期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:344
On conservation and stability properties for summation-by-parts schemes
Article
Nordstrom, Jan1  Ruggiu, Andrea A.1 
[1] Linkoping Univ, Dept Math, Computat Math, SE-58183 Linkoping, Sweden
关键词: Hyperbolic problems;    Summation-by-parts;    Boundary conditions;    Interface conditions;    Stability;    Conservation;   
DOI  :  10.1016/j.jcp.2017.05.002
来源: Elsevier
PDF
【 摘 要 】

We discuss conservative and stable numerical approximations in summation-by-parts form for linear hyperbolic problems with variable coefficients. An extended setting, where the boundary or interface may or may not be included in the grid, is considered. We prove that conservative and stable formulations for variable coefficient problems require a boundary and interface conforming grid and exact numerical mimicking of integration-by-parts. Finally, we comment on how the conclusions from the linear analysis carry over to the nonlinear setting. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2017_05_002.pdf 411KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次