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Highlights

• Devising Bayesian inference for fast evaluation of maximum entropy distribution.
• Adopting Radial basis function for covariance kernel.
• Excellent recovery of bi-modal densities among others.
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Abstract

Maximum-Entropy Distributions offer an attractive family of probability densities suitable

for moment closure problems. Yet finding the Lagrange multipliers which parametrize these

distributions, turns out to be a computational bottleneck for practical closure settings. Mo-

tivated by recent success of Gaussian processes, we investigate the suitability of Gaussian

priors to approximate the Lagrange multipliers as a map of a given set of moments. Ex-

amining various kernel functions, the hyperparameters are optimized by maximizing the

log-likelihood. The performance of the devised data-driven Maximum-Entropy closure is

studied for couple of test cases including relaxation of non-equilibrium distributions gov-

erned by Bhatnagar-Gross-Krook and Boltzmann kinetic equations.
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1. Introduction

Estimating a probability density from a given set of moments known as the closure prob-

lem, naturally arises by representing a high-dimensional system with only a few moments.

This inverse problem is ill-posed in general, and thus regularization/regression has to be

pursued. In practice two frameworks have been developed: regression on the probability5

density versus regression on the logarithm of the probability density. The former includes

orthogonal expansion techniques such as Hermite/Grad type expansions [1, 2, 3] besides
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quadrature methods [4]. The latter leads to the family of Maximum Entropy Distributions

(MEDs) [5, 6]. The MED is defined by maximizing an entropy functional of the distribution,

subject to the given moment constraints. Regularizing the closure problem by maximizing10

the Shannon entropy is motivated by both physical and information theoretic considera-

tions. The physical motivation relies on the Boltzmann H-theorem, whereas the latter is

linked to the least-bias estimators. MEDs have been employed in various settings as diverse

as natural language processing [7], image/signal processing [8, 9], geoscience [10], rarefied

gas dynamics [11], solid state physics [12, 13] and climate forecast [14]. However besides15

theoretical difficulties [15], the use of Maximum-Entropy distributions has been restricted

due to numerical challenges.

Following standard steps of the method of Lagrange multipliers, finding the MED reduces

to computing the Lagrange multipliers arising from moment constraints [16]. Although the20

well-posedeness of such an optimization problem has been shown for bounded domains and

realizable moments [17, 18, 19], in practice expensive iterations have to be employed for

finding Lagrange multipliers. Commonly used iterative approaches are based on the gradi-

ent descent, Newton’s method and the adaptive basis method. For invertable and Lipschitz

continuous Hessians, Newton’s method provides the fastest convergence. However since25

those conditions are not guaranteed in the considered setting, the adaptive basis method is

suggested [20, 21].

As a numerically efficient alternative, here we reset the problem of finding the Lagrange

multipliers to a Bayesian inference framework. The idea is to express the mapping from30

moments to Lagrange multipliers by a Gaussian Process (GP). Since computing moments

for a given set of Lagrange multipliers is simple and cheap, the training data set can be

obtained in a straight-forward way. Therefore, the hyperparameters of the considered GP

prior are found by maximizing the log-likelihood over the training data set. Once the hy-

perparameters are found, the Lagrange multipliers for a new set of moments can be inferred35

by conditioning the constructed multivariate Gaussian distribution [22].
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The motivation behind our approach is purely computational. Observe that all heavy com-

putations including generating training data, finding an appropriate kernel, the Cholesky

factorization of the covariance matrix and fitting the hyperparameters are done up-front40

(offline). For simulations, evaluation of the GP regression is done via a simple backward

substitution.

Following the objective of constructing accurate GP estimators for the Lagrange multi-

pliers of MED, the remainder of this manuscript is structured as the following. First in § 2,45

a short review of MED besides an iterative approach for computing the Lagrange multipliers

are presented. Furthermore, a short description of the GP regression is provided. Then in

§ 3, training of the GP regression is pursued, where several kernels such as radial basis and

Matèrn family are evaluated for our problem setting. Section 4 deals with the assessment

of the devised GP-accelerated MED. As the first test case, the accuracy of the fitted GP in50

predicting bi-modal distributions is studied in § 4.1. In § 4.2, robustness of the GP regression

is tested by predicting MED for moments obtained from noisy bi-modal distributions. Then

§ 4.3 and § 4.4 focus on relaxation of non-equilibrium distributions, governed by Bhatnagar-

Gross-Krook (BGK) [23] and Boltzmann equations, respectively. At the end, a conclusion

and an outlook for future studies are given in § 5.55

2. Methods

In the following, first the MED framework is reviewed and the problem statement is

refined. Next, a short description of the GP regression is presented.

2.1. Review of Maximum Entropy Problem

Consider the set of admissible probability densities defined over measurable functions as60

P =

{
f : Rl → [0,∞)

∣∣∣∣ ∫
Ω

f(x)dx = 1

}
, (1)
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where Ω ⊆ Rl. Suppose we are given a finite vector of moments p ∈ RN of an unknown

f(v) ∈ P such that

pj =

∫
Ω

f(v)φj(v)dv; 1 ≤ j ≤ N , (2)

where φ(v) : Rl → RN is a vector of polynomials. Here and hence forth the subscript indices

denote a component of the quantity. The goal is to approximate f by some f (s) ∈ P such

that the (mathematical) entropy

S[f ] :=

∫
Ω

f ln(f)dv, (3)

is minimized while the constraints ∫
Ω

φ(v)f (s)dv = p (4)

are satisfied. Since S[f ] is convex and the constraints are linear, the solution of the above

minimization problem is unique, once it exists. To leave out pathological cases [15], we focus

on a bounded domain Ω, for which the minimization problem is well-posed for realizable

moments. Using the method of Lagrange multipliers we get

Cλ
N [f (s)] :=

∫
Ω

f (s) ln(f (s))dv −
N∑
j=1

λj

(∫
Ω

f (s)φjdv − pj
)
, (5)

which has its extremum at

fλN(v) = Z−1
λ exp

(
−

N∑
j=1

λjφj

)
, (6)

where Zλ is the normalization factor [16]. By inserting fλN into the constraints, the Lagrange

multipliers λ(p) can be computed. However it is more convenient to consider the dual

formulation which provides an unconstrained convex minimization for Lagrange multipliers

as

λ(p) = arg min
λ∗∈RN

{C(λ∗; p)} , (7)

where C(λ∗; p) := Zλ∗ −
∑
j

λ∗jpj . (8)
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Hence the maximum entropy regularization, reduces the closure problem to computing λ(p)

from Eq. (7). As a direct solution of the dual problem, the standard Newton’s method

for finding the Lagrange multipliers are reviewed in the following. Let H(λ) and g(λ) be

the Hessian and the gradient of the objective function in Eq. (7), respectively. Following

Newton’s method [24], the estimated Lagrange multipliers λ(n) at step n, are updated by

solving the linear system

N∑
j=1

Hij(λ
(n))∆λ

(n)
j = gi(λ

(n)) (9)

for ∆λ(n). After random initialization of the Lagrange multipliers, they get updated accord-

ing to

λ
(n+1)
i = λ

(n)
i + β(n)∆λ

(n)
i . (10)

Here β is a damping factor and is chosen such that the cost function decreases efficiently.

The damping β(n) is set to the largest value of the power series {sk}Ns
k=0 with s ∈ (0, 1) that

guarantees the Armijo’s rule

C(λ(n) + β(n)∆λ(n); p) < C(λ(n); p) + cβ(n)(∆λ(n), g(λ(n))), (11)

where (., .) indicates the dot product of vectors. Note that the values of c, s, and Ns65

need to be tuned appropriately. For our study, we set c = 10−4, s = 1/2 and Ns = 30. A

pseudocode describing this direct approach with corresponding values of the free parameters

are provided in algorithm (1) [24, 25, 26]. Although H is symmetric-positive-definite, it can

become ill-conditioned which can be coped with by using an adaptive basis [27]. For example

in [24], Hermite polynomials are employed as the basis in order to keep the Hessian matrix70

close to a diagonal one. A more general approach which generates a diagonal Hessian for

an arbitrary probability density is followed in [20, 21]. Yet high computational costs can

become a limiting factor for this fully adaptive basis methodology.

2.2. Gaussian Process Regression

The high computational intensity of the direct iterative approach for solving the dual75

problem (7), motivates alternative methods. Here we focus on a data-driven approach
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Algorithm 1 Direct approach to find Lagrange multipliers given the moments p ∈ RN

Set n = 0 and sample λ(n) uniformly from [−0.1, 0.1]N

Set the tolerance ε = 10−10

while C(λ(n); p) > ε do

Compute Hessian and gradient of the cost function C(λ(n); p)

Solve the linear system in Eq. (9) for ∆λ(n)

Find the largest β(n) that satisfies Armijo’s rule (11)

Compute the new guess λ(n+1) from Eq. (10)

Increment n

end while

return λ(n)

based on GP. Let us first review the main idea behind GP based regressions. Suppose

Ψ(x) : RN → RN is an unknown map, yet we have access to evaluations {Ψ(x(j))}Mj=1 at

some data points D = {x(1), x(2), ..., x(M)}. Note that the superscript index denotes the

corresponding data batch. Therefore the regression problem addresses estimating Ψ(x)80

from the given {x(j),Ψ(x(j))}Mj=1. Consider a positive semi-definite (PSD) kernel function

K(x, x′) : RN × RN → [0,∞), then the GP regression sets forth

Ψ̃ ∼ GP(0,K) (12)

as an approximation of Ψ. Here GP denotes a random process whose distribution for

a set of points is a joint normal with the covariance being the Gram matrix associated

with K. The merit of a regression of the type (12) can be addressed from different

perspectives. More relevant to our setting, it can be shown that the conditional expectation

E[Ψ̃|Ψ̃(x(j)) = Ψ(x(j)),∀x(j) ∈ D] provides an optimal recovery of Ψ in the sense of the

relative error induced by the corresponding Reproducing-Kernel-Hilbert-Space [28]. In

practice, we work with parametrized kernels KΘ, where the hyperparameters embedded in Θ

are found by maximizing the log-likelihood [29]. Furthermore, we construct the GP regres-

sions component-wise. Hence we evaluate the hyperparameters for every Ψ̃i (i = 1, ..., N),
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separately.

Several PSD kernel functions K have been introduced in the literature, see e.g. [29].

Here we consider the radial basis function (RBF) along with Matérn’s family for each

component i, j ∈ {1, ..., N} we have

KRBF
Θi

(x, x′) = σi exp
(
−r2

i /2
)
, (13)

KMatérn(12)
Θi

(x, x′) = σi exp(−ri) , (14)

KMatérn(32)
Θi

(x, x′) = σi(1 +
√

3ri) exp(−
√

3ri) and (15)

KMatérn(52)
Θi

(x, x′) = σi(1 +
√

5ri +
5

3

√
ri) exp(−

√
5ri) . (16)

Note that r2
i =

∑
j L
−1
ij (xj − x′j)

2, where the positive-definite-matrix LN×N encodes a

characteristic length-scale. For each component i ∈ {1, ..., N}, the hyperparameters

Θi = {σi, L−1
i1 , ..., L

−1
iN} can be found by maximizing the log-likelihood

ln
(
f̃
(

Ψ̃i(x) |x ∈ D
))

= −1

2
ln (det(KΘi

(x, x′)))

−1

2
Ψi

T (x)KΘi
(x, x′)−1Ψi(x

′)− M

2
ln(2π), (17)

where f̃ denotes the probability density of Ψ̃i conditioned on the training points. The

Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) is used in this study to find the local

minimum with respect to the hyperparameters [30]. It can be shown that the global mini-

mum is attained as more data points are deployed [31]. Once the kernel function K and its

hyperparameters are set, one can evaluate the distribution of Ψ̃ at an arbitrary input point

x∗ ∈ RN . Let x be composed of the training points, therefore(
Ψ̃i(x

∗)

∣∣∣∣Ψ̃i(x) = Ψi(x)

)
∼ N (m̄i, Σ̄i), (18)

where N (m̄i, Σ̄i) is a normal distribution with mean

m̄i = KΘi
(x∗, x′)KΘi

(x, x′)−1Ψi(x) (19)

and variance

Σ̄i = KΘi
(x∗, x∗)−KΘi

(x∗, x)KΘi
(x, x′)−1KΘi

(x∗, x) . (20)
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Note that m̃ and Σ̃ indicate posterior estimates of the mean and the variance, respectively.

Since the inversions appearing in Eqs. (19) and (20) only include the training points, the

corresponding computations can be done up-front. Therefore computational advantage is85

gained, as only matrix-vector multiplication is needed for predictions. Although more ef-

ficient GP models such as sparse GP [32] could be pursued, in this study we adopt the

straight-forward GP regression model available on GPflow [33].

3. Training Gaussian Process

In this section, constructing GP maps for Lagrange multipliers are pursued. The per-90

formance of several covariance functions besides accuracy of the GP regression close to

realizability limit are assessed.

3.1. Initializing data set

To construct a regression on the Lagrange multipliers as a map from moments, we need

to construct a data set. Since the inverse map is cheaper to evaluate, the main idea here95

is to compute the moments based on a set of Lagrange multipliers. In order to do that

we need to introduce a domain for Lagrange multipliers of the form Λ = [λmin, λmax]N to

sample from. Furthermore, we need to have a boundary for values of the moments i.e.

Ωp =
∏

i[pi,min, pi,max]. Since all scenarios can be shifted and scaled to a reference with

zero mean and unity variance, finally we only include the data points corresponding to zero100

mean and unity variance MEDs. First, {λ̃i}Ni=1 are uniformly sampled from Λ resulting in a

trial density f λ̃N . The mean µ and the variance σ2 are computed from f λ̃N using Gaussian-

quadrature. In order to find the corresponding Lagrange multipliers that guarantee zero

mean and unity variance, we make use of the coordinate transformation v′ = (v−µ)/σ. Let

fλN be the density with zero mean and unity variance. Observe that by equality of measures105

and assuming v ∈ R we get

fλN(v′) = σf λ̃N (σv′ + µ) . (21)
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Using the binomial expansion, it is straight-forward to find that

λi = σiλ̃i +
N∑

j=i+1

λ̃j

(
j

i

)
σiµj−i ; i ∈ {1, ..., N} (22)

ensures Eq. (21). Yet since we deal with bounded v ∈ Ω, an iterative scheme with the initial

guess given by Eq. (22) is employed to ensure zero mean and unity variance. Algorithm (2)

is introduced in order to create the data set.110

Algorithm 2 Generating (λ, p) with
∫

Ω
vfλNdv = 0 and

∫
Ω
v2fλNdv = 1 given the moment

space Ωp, and sample space Λ for Lagrange multipliers

Set p′ = (0, ..., 0)T ∈ RN with N = dim(Ωp)

Set the tolerance ε = 10−10

while p′ /∈ Ωp do

Sample λ̃ uniformly from Λ

Compute µ =
∫

Ω
vf λ̃Ndv and σ2 =

∫
Ω
v2f λ̃Ndv

while µ > ε or |σ − 1| > ε do

Compute λ according to Eq. (22)

Update µ =
∫

Ω
vfλNdv and σ2 =

∫
Ω
v2fλNdv

λ̃← λ

end while

Update p′i =
∫

Ω
vifλNdv for 1 ≤ i ≤ N

end while

p← p′

return λ and p

For the training, we consider N ∈ {4, 6, 8} and numerical integrations are carried

out using Gaussian-quadrature with roughly 20 points. The sample space for the La-

grange multipliers has been chosen carefully after a trial and error on the outcome mo-

ments obtained from the algorithm (2). As shown in Fig. 1, the generated data points

using the uniform sample space of Λ = [−b, b]N with b ∈ {1, 10}, suggests that the115

tail of the moment distribution becomes longer as b increases. This implies that MED
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with a larger b is better equipped to capture rare events. The training points are gen-

erated by setting b = 10 and only keeping data points whose moments lie in the space

Ωp = [−ε, ε]× [1− ε, 1 + ε]× [−1, 1]× [1, 4]× [−4, 4]× [1, 15]× [−25, 1]× [1, 110].

3.2. Pre-treatment of data set120

Every (λ
(k)
i , p

(k)
j ) component of the data set can have significant variations passing through

different batches of k ∈ {1, ...,M} (with M = 1000 for our data set). We follow the

common recipe in data-driven methodologies which includes scaling and shifting of every

data point (λ
(k)
i , p

(k)
j ) by the standard-deviation and the average computed over N batches

of the particular (i, j) component, respectively. Note that this does not have to be carried125

out for p1 and p2, since they have fixed values already.

3.3. Kernel comparison

We consider MED with N = 6 moments as the target distribution, where the appropriate

kernel and number of training data points M should be found. First, let us consider the

radial basis function (RBF) for the kernel choice. Once the hyperparameters of Eq. (13) are130

found via maximizing the log-likelihood given by Eq. (17), the accuracy of predictions over

unseen data is investigated. As shown in Fig. 2, by increasing the number of data points

M in the training set, the expectation and the variance of the relative error decay using the

GP regression.

For comparison, several kernels from the Matérn family of functions, i.e. Matérn(12),135

Matérn(32) and Matérn(52), have been tested here for the training step. Based on our

computational experiments as shown in Fig. 3, RBF provides a better estimation for this

data set.

3.4. Cost of data generation and training

Although the described algorithm(2) is straight-forward, the iterations on λ̃ required to140

ensure p ∈ Ωp besides zero mean and unity variance, can become costly. As it can be seen

in Fig. 4, the computational time for generating the data set τ gen scales almost linearly with

the number of data points. However, the cost of generating relevant data points increases

10
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Figure 1: Probability density function of the moments p3 and p4 obtained from 104 data points using

algorithm (2). The sample space Λ = [−b, b]N for the Lagrange multipliers varies with N ∈ {4, 6, 8} and

b ∈ {1, 10}.
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Figure 2: Expectation and variance of the relative error in predicting λs using RBF. Here, λex ∈ RN with

N = 6 indicates the exact solution of MED taken from untrained subset of the data set. The statistics are

performed over 2000 testing points.
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Figure 3: Convergence comparison using different kernels. The L2-norm of the expectation and the variance

of the relative error are shown. Here, λex ∈ RN with N = 6 indicates the exact solution of MED taken from

untrained subset of the data set. The statistics are performed over 2000 testing points.
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as more moments are considered.

The GP hyperparameters are trained by maximizing the log-likelihood, as explained in § 2.2.145

The execution time for training τ tr shown in Fig. 4 includes cost of the Cholesky factorization

besides optimizing the hyperparameters with a tolerance 10−6.
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Figure 4: Averaged execution time τgen for tuning hyperparameters and τ tr for generating the data set,

are depicted at left and right, respectively. Here N denotes the number of moments and M the number of

employed data points. Execution times are normalized by the computational time corresponding to the case

of N = 4 and M = 100.

3.5. Accuracy in the limit of realizability

Here, we investigate the accuracy of the trained GP at the limit of moment realizability.

Let us consider MED with N = 4 moments along with RBF as the kernel function. Following

[34, 35], the moment problem is physically realizable for N = 4, if the sufficient condition

p4 ≥ p2
3 + 1 (23)

holds for the standardized moments p ∈ R4. In order to show accuracy of the trained GP

at the points near the limit p4 = p2
3 + 1, we investigate the GP predictions for a set of

standardized input moments

Dtest
p =

{( 0
1
α

α2+1+d

)∣∣∣α = αmin + ih, i = 1, ..., Ntest, h = (αmax − αmin)/Ntest

}
(24)
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where d ∈ {0.04, 0.02, 0.01}, αmax = −αmin = 0.5, and Ntest = 100. As shown in Fig. 5,

by decreasing d, the relative error and the variance of predictions increase. On the other

hand, as expected, the accuracy improves by increasing the number of training points M .

Therefore this investigation suggests that the GP regression for MED becomes less reliable

once moments close to the realizability border are encountered. Moreover, the upper limit
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Figure 5: Left: Input points depicted in (p3, p4) plane with solid black curve on p4 = p23+1, Right: Average of

moments relative error using data-driven MED for input moments pin ∈ Dtest
p , and variance of the predicted

Lagrange multipliers shown in solid and dashed lines, respectively

of realizable moments is investigated here. First, since data points with 4th order moment

p4 ∈ [1, 4] are considered here, let us evaluate the accuracy of GP in predicting MED as

points of interest approaches the upper limit. Let us define a set of points as

U test
p =

{( 0
1
β

4−d

)∣∣∣β = βmin + ih, i = 1, ..., Ntest, h = (βmax − βmin)/Ntest

}
(25)

where d ∈ {0.1, 0.05, 0} and βmax = −βmin = 0.1, and Ntest = 200 illustrate the number of

testing points. As shown in the Fig. 6, similar to the lower limit of physical realizability,

the accuracy in prediction decreases as the upper limit of moments is approached.

Finally, the trained GP is tested in estimating the MED near the line p3 = 0 with p4 > 3

which are not realizable with MED. In order to evaluate the accuracy of MED with N = 4
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Figure 6: Left: Input points depicted in (p3, p4) plane with black dashed line depicting p3 = 0 with p4 > 3,

Right: Average of moments relative error using data-driven MED for input moments pin ∈ U test
p , and

variance of the predicted Lagrange multipliers shown in solid and dashed lines, respectively

around this limit of realizability, let us take moments from the set

Stest
p =

{( 0
1
β/d

(10βd)2+3

)∣∣∣β = βmin + ih, i = 1, ..., Ntest, h = (βmax − βmin)/Ntest

}
(26)

where the parameters are d ∈ {1, 8, 64} and Ntest = 100 indicates the number of testing

points. Similar to the lower bound of realizability, it can be observed from Fig. 7 that the150

relative error, as well as the variance of the predictions, decrease by deploying more training

points. However, the error in predictions as the point of interest approaches the upper limit

of realizability, i.e., by increasing d, is negligible, which can be explained by having an excess

of testing points near the equilibrium point, i.e., (p3, p4) = (0, 3).

4. Results155

In this section, the trained GP is employed for predicting different scenarios relevant in

kinetic problems. To further refine our setting, without loss of generality we restrict ourselves

to a one-dimensional domain Ω = [vmin, vmax]. Moreover the moments are computed for the

polynomials φi = vi, for i ∈ {1, ..., N}. We shift and scale the coordinate such that zero
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Figure 7: Left: Input points depicted in (p3, p4) plane with black dashed line depicting p3 = 0 with p4 > 3,

Right: Average of moments relative error using data-driven MED for input moments pin ∈ Stest
p , and

variance of the predicted Lagrange multipliers shown in solid and dashed lines, respectively

mean and unity variance are obtained. After normalization, the velocity sample space is set160

by adopting vmax = −vmin = 10.

4.1. Test case #1: recovering bi-modal density

Bi-modal distributions are prototype of non-equilibrium phenomena in kinetic problems.

For example they show up as simplified solutions of shock waves in rarefied gas kinetics [36].

We employ the trained GP with the RBF kernel to predict the bi-modal density of the form

fbi(v|µ1, σ1, µ2, σ2) =
1

2

[
fN (v|µ1, σ1) + fN (v|µ2, σ2)

]
, (27)

where µ2 = −µ1 and σ2 =
√

2− (σ2
1 + 2µ2

1). Note that fN (v|µ, σ) is the normal density

with the mean µ and the variance σ2. To quantify the deviation of the estimated density

from the exact one, the Kullback–Leibler divergence

DKL(fbi||fλN) =

∫
Ω

fbi(v) ln
(
fbi(v)/fλN(v)

)
dv (28)

is used here. Three different scenarios {(a),(b),(c)} corresponding to (µ1, σ1) ∈

{(0.8, 0.3), (0.9, 0.2), (0.95, 0.15)} are considered, where predictions are provided based

on the GP regression with N = 4, 6 and 8 moments. The results depicted in Fig. 8 show165
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that even with fλ4 a good recovery is achieved. Although predictions of MED suggest that

by increasing the number of moments better estimation of the bi-modal distribution can

be obtained, such improvement were not observed for the predictions in the test case (b)

and (c) from N = 6 to N = 8. This discrepancy can be explained by noticing high values

for the variance of posterior for mentioned points, i.e. lack of training data near prediction170

points. As expected by merging the two modes, better agreement is obtained between the

GP-accelerated MED and the bi-model one.

To further evaluate accuracy and performance of the data-driven MED, the bi-modal

test case was also studied using the standard algorithm (1). While reasonable accuracy175

in predicting the exact Lagrange multipliers and their outcome moments are obtained via

GP estimates as shown in Fig. 9, a speedup of at least two orders of magnitude compared

to the direct approach is observed. The predictions are improved overall as the number of

moments is increased.

4.2. Test case #2: noisy bi-modal distribution180

To test the robustness of our data-driven MED estimator, here we consider a perturbed

bi-modal distribution

fbi
ε (v|µ1, σ1, µ2, σ2) = fbi(v|µ1, σ1, µ2, σ2)(1 + ε), (29)

where ε is a random variable with the normal density fN (0, 0.1). The values of (µ1, σ1) are

taken from § 4.1.

As depicted in Fig. 10, devised GP estimators provide reasonable performance for

perturbed scenarios. Here, it can be observed that although MED with higher moments has185

the potential of describing more complicated distributions, the sensitivity of higher-order

Lagrange multipliers to the input moments reduces the robustness.
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Figure 8: Recovering bi-modal probability densities using MEDs accelerated by the GP regression with

N = 4, 6 and 8 moments. The estimated densities are shown in sub-figures (a)-(c) for test cases (a)-(c),

respectively. The KL-divergence between estimated MEDs and the bi-modal distribution, relative error of

the GP estimator with respect to exact values of Lagrange multipliers and outcome moments, and variance

of predictions are presented in (d)-(f), respectively.
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Figure 9: The ratio between computational times of the GP regression and the direct approach are shown

for computing the Lagrange multipliers.

4.3. Test case #3: recovering BGK relaxation

This test case investigates the accuracy of the trained GP with the RBF kernel in pre-

dicting the evolution of a density f(v|t) governed by

∂f(v|t)
∂t

= ν(fN (v|0, 1)− f(v|t)) . (30)

The collision frequency ν controls how quick the solution reaches the equilibrium. Given an

initial condition f(v|t0), the exact solution reads

f ex(v|t) = [1− exp(−νt)] fN (v|0, 1) + exp(−νt)f(v|t0) . (31)

Here, we use bi-modal normal distribution described in § 4.1 with (µ1, σ1) = (0.98, 0.2) as

the initial density.190

In order to solve Eq. (30) using MED, the Lagrange multipliers corresponding to the

set of moments at time t need to be evaluated. Applying the devised GP regression, trained

for λ ∈ RN with N = 4, 6 and 8, the Lagrange multipliers are estimated. Observe that the

moments p(t) can be computed analytically from Eq. (30). Therefore, at each time instant,195

the moments and subsequently the trained GP map, are found. The estimated fλN together

with its moments are compared with respect to the corresponding exact solution as shown
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Figure 10: Estimating the noisy bi-modal distribution fbiε with GP-accelerated MED fλN , where N ∈ {4, 6, 8}

for test cases {(a), (b), (c)}. Probability density functions are shown in (a)-(c). Also the KL-divergence

between distributions, the relative error in outcome moments and the variance of the Lagrange multipliers

are shown in (d)-(f), respectively.



in Fig. 11. Here ν = 0.25 and time intervals are (t0 = 0, t1 = 3, t2 = 8, t3 = 20) are chosen.

Improvements of the estimator are clearly visible by increasing the number of moments as

shown in Fig. 12. It is encouraging to see that even with as few moments as N = 4, one200

can recover the bi-model density using the GP-estimated MED.
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Figure 11: Capturing BGK relaxation using GP-accelerated MED for N = 4, 6 and 8 moments at time

t ∈ {0, 3, 8, 20}.

4.4. Test case #4: recovering Boltzmann relaxation

In this section, we investigate accuracy of the devised data-driven MED in estimating an

exact solution of the Boltzmann equation. Consider the homogeneous and dimension-less
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and 8 at time t ∈ {0, 3, 8, 20}.

Boltzmann equation in the velocity space v

∂f(v, t̂)

∂t̂
=

1

4π

∫ ∫
[f(v′, t̂)f(w′, t̂)− f(v, t̂)f(w, t̂)]φ(X )dΩ̄dw, (32)

where t̂ is the normalized time, superscript (.)′ denotes pre-collision velocities of the collision

pair, w is the velocity of the collision partner and dΩ̄ = sin(X )dXdε0 with scattering angle

X and ε0 ∈ [0, 2π]. Here g = |v − w| is the magnitude of relative velocity. Note that in the

case of the isotropic scattering we have φ(X ) = 1. As shown in [37], an exact solution

fBolt(v, t̂) =
exp(−v2/2K(t̂))

2K(t̂)[2πK(t̂)]3/2

[
(5K(t̂)− 3) +

1−K(t̂)

K(t̂)
v2

]
/I (33)

can be obtained, where I is the normalizing factor and

K(t̂) = 1− exp(t̂/6) . (34)

Note that Eq. (33) provides a valid solution of the Boltzmann equation once t̂ ≥ 6 log(5/2).

As derived in [37], the even moments for this isotropic setting evolve according to

p2n(t̂) =
(4n+ 1)!

22n(2n)!
M2n and (35)

M2n(t̂) = K2n−1(t̂)
[
2n− (2n− 1)K(t̂)

]
, (36)
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for n ∈ {0, 1, ...}. In order to deploy our GP estimator of MED, the input moments need

to be standardized via

p̂k(t̂) =
pk(t̂)

p2(t̂)k/2
, for k = 1, ..., N . (37)

By plugging standardized moments at any time t̂ as the input in the trained GP, the

outcome Lagrange multipliers are predicted. As shown in Figs. 13-14, the trained GP-

accelerated MED estimator provides an accurate solution of the Boltzmann equation. As205

expected, the accuracy in prediction improves once more moments are considered.
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Figure 13: Estimating solution of the Boltzmann equation at time t̂ ∈ {5.8, 6.5, 7.5, 8.5} by devised GP-

accelerate MED for N = 4, 6 and 8 moments.
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Figure 14: Relaxation of standardized moments p̂(N) ∈ RN obtained from exact solution of the Boltzmann

equation and devised MED estimation fλN with N ∈ {4, 6, 8} depicted by dashed and solid lines, respectively,

together with the KL divergence between solutions.
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5. Conclusions

The moment closure problem arising from high dimensional systems continues to be a

challenge for scientific computing. While MEDs offer an interesting solution framework

for estimating the underlying probability density from a given set of moments, the com-210

putational cost associated with computing the Lagrange multipliers hindered their use for

practical settings. In this study, we accelerate finding the MED by employing GPs as a

regression map from moments to Lagrange multipliers. By taking advantage of the fact that

computing the moments from Lagrange multipliers can be performed by simple numerical

integrations, around 1000 training data points were generated. Appropriate preparation of215

the training set by ensuring zero mean and unity variance of MED, besides careful choice

of the kernel function have been carried out for a one-dimensional bounded sample space.

The results of capturing bi-modal distributions, noisy distributions, and BGK/Boltzmann

type relaxations show encouraging performance of the GP-accelerated MED. However, GP

prediction of Lagrange-multipliers becomes less accurate once moments near the realizabil-220

ity limit are encountered. This issue can be tackled by enriching the training points near

those limits. For future studies, higher dimensional sample spaces besides sparse GPs will

be pursued to further generalize the devised scheme.
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