期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:262
On the Dirichlet problem for hypoelliptic evolution equations: Perron-Wiener solution and a cone-type criterion
Article
Kogoj, Alessia E.1 
[1] Univ Salerno, Dipartimento Ingn Informaz Ingn Elettr & Matemat, Via Giovanni Paolo 2,132, IT-84084 Fisciano, SA, Italy
关键词: Dirichlet problem;    Perron-Wiener solution;    Boundary behavior of Perron-Wiener solutions;    Exterior cone criterion;    Hypoelliptic operators;    Potential theory;   
DOI  :  10.1016/j.jde.2016.10.018
来源: Elsevier
PDF
【 摘 要 】

We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron-Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2016_10_018.pdf 764KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次