期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:418
Gaussian Process Regression for Maximum Entropy Distribution
Article
Sadr, Mohsen1  Torrilhon, Manuel1  Gorji, M. Hossein2 
[1] Rhein Westfal TH Aachen, Dept Math, MATHCCES, Schinkestr 2, D-52062 Aachen, Germany
[2] Ecole Polytech Fed Lausanne EPFL, MCSS, CH-1015 Lausanne, Switzerland
关键词: Gaussian process regression;    Maximum entropy distribution;    Moment problem;   
DOI  :  10.1016/j.jcp.2020.109644
来源: Elsevier
PDF
【 摘 要 】

Maximum-Entropy Distributions offer an attractive family of probability densities suitable for moment closure problems. Yet finding the Lagrange multipliers which parametrize these distributions, turns out to be a computational bottleneck for practical closure settings. Motivated by recent success of Gaussian processes, we investigate the suitability of Gaussian priors to approximate the Lagrange multipliers as a map of a given set of moments. Examining various kernel functions, the hyperparameters are optimized by maximizing the log-likelihood. The performance of the devised data-driven Maximum-Entropy closure is studied for couple of test cases including relaxation of non-equilibrium distributions governed by Bhatnagar-Gross-Krook and Boltzmann kinetic equations. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2020_109644.pdf 1213KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次