期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:262 |
On the Dirichlet problem for hypoelliptic evolution equations: Perron-Wiener solution and a cone-type criterion | |
Article | |
Kogoj, Alessia E.1  | |
[1] Univ Salerno, Dipartimento Ingn Informaz Ingn Elettr & Matemat, Via Giovanni Paolo 2,132, IT-84084 Fisciano, SA, Italy | |
关键词: Dirichlet problem; Perron-Wiener solution; Boundary behavior of Perron-Wiener solutions; Exterior cone criterion; Hypoelliptic operators; Potential theory; | |
DOI : 10.1016/j.jde.2016.10.018 | |
来源: Elsevier | |
【 摘 要 】
We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron-Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2016_10_018.pdf | 764KB | download |