期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:268
On the Dirichlet problem in cylindrical domains for evolution Oleinik-Radkevic PDE's: A Tikhonov-type theorem
Article
Kogoj, Alessia E.1 
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, IT-61029 Urbino, PU, Italy
关键词: Dirichlet problem;    Perron-Wiener solution;    Boundary behavior of Perron-Wiener solutions;    Exterior cone criterion;    Hypoelliptic operators;    Potential theory;   
DOI  :  10.1016/j.jde.2019.08.012
来源: Elsevier
PDF
【 摘 要 】

We consider the linear second order PDO's L = L-0 - partial derivative(t) := Sigma(N)(i,j=1) partial derivative(xi) (a(ij)partial derivative(xj)) - Sigma(N)(j=1) b(j)partial derivative(xj) - partial derivative(t) , and assume that L-0 has nonnegative characteristic form and satisfies the Oleinik-Radkevic rank hypoel-lipticity condition. These hypotheses allow the construction of Perron-Wiener solutions of the Dirichlet problems for L and L-0 on bounded open subsets of RN+1 and of R-N, respectively. Our main result is the following Tikhonov-type theorem: Let O := Omega x]0, T[ be a bounded cylindrical domain of RN + 1, Omega subset of R-N, x(0) is an element of partial derivative Omega and 0 < t(0) < T. Then z(0) = (x(0), t(0)) is an element of partial derivative O is L-regular for O if and only if x(0) is L-0-regular for Omega. As an application, we derive a boundary regularity criterion for degenerate Ornstein-Uhlenbeck operators. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_08_012.pdf 295KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次