期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:336
Scalable information inequalities for uncertainty quantification
Article
Katsoulakis, Markos A.1  Rey-Bellet, Luc1  Wang, Jie1 
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词: Kullback Leibler divergence;    Information metrics;    Uncertainty quantification;    Statistical mechanics;    High dimensional systems;    Nonlinear response;    Phase diagrams;   
DOI  :  10.1016/j.jcp.2017.02.020
来源: Elsevier
PDF
【 摘 要 】

In this paper we demonstrate the only available scalable information bounds for quantities of interest of high dimensional probabilistic models. Scalability of inequalities allows us to (a) obtain uncertainty quantification bounds for quantities of interest in the large degree of freedom limit and/or at long time regimes; (b) assess the impact of large model perturbations as in nonlinear response regimes in statistical mechanics; (c) address model form uncertainty, i.e. compare different extended models and corresponding quantities of interest. We demonstrate some of these properties by deriving robust uncertainty quantification bounds for phase diagrams in statistical mechanics models. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2017_02_020.pdf 1175KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次