2007 (1 - 5) lowl?,  |x| > R.. (3.42)

Since we have shown that [dw|?> — 0 as |x| — oo, from (3.42) we get that there exists a positive
constant C (&) such that

|aw|? < C(s)e V(=o)X || S R, (3.43)

which gives (2.28).
Using the decay estimates one can now calculate the magnetic fluxes. Indeed, from
Egs. (2.16)—(2.17) one has

0

1
F =——A<
2= /2N

2 N —1
Fiy 1=—\/—2N A(ln|¢|2—ln¢zv|2), (3.45)

[N = 11In[¢]* + | Ingn[?). (3.44)

so that

FUD = _ [N —1]In|¢|* + |ln¢N|2)dx, (3.46)

1 /A(
V2N
R2
FSUM) =—,/1\]2—;1/A(1n|¢|2— |ln¢N|2) dx, (3.47)
Rz

and direct integration leads to (2.32)—(2.33) which show that the vortex magnetic fluxes are
completely determined by the numbers of zeros of the Higgs scalars.
Now we have completed the proof of Theorem 2.2 and Theorem 2.3 for the planar case. O
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4. Doubly periodic case

In this section we establish the existence of doubly periodic solutions for (2.20)—(2.21). We
will use a constrained minimization approach, developed in [10] and later refined by [24,25.,41,
45], to establish the existence of the first solution.

Consider Egs. (2.20)—(2.21) over a doubly periodic domain 2. We first derive a priori esti-
mates for the solutions to (2.20)—(2.21).
Lemma 4.1. Any solution (u1, us) to (2.20)—(2.21) satisfies

;<0 in Q, i=1,2.

Proof. To prove this lemma, it is convenient to rewrite (2.20)—(2.21) equivalently as

-1
Auy =2 {KNZ (IN =1+«k]e" + [N — 1[x — 1]e"2) (" —e*?)
1 !
+ N([N —14«le[e" — 1]+ [k — 1]e"2[1 — e"2])} +4r Zap“, 4.1)
s=1
N—1 -1
Auy =1 {(13—(2'()([;« — 11" + [1 4[N — 1]k]e"?) ("> — &)
1 <
+ N([l + [N —1]x)e*2[e"2 — 1]+ [N — 1][k — 1]e"1[1 — e“l])} + 47 Z(Sms.
s=1
4.2)
It is easy to see that #; may achieve its maximum value at some point X; € Q2 \ {pi1, ..., Pin; },

i =1,2. Denote it; = maxu; = u; (x;),i =1, 2.
xe

We first show that i7; <0, i =1, 2. If u; > uy, using (4.1), we have

1 ; ; ; 3
0> Auy(F) =4 {" (IN = 1+ kJe™ 4 [N = 1l = 1]e260) (o7t - et20)

N2
1 _ ; 5
+ I ([N — 1 +«le™ [e’“ — 1] + [k — 1]e"2ED) [1 - e“z(x‘)D}

A _ - _
>+ (IV = 14 k1™ = [ = 1)) (e 1),
Then from maximum principle we see that z; < 0. Then in this case both #; and i are nonpos-
itive.
If up > 11, using (4.2), we obtain

N-Dx -1

i (I = 1115 4 [14 [N = 1]ele™) (e — e152)

0> Aup(Xr) =A {

1

+ N ([1 + [N — 1]k]e™ [eﬁz — l] +[N — 1][x — 1]e"1&2) [1 _ eul(iz)])}
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> % (14 IV = 1ile™ — [N = 1l — 1)) (&7 — 1),

Using maximum principle again, we get ity < 0. Therefore we have u; <0,i =1, 2.
To prove the strict inequality, we can apply the strong maximum principle. In fact, it is suffi-
cient to note that

Aup +ay(X)ug = %(K — 1) (IN = 1 +«]e" + (1 + [N — 1)) (1 —e2) >0,

Auy + ar(x)us = %(N — Dk =D (IN —1+«kle" + 1+ [N — 1k)e"?) (1 —e"') >0,

where
A " 2 1 —e!
o (x) = = ([N 14 kP [N — 1k — 1% 2) —
w0 (x) = % ([N — 1k — 1% +[1+ [N — [k — 1]]2e“2) ;ze :

Then Lemma 4.1 follows from the strong maximum principle. O

From Lemma 4.1, we get the first part of Theorem 2.2.
Let u? be the solution of the following problem (see [6])

.
- 4mn;

Aud =4y 5, — Iinl’ /u?dxzo, i=1.2,
s=1 Q

and u; = u? +v;, i =1,2. Then over Q Egs. (2.20)—(2.21) can be reduced as
1
Avy =1 {m(w — 1 a2 e 1)(N = [N = 2][k — 1])ei et

1= K11+ [N = The)es¥207) %([N — 14 ke 41— K]e“gm)}

dmng
A 43
I 4.3)
1 2uf+2v;
Avy =2 m([N— 11— ][N — 1 + k]e2
— [N = 1l = 112+ [N = 2Je)e 8050 4 (14 [N = 1) e23+22)
1 . . 4mny
— N([N— [ —kle" T + (14 [N — 1]c)e>" 2)} oar 4.4)

To find a variational principle for the problem (4.3)—(4.4), as in the full plane case we rewrite
Egs. (4.3)—(4.4) equivalently as
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1 1
(N 14+ —> Av; + (1 - —) Avy = A ([N 1+ k]2 ey
K K

b
k- l]eu?+ug+v1+uz> + |_g‘:|’ (4.5)
1 1 1 1 0 N 0
1—=)A - Z)Avy =2 - 2u2+2v2 _ T auptwm
( K) Ul+<N—1+K> vz ([N—1+K]e N_1°
b
_ [I( _ l]eu?+ug+v1+v2> + |_S§|’ (4.6)

where the notation

po 2 AL IV = Uidny + [ —1ng) - 4 (INV — Ul — Lmy + [N — 1+ «]n2)
' K LT (N =

A7)

will be used throughout this paper.

We will work on the space Wh2(Q) x Wh2(Q), where W!-2(Q) is the set of Q-periodic L?-
functions whose derivatives also belong to LZ(Q). We denote the usual norm on WI’Z(Q) by |-l
as given by [wl|*> = [[w]3 + [Vw |3 = [q w?dx + [, [Vw[*dx.

Then, as in the planar case, we readily see that Eqgs. (4.5)—(4.6) are the Euler—Lagrange equa-
tions of the functional

T

|€2]

I(v — 12 vl . & _ 17 -1 _
1, V) = 22:8,VA(N,K)8,V—}—2(U DIAN,« HU-1) + dx, (4.8)

Q i=1

where the notation (3.9) and b® = (b1, b>) are used. Hence in the following subsections we
concentrate on finding the critical points of the functional /.

4.1. Constrained minimization procedure

To find a first critical point of the functional /, we carry out a constrained minimization
procedure.
For any solution (vy, v2) of (4.5)—(4.6), integrating over 2 gives the following constraints

(N —14k) / 2+ igy — N f Uy — (e — 1) / Uittty I;—l —0, (4.9)
Q Q Q

1 N b
(o) [t =g [t —uem [etobonma s 2 —o
Q Q Q

(4.10)

We first establish the necessary condition stated in Theorem 2.2 for the existence of solu-
tions to (2.20)—(2.21). To this end, for any solution (vy, v2) of (4.5)—(4.6), from (4.9)—(4.10) we
observe that
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N e“g+”2) dx =

4 (IN = 1l +no)
(N — D

/(U’A(N,KI)U—Ne”(I)J“”— @11

which can be rewritten as

/{(U—%) A(N,K1)<U—1>}dx= NI - 4x(N = Hm+m) s
Q

2 4N-1) (N — Dx

Since the matrix A(N, «~1) is positive definite, (4.12) implies the Bradlow bound [36]

167 ([N —1]n1 +n2)
NIQ|

Then we get the necessary condition (2.30) stated in Theorem 2.2.
Using (4.9)—(4.10), we also find

%f(U— DTAN,«~H U -1)dx
Q

1 0 N 0 2n N ny
= N[l— ”1+“1] —[1— “z+”2] dx — . (413
2/( © LT A e\t D) @4
Q

It is well-known that the space W 12(2) can be decomposed as

W) =Rae W' (Q),

where

wh2@Q) ={wewh?(Q)

/wdx:O

Q

is a closed subspace of wi2(Q).
Then, for v; € W2(Q) we have the decomposition

v = ¢ +w,

where

1

/widxzo, Ciz—/v,‘dx, i=1,2.
12|

Q Q

If (v1, v2) € WH2(Q) x Wh2(Q) satisfies (4.9)—(4.10), we obtain
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2¢ c c bl

(N —1+«k)e 1a11—elP1(w1,w2,ez)+7=0, 4.14)

LT e*2ay; — e Py(wy, wy, ) + h_y (4.15)

N-1 o o ‘

where

04wl 4w +w; 04 p: ..
al_jE/eu,+uj+w,+w,dx, aiE/eui+w’dX, l,]=1,2,

Q Q
Pi(wy, wy, €?) = Najy + (k — 1)e“ayy, (4.16)
Py(wy, wy, 1) = N 1a2+(/<— Delays. 4.17)

Then (4.14)—(4.15) are solvable with respect to ¢y, ¢ if and only if

2 o 4by
P{(wy, wa, e )E—)L (N —1+«)aii, (4.18)
Pl wy ey =22 (L 1), (4.19)
2 1, 2 - )\‘ N—l 22 .

In view of (4.18)—(4.19), we choose the following inequality-type constraints

4(N — 14+ «)bran

2> 4.20
= N2 (4-20)
4N — D1+ [N — 11x)b
&= ( YA+ 1) 2421 @21)
N2
We introduce the admissible set as
A= {wf = (w1, wy) € WI2(Q) x WH2(Q) satisfies (4.20), (4.21)}. (4.22)

Then, for any (wy, w;) € A, we can obtain a solution of (4.14)—(4.15) with respect to ¢; and
¢z by solving the following equations

o Prlwr, wy, €?) +\/P12(w1, wy, e2) — HN=H0bL g
c =
2(N — 1 +«)ar
= f1(e?), (4.23)
Py(wy, wa, €) +\/P22(w1, w), ecr) — AHN0ba )

(N—Dx
2 (ﬁ + K) ann

= foe?). (4.24)

e

To solve (4.23)—(4.24), we just need to find the zeros of the function
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fy=t— filf2@), t=0.
In order to do that, it is sufficient to prove the following proposition.
Proposition 4.1. For any (w1, wy) € A, the equation
f@)=1— fi(f2()) =0
admits a unique positive solution ty.

For any (w;, wy) € A, using this proposition, we can get a solution of (4.14)—(4.15) with
respect to ¢y, ¢3.

Proof of Proposition 4.1. We see from (4.23) and (4.24) that
fit)y>0, Vi>0,i=1,2. (4.25)

Hence f(0) = — f1(f2(0)) < 0. It is easy to check that

dfi(r) _ (k =1 filHarz | .
“ \/Plz(wl’wz,t)—wan

df2(r) _ (k — 1) H(t)arn .
dr \/Pzz(un, wy, 1) — W@z

which are all positive since k¥ > 1. Thus, the functions f;(z), (i =1, 2) are strictly increasing for
allr > 0.
A direct computation gives

fi) (k= Dain
t>+o0 t  (N—=14x)ay’

A _ (k= Dan

lim

>+ f (ﬁ +lc) axn
which implies
; -1 2.2
im L0 b D,
t—to0 t (N —1+) (ﬁ +K)anazz
2
.1 (k=1
(N—1+x)(ﬁ+x>
N2k

VD121
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Hence we conclude that
im0 =-+oc.

In view of the fact f(0) < 0, then we infer that the function f(-) has at least one zero point
to > 0.

Now we prove that the zero point of f(-) is also unique. From (4.26)—(4.27) and (4.23)—(4.24)
we obtain

df @) _, k=D’ A(HO) LDah 1
dr \/Plz(wl, wy, 1) — 74(1\]7;“)1’1 an \/Pzz(wl, wy, 1) — —4(1JEEVN:1§]AK_)IJ2022
flh®) _ f@)
ST T

which gives

(M) 0.
t
f@®

Thus we see that =~ is strictly increasing for 7 > 0. Consequently, f(7) is strictly increasing

for t+ > 0, which implies f(¢) has a unique zero point. Then the proof of Proposition 4.1 is
complete. O

From the above discussion we conclude that, for any (wi,w;) € A, there is a pair
(c1(wy, wa), ca(wy, wr)) given by (4.23)—(4.24), which solves (4.14)—(4.15), such that (vy, v2)
defined by

vi=w; +c¢i(wy,w), i=1,2

satisfies (4.9)—(4.10).
Thus, to seek the critical points of /, we may consider the functional

J(wy, w2) = I(wy + c1(wy, w2), wz + c2(wy, w2)),  (wi, wa) € A (4.28)
In view of (4.13), we may write the functional J as

2
1
Jwnwn) =3 3 [ aw AW
i=1¢g

A N
=+ E N/ [1 — eC’ e”(l)+w']dx =+ m/ I:l — eczeug+w2:| dx
Q Q

— 27N (nl + %) +bicy + baca, (4.29)

where the notations (3.4) and (4.7) are used.
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We easily see that the functional J is Fréchet differentiable in the interior of A. If we find
a critical point (wy, wp) of J, which lies in the interior of A, then (w; + c¢1 (w1, w2), wo +
ca(wy, wy)) is a critical point of /. Therefore in what follows we just need to find the critical

points for the functional J.

In the rest of this work we use the notation: we write (o1, 22)® < (<)(B1, B2)° if o; < (<)Bi,
i =1,2; for two matrices H = (h;j)2x2, M = (m;j)ax2, we write H < ()M if h;j < (Z)m;;

for i, j = 1,2. We first establish the following lemma.

Lemma 4.2. For any (w1, wp) € A, there holds

Proof. For any (w1, wy) € A, from (4.23)—(4.24) we obtain

- Naj + (k — 1)e“?aqn

- (N —=1+4K)ay

_ Naz+ (N = )(c — Delar
- (I+ [N —1Jc)an

Cl

2

Let

sz(wl’w2)2< (N —1+«)ar (1 —K)arn )

(N =D =©)ap (A+[N—1lc)axn
Then the inequalities (4.32)—(4.33) can be rewritten as
K(,e?)" < N(ar.a)".

Using the Holder inequality we have

1 1 1 1

diag {alil : afz} NKdiag {af] , aziz} (e1,e?)" < K(e!,e?)".
Note the inverse of K is given by

k-l L (1+IN=1k w1
TNc\(N-Dx—-1) N—1+«)

whose entries are positive since N > 2 and « > 1. Hence from (4.35)—(4.36), we have

1 1

_1 _1 _1 _1
(€1, e?)" < diag {a1]2 LAy } Kﬁldiag {anz LGy } (ar,a2)",

which with Holder’s inequality yields

(4.30)

(4.31)

4.32)

(4.33)

(4.34)

(4.35)

(4.36)

4.37)

(4.38)
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_1 _1 | _1 _1
(a1€°!, ape®?)" < diag {a1a112 , A205," } K~ 'diag {ala“z L a0y, } 1<|QI1. (4.39)

Then we obtain (4.30), which implies (4.31) by using Jensen’s inequality. The proof of
Lemma 4.2 is complete. O

Now we need the following inequalities.

Lemma 4.3. For any (wy, wz) € A and s € (0, 1), there holds

1—s

2 5 ’
f ety < (—NA / et dx (4.40)
= \4[N — 1 +«]b; ’
Q Q
1
2 5 ’
/ ela 2y < N / et | L @4
T \4N =1 + [N = 1x)by
Q Q

The proof of such type inequalities can be found in [40,41].
With the help of Lemma 4.3 and the Moser—Trudinger inequality (see [6,19])

w 1 2 71,2
e’dx < Crexp( T —IVul3). YweW'@). (4.42)
T

where C7 is a positive constant depending on 2 only, we may show the coerciveness of the
functional J.

Lemma 4.4. For any (w1, wp) € A, there exists a suitable positive constant C, independent of A,
such that

ap(k)

T(wy, wy) > <||Vw1||§+||Vw2||§) —Clni+1). (4.43)

Proof. Noting that the matrices A(N, k) and A(N, «~1) defined by (3.8) are both positive defi-
nite, then using (4.13), (4.29), we have

ap(x)

T, wy) = “C5 (1Vun 1 + IVwal) + bie + baca, (4.44)

where a (k) is a positive constant defined by (3.11).
Next we estimate ¢y, ¢p in (4.44). We see from (4.23)—(4.24) that

c Na
elt>—

T 2(N —1+4«)a
. Nap

T2(14 [N —1l)axn’
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Then, using the constraints (4.20)—(4.21), we obtain

ol > 2bq o 2(N — )by
~ Nia,’ ~ Nl
which give
2by
cl zan —InX —Inay, (4.45)

2(N — Db
>1n( )b

—InA—1 . 4.46
¢ > N n na (4.46)

For any s € (0, 1), in view of Lemma 4.3 and the Trudinger—Moser inequality (4.42), we have

_ 2
]n/e“?“’ldx < I=s 1nk+1nN— + lln/es"?ﬂwld}c
) 4[N — 1+ «]b; )
Q Q

< S Vw2 + L1 ey + maxu®
— - u
~ 16m 12 s ! Q !

1—=5

+
N

N2
InA+ln— o ). 447
(“ +n4[N—1+K]b1> (4:47)

Similarly, we obtain

0 N 1
1 u2+w2d P v/ 2 ZInC 0
n/e x < T Vw25 + " n 1+mgxu2
Q

Ll PR N 448
T (n +n4b2[N—1](1+[N—1]/c))' (4.48)

Plugging (4.47) and (4.48) into (4.45) and (4.46), respectively, gives

e —ﬁnw]néﬁnm — maxul
— 1 <lnk +InCi +1n N—z) , (4.49)
s 4N — 1+ )b
> —%nwzn%wnm — maxul
— 1 <lnk +InCy; +1n ul ) . (4.50)
s 4N = 1)(1+ [N — 1]x)bs

Hence, inserting (4.49)—(4.50) into (4.44), we obtain



S. Chen et al. / J. Differential Equations 259 (2015) 2458-2498 2485

b b
J(wl,w»z(“‘)(“ ”)nv w2+ (“O(K) ”)nv w3

2 16 2 16
b1 +b N N
ot b +brIn
s 2(N —1+«) 2(1 4[N —1]x)
b1 +b
— b maxul bzmaxug Lt 2lnC1
Q Q S
1 N2 N2
——(bjln———— 4+ bIn . (4.5
s 4(N — 1 + k)b 4N —1)(1 4[N — 11k)by

Thus, we get (4.43) by taking s > 0 sufficiently small in (4.51). Then the proof of Lemma 4.4
is complete. O

Noting that the functional J is weakly lower semi-continuous in .4, and using Lemma 4.4, we
infer that J admits a minimizer in A. In the sequel, we show that the minimizer of J lies in the
interior of A when 2 is sufficiently large.

Lemma 4.5. On the boundary of A, there exists a constant C > 0 independent of A such that

. N||
inf J(wy, w — " A—C(ni+VA+1). 4.52
o A (w1, wa) > SV 1) ( ) (4.52)

Proof. On the boundary of .4 we have

s _ 4N =1+1)

aj Nz)\. all, (4.53)
or

L, 4by(N — (1 +[N — 1]
= N2,

an). (4.54)
If (4.53) holds, in view of (4.38) and the Holder inequality, we have

(1+[N — 1lk)a? N (k — Dajazais
Nkay Nkanaxn
4(N —14x)(1+[N = 1]x)b; N 20 — 1) [(N—1+x)b1|L]
N3k N2k A '

el

ap =

(4.55)

Hence, from Lemma 4.2 and (4.55), we have

A - N W04, N|Q|
. N/[l el ]dx—i—N 1 [1 e ]dx ——h- CWA+1), (4.56)
Q Q

where C is a positive constant independent of A.
Similarly, if (4.54) holds, we can conclude that



2486 S. Chen et al. / J. Differential Equations 259 (2015) 2458-2498

A 0 N NIQ

2N [1— "1“1 d / “z+”2 > L, ¢ 1

2 / it Jas 575 b | =5yt CWAED,
Q Q

(4.57)

where C is a positive constant independent of A.
Now, using (4.56)—(4.57), and estimating c, c¢; as that in Lemma 4.4, we can obtain (4.52).
Then Lemma 4.5 follows. O

To estimate the value of J in the interior of A, we use the approach of [41] to find the test
functions.
It was shown in [45] that, for u > O sufficiently large, the problem

4 .
Av = et Tr e — 1y 4 220 Q
€2
admits solutions v; Koi=1, ZSuchthatu +v <0 in €, ¢ :l—é‘fgv;‘dx—)Oand wl.”:

vly - cl’.L — —u pointwise and a.e. as y — +00.

Since e"i +wz € L>®(R2),i =1,2 we have
et 5 stronglyin L?(Q2) forany p>1

as i — +-o00. In particular, we have

lim [ 4Gt gy 1l 0 j=1,2. (4.58)

JL—> 00

Q

Hence we obtain

lim K (w), w))=|QINK, (4.59)
H—>00

where K is defined by (2.23).
Since K is invertible, one has

1
lim K 'wh, wh = ——K~. 4.60
im K wh) = oy (460

Then, by the definition of A, (4.58) and (4.60), we see that, for some fixed A, > O sufficiently
large and any ¢ € (0, 1), there is a u, sufficiently large such that

(w1 ,w2 “) € intA (4.61)

for all L > X, and
aij(wi*, wi*) <A +e)Ql, i,j=12, (4.62)
(]1\”—98')[(—1 1wt wh) < (]1V-||-Q€|)K_1 - N|29|K—1 (4.63)
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Lemma 4.6. As 1 > 0 is sufficiently large, there holds
Jwhe why—  inf J(wp, wy) < —1.
1 2 (w1, wy)€d A

Proof. Using Jensen’s inequality, (4.31), and (4.23)—(4.24), we obtain

He o e co(wh wh®)
ecl(wi"s,wgs) - Py (wl Wy, € ! 2 )
- 2(N —14«k)ar;

w1+ [1- 4(N — 1 +«)brar
)\‘P12(wllis’ wé/‘s’ ec‘z(wllj'g’wé"e;"))

e e
Pl(w'fg,w';g,emwl W )) 2bq

v

1

(NIQI + [k — Tappe2™"v2))  2p,
(N —1+K)ay; NAQl

Here and in the sequel we simply write a,»j(wf °, wg °) as a;j. Analogously, we have

Me  Me
ecz(wl J Wy )Z (

(N — 14 K)all - )\P] (U)MS, wg«s’ ecz(wi‘s’wgs))

NIQI+ [N = 1l — Hape ™1 059) 2N — )b,

(I+ [N —1lk)az

Then by (4.65)~(4.66) and (4.62), we get
K (em @ wh®) ea(wl® ,w‘;S)) i

> N|Q1

T NIQIA

4
> N|Q1— N (N —=1+1)by, (1 +[N —1])by)" .

((N = 1+4+x)brair, (1 + [N — 1lk)bran)®

2487

(4.64)

(4.65)

(4.66)

4.67)

Hence, in view that the entries of K ! are positive, it follows from (4.63) and (4.67) that

T
crwh wh®) Ler(whe wh®)
e ,€

>(1—e)K '1—

N2XIQ|

—(l—e)] = —
d=al= T

Consequently, we have

K~V (N =14x)b1,1+[N —1]k)by)"

K~V (N =1+1)bi, (1 +[N —1)b)".

(4.68)
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[ (1-ente gt

Q
<190 — 20 +[N —1lk) ([N — 1 +«]by + [N — 1][k — 1][?2)’ (4.6)
N3k
/ (1 N ecz(wfs,wgs)eungw;s)
Q
< (e — 2V = 14O (A4 IN = 1oby o+ [N = Uik = 11b2) w10

N3k

Using (4.31), (4.69) and (4.70), we infer that, for any small ¢ > 0, there exists a positive
constant C, such that

NZr|Qe
Jwhe, why < ——— 4 C,. 4.71
(w) wz)_Z(N—])-i_ & ( )
Thus, in view of Lemma 4.5, we have
. N|Q|r
J' why—  inf J(wi,wy) < ——— (Ne — 1)+ CnA+ A+ 1), (4.72
(wi*, wy") A (wy wz)_z(N_l)( )+ C(na+~vA+1), (4.72)

where C is a positive constant independent of A.
Then, taking ¢ = 55, and A sufficiently large in (4.72), we conclude with (4.64). O

Ngw from Lemma 4.4 and Lemma 4.6 we infer that, there exists % > 0 such that, for every
A > A, the functional J achieves its minimum at a point (wy, , wy,3), which belongs to the
interior of A. Moreover, (v; 3, v2.,), defined by

via=wixtci(wiawaz), =12, 4.73)
is a critical point of the functional 7 in wh2(Q) x W12(Q), which gives a weak solution of
(4.3)—(4.4).

Next we study the behavior of the solution established above.
Lemma 4.7. Let (v1,3, v2,)) be the solution of (4.3)—(4.4) given by (4.73). There holds

UitUis 51 a5 A— 400, i=1,2, (4.74)

pointwise a.e. in 2 and in LP(S2) for any p > 1. Moreover, (v1, v2,,) is a local minimizer of
the functional I in Wh2(Q) x Wi2(Q).

Proof. Using (4.13) and similar estimates as in Lemma 4.4, for any A > )1, we infer that there
exists a positive constant C independent of A such that

—1
A 2 2
J(wy, w2,n) > ol A / (e“?”l-* — 1) dx —i—/ (e“g““ — 1) dx

2
Q Q
—C(nxr+1), (4.75)
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where ag(k ') is a positive constant defined by (3.11). Hence, it follows from (4.75) and (4.71)
that

2
/(e“9+”f~A - 1) dx >0, as A— 4oo, i=12. (4.76)
Q

In view of Lemma 4.1, we have el v < 1,i =1, 2. Then, we conclude (4.74) by the dominated
convergence theorem.
Next, we show that (v 3, v2.3) is a local minimizer of the functional / in W) x wh2(Q).
By a direct computation, for any (w;, wz) € A and the corresponding (cy,cz) given by
(4.23)—(4.24), we obtain

O I (w1 + c1(wy, w2), wa + c2(wr, wa)) = 0= 0., I (w1 + c1 (w1, w2), w2 + c2(wr, wa))
and
051 (w1 +c1(wr, w2), wa + e2(wr, w2))

=A (2[N — 1+«]e*ay; — e Py (wy, wa, ecz))
2
- N/eu?+vldx + [K _ 1]/eu(l)+ng+U1+v2dx
Q Q

1
2

- ‘W_;—H)b‘ / 22y b 4.77)
Q

afgl(wl + cr(wr, w2), wa + c2(wi, wa))

1
=A (2 [ﬁ + K:| e2cza22 —e2? Py (wy, wy, € ))

=N / T2y + [k — 1] / et Ut gy
N_1
Q Q

1
2

40+ [N = 1K)by /eZug+zuzdx 7 (4.78)
(N —Da

92 o, T (w1 + c1(wr, wa), wa + c2(wy, wa))

=11 —k)ee2ay,

— (1 —x) / it gy (4.79)
Q
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If (w1, wy) belongs to the interior of A, then we can use strict inequalities in the constraints
(4.20)—(4.21) to get

0% T (w1 + c1(wi, w2), wy + 2 (wi, w)) > Ak — 1) / euitudtuti gy
1

Q

0% 1 (w1 + c1(wi, w2), wa + c2(wi, w2)) > Ak — 1) / Ut I gy,
2
Q

Thus, we conclude that, if (w;, wy) is an interior point of A then the Hessian matrix of 7 (w; +
c1, wa + ¢2) with respect to (cy, ¢2) is strictly positive definite at (ci(w1, w2), c2(wy, wa)). We
apply such property, near the critical point (vy 3, v2,3). Indeed, by continuity, for § > 0 suffi-
ciently small, we can ensure that, if (v{, v2) = (w1 + c1, wa + ¢2) satisfies:

lvi —viall + llva —v2ll <6,

then (w1, wy) belongs to the interior of A and

I(vi,v2) =1(w; +ci,wy +c2) = T(wy )+ cr(wy i, wa i), Wi + (Wi i, w2,i))

=J(win, wp) =1(v1n, v2,3).

Hence, (vi,,v2,) is a local minimizer for I in Wl'z(Q) X WI'Z(Q). Then the proof of
Lemma 4.7 is complete. O

4.2. A second solution

In this subsection, via the mountain-pass theorem, we find a second critical point of the func-
tional 7, which gives a second solution of (4.3)—(4.4).

For this purpose, we show that the functional 7 satisfies the P-S condition.

Lemma 4.8. Every sequence (v1 ,V2.n) € W2(Q) x WI2(Q) satisfies

I(vip,v20) —>ap as n— +oo, (4.80)

1" (i, v2)lls =0 as n— oo, (4.81)

admits a strongly convergent subsequence in Wh2(Q) x WL2(Q), where ag is a constant and
| - ||« denotes the norm of the dual space of WI’Z(Q) X WI’Z(Q).

Proof. Denote ¢, = ||[I'(viu, V2.0)|x, We have g, — 0 as n — +o0. For any (Y, y») €
Wh2(Q) x W12(Q), we obtain

(I'(1 0, v2,0) (W1, ¥2)

1 1 1
=\{N—-1+4+— val,n -Vydx +{ ——— + — /sz’nvwzdx
K N-1 «

Q Q
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1
+ <1 - ;) /(sz,n V1 + Vuy, - Vipp)dx
Q

A/ <[N — 14 k]t [e”?”‘m — 1] + (1 — ke i+ [e“3+”2»" - 1]) Yidx

Q
1 0 0 0
LA ﬁ . eu2+U2,n [eu2+U2,n _ 1] + (1 _ K)eu2+U21,, I:elt1+vl,,, _ 1] wzdx
Yrdx + — / Yodx (4.82)
IQI / €2]

and

|1 (01,0, v2,)) (W1, ¥2)| < en (il + l1921]) (4.83)

Taking (Y1, ¥2) = (1, 1) in (4.82), we find

(I' (W10, v2,0))(1, 1)

= )\/ (I = 1 e [eoi — 1] 4 (1 = et [es o — 1) de

Q

_|_)\'/ ([;1 +K:| eu2+v2n [ ud+va, _ 1] +(1— K)eug+v2,n [eu?+v1,n _ 1]) dx
Q

- / ([N —14«] [e“?ﬂtn - 1]2 + [ﬁ +K:| [e”g"'vln - 1]2> dx
+2(1 —K)/ +v1n _ ( u(2)+v2,n _ 1>dx
+ / (N [e“?+vl-n - 1] +% [e”3+”2~n _ 1]>dx 4 by + b (4.84)

Noting that the matrix A(N, «~1) defined by (3.8) is positive definite, then from (4.84) and (4.83)

we infer that
2 2
/ (eu?+v1.n — 1) dx —I—/ (eug+vz,n — 1) dx<C

Q Q

for some positive constant C, which implies
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/ 21+ gy 4 / 20 gy < C. (4.85)
Q Q

Here and in what follows we use C to denote a generic positive constant independent of n. Since
vi.n € WH2(Q), we have the following decomposition

Vip =Win+Cin, Wipn€ WIVZ(Q)’ Cin € R.
From (4.85) and the Jensen inequality we conclude that ¢; ,, is bounded from above.
Noting that the matrix A(N, «) and A(N, k') defined by (3.8) are both positive definite, we

estimate 1 (v1 ,, v2.,) as

ap(k)

10120 2 =2 (Vw13 + [ V213)

-1

A 2 2

+ W / [e“?“lv" - 1] dx/ [e”g““ - 1] dx | +bicin+ bacon,
Q Q

(4.86)

where ag(x) and op(k~1) are a positive constants defined by (3.11).
Let g, = Nwi, + gqwa, and ¢ = max{g,, 0}. Then, taking (V1 ¥2) = (¢, ¢;) in
(4.82), we get

2

1

||V¢,j||§+,\/ («/N—1+Keu?+m,n _ erKeu%m) ot dx

Q
., Nk ud+ud+v1 oo+

+2x (K—1)+N_1—[K—1] eI T LT g P

Q
<Cig; N2+ eallgy 1. (4.87)

Therefore, using the Poincaré inequality in (4.87), we find that

/ T b < C(IVwiulla + [Vwaull). (4.88)
Q
Let (Y1, ¥2) = (W10, w2,,) in (4.82), and noting that the matrix A(N, «) defined by (3.8) is

positive definite, we have

(I' (1,0, v2,0)) (W1 0, W2, n)

1 ) 1 1 ) 1
=(N—1+—)IVwials+ | =+ ) |Vwan|; +2(1 - - Vwy - Vw, ,dx
K N—-1 « K
Q
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1
+}\- [N_ 1 +K]f62Lt?+2U],nw1’ndx+ [—1+K}/e2ug+v2,nw2’nd‘x

+(1 - f<>/ WG () w) )

N 0
_ N/ +v1 nwl n _ 62uz+2v2’" wz’ndx
N—1
Q Q

= o) (1| Vwral + 1 Vwaal3)

N -1
Q Q

1
_’_)\' [N _ 1 +K]f 214 +2U1nwl dx + |:— +Ki| /e2ug+v2,nw2’ndx
+ (1 —«) / P (1 4w )l
Q

N
—N / ey dx — T / 220y x| (4.89)
Q Q

where (k) is a positive constant defined by (3.11). In view of (4.85), we see that

/ ey ydx| < Cllwial, i=1,2, (4.90)
Q

Since we have shown that ¢; , is bounded from above, there holds

0 0 0
/62ui +2”'3"w,~,ndx=/e2”i +2¢in (ezwi’” _ 1) wi,ndx+fe2”i +2Ci’nwi,ndx

Q Q Q
> —Cllwinl2. (4.91)

It easily follows that

0 0
/eul+vl,n+u2+v2.”(wl’n_{_wz’n)dx
Q

0 0
< fe“1+”'v"+”2+”2'" (W10 + w2,n) 4 dx

Q

0 0
_ / el1tcin (ewl,n _ ]) e”2+vzv”(w1,n + w2,n)+dx

{w1,,<0<w>,,}
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0, . 0
+ el elng 22 () 4wy ) dx

{w1,,<0<wy ,}

0 0
+ / eaten (eW2r — 1) "1tV (wy , + w ) 4dx

{w2,n <0<w ,n}

0 0
+ / el eaneli T (w1,n +wz ) 4dx

{w2.n fofwl,n }

0 0
+ e T 2 () 4w ) 4 d

{wl,n >0}n{w2,n >0}

0 0
< C(IVwinlz + IVwoall2) + f eVt P,

Q
which together with (4.88) imply
/ BT () wy )dx < C (IVwialla + [ Vwzall2) - (4.92)
Q
Now from (4.89)—(4.92), we see that
IVwinllz + [[Vwaplla < C. (4.93)

Noting that we have shown that {c; ,,} is bounded from above, by (4.93), (4.80) and (4.86), we
infer that ¢; ,, is also bounded from below, i = 1, 2. Hence, using (4.93) again, we conclude that
{v;.n} is uniformly bounded in W'2(Q),i =1, 2.

Therefore, up to a subsequence, there exists v; € W1’2(§2), such that v; , — v; weakly in
W12(Q), strongly in L? () for any p > 1, pointwise a.e. in §2, and i Huin s ol +ui i L?(R2)
forany p>1,asn — 4o00,i =1,2.

Hence we see that (v, v2) is a critical point for the functional /. From the above convergence
results we obtain

@0() (Vi = o0 3 + [ V02 = 02)3)
1 2 1 1 2
<|N-1+ © V@i — Ul)”z + N_1 + < V(20 — v2) ||2
1
+2 (1 — ;) / V(vi,, —v1) - V(v —v2)dx
Q
= (1/(01,,,, V2.5) — I'(vy, vz))(vl,n —v, 02, —v2)+0(1) =0 as n— 400, (4.94)

where (k) is a positive constant defined by (3.11).
Then we conclude from the estimate (4.94) that (vy , v2,,) = (v1, v2) strongly in W1*2(§2) X
WL2(Q) as n — 400. Then Lemma 4.8 follows. O
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To find a second solution of (4.3)—(4.4), noting that we have proved that (v ;, v2,,) given in
(4.73) is a local minimizer of the functional 7, we only need to consider the following two cases.
Case 1. (v1,3, v2,1) is a degenerate minimum. In other words, for any sufficiently small § > 0,

in I (v1,v2) =1 (v1,2,v2,2).
lvi—viall+llva—v2 5 l1=8

Thus, we conclude from Corollary 1.6 of [22] that there is a one parameter family of degenerate
local minimizer of the functional /. Automatically, a second solution of (4.3)—(4.4) for this case
can be obtained.

Case 2. (v1,3, v2,) is a strict local minimum. That is, for any sufficiently small § > 0, there
holds

I(viy,v20) < I(v1, v12) = . (4.95)

||U1*U1,A\Hi*li|1£2*v2.)\”=5
We observe that
I(vip—&, v, —&)—> —0c0 as &— +oo.
Hence, for a sufficiently large &) > 1, letting
Ui =vin—&, (=12,
we can obtain
01 = viall + vz —voll > 6 (4.96)
and
1(v1,02) < I(vin,v25) — 1. (4.97)

Now we introduce the paths
P={rofrec (0.1, W@ x w'2@), TO =00 T)=6,0)
and define

6o = inf sup I(I'(¢)).
TePrefo0,1]

Then we obtain
0o > 1 (01, 02). (4.98)

At last, noting Lemma 4.8, (4.95)-(4.97), we can use the mountain-pass theorem of
Ambrosetti-Rabinowitz [5] to conclude that 6y is also a critical value of the functional /, which
gives another critical point of /. In view of (4.98), we obtain a second solution of (4.3)—(4.4),
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which is different from (v, v2,,) defined by (4.73). Then the proof of Theorem 2.2 is com-
plete. O

4.3. Quantized fluxes over Q

In this short subsection we calculate the quantized fluxes stated in Theorem 2.3 for the doubly
periodic domain case. In fact, as in the planar case we obtain from (2.16)—(2.17) that

1
Fy=———=a(IN = 1P + [Ingy ).
N -1
o - WA(lnwF—lndwlz),
which gives
1
fum=__/A([N_1]1n|¢|2+|1n¢zv|2)dx,
V2N
Q
N -1
Fov0 - [ [ (gl = tingw ) a.
Q

Then, using Egs. (2.20)—(2.21) and a direct integration, we get the desired quantized fluxes
(2.32)-(2.33). O
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