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We discuss conservative and stable numerical approximations in summation-by-parts form 
for linear hyperbolic problems with variable coefficients. An extended setting, where the 
boundary or interface may or may not be included in the grid, is considered. We prove that 
conservative and stable formulations for variable coefficient problems require a boundary 
and interface conforming grid and exact numerical mimicking of integration-by-parts. 
Finally, we comment on how the conclusions from the linear analysis carry over to the 
nonlinear setting.
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1. Introduction

High order methods for partial differential equations provide accurate numerical solutions with a limited computational 
effort [1]. The main requirement for this efficiency is that stable and accurate implementations of boundary and interface 
conditions exist. Summation-By-Parts (SBP) operators [2,3], together with a weak imposition of the boundary and inter-
face conditions through Simultaneous-Approximation-Term (SAT) techniques [4–6], meet this challenge for finite difference 
methods. The SBP-SAT technique also enables generalizations to curvilinear domains [7–9] and multi-block schemes [10,11]. 
In addition to finite difference methods, other discretization techniques such as discontinuous Galerkin [12,13], finite volume 
[14,15] and pseudo-spectral methods [16,17] can be enclosed in the SBP-SAT framework.

An extension of the SBP-SAT technique was presented in [18], where it was shown that approximations of the first 
derivative on SBP form can be obtained starting from a quadrature rule. The authors proceed to show that this fact gener-
alizes the construction of SBP operators to grids which do not include the domain boundaries. These operators are referred 
to as Generalized Summation-By-Parts (GSBP) operators.

In this paper, our aim is to compare conservation and stability properties of SBP and GSBP based approximations. We 
will analyze a linear scalar conservation law with a spatially varying coefficient on single and multiple domains. This model 
problem can be seen as a building block for more demanding nonlinear cases. The conditions for discrete conservation 
and stability of SBP-SAT formulations will be specified in detail. The results limit the use of GSBP formulations as general 
building blocks in schemes, and stress the need for exact numerical mimicking of integration-by-parts.

The article proceeds as follows. Section 2 deals with energy boundedness and conservation for a model problem with a 
variable coefficient. In section 3, the SBP and GSBP operators are introduced. In section 4 and 5 we present SBP-SAT and 
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GSBP-SAT single-domain approximations and determine the requirements for discrete conservation and stability. In section 6
and 7, extensions to multi-domain approximations are considered. Section 8 describes a slight modification of the current 
GSBP operators. Finally, in section 9 we discuss the implications of the linear analysis on nonlinear problems. Conclusions 
are drawn in section 10.

2. The continuous problem, conservation and energy boundedness

Consider the following initial–boundary value problem on conservation form

ut + fx = 0, α < x < β, t > 0,

u = h(x), α < x < β, t = 0,

Bαu = gα(t), x = α, t > 0,

Bβu = gβ(t), x = β, t > 0,

(1)

where u, f = f (u, x), Bα , Bβ is the solution, flux function, left boundary operator and right boundary operator respectively. 
The initial data h and boundary data gα , gβ are collectively referred to as the data of the problem.

For two real-valued functions v and w , we define a scalar product and norm in L2(α, β)

(v, w)2 =
β∫

α

v w dx, ‖v‖2 = √
(v, v)2.

This formalism allows us to introduce the concepts of energy boundedness and conservation [19].

Definition 2.1. The problem (1) is said to be energy-bounded if the estimate

‖u(·, t)‖2
2 ≤ K (t)

⎡
⎣‖h‖2

2 +
t∫

0

gα(τ )2 + gβ(τ )2dτ

⎤
⎦ (2)

holds with K (t) independent of gα, gβ and h, and bounded for finite times.

Having defined energy boundedness, we next define conservation.

Definition 2.2. The problem (1) is in conservative form since

d

dt
(1, u)2 = f (u(α, t),α) − f (u(β, t),β)

holds. The integral of u changes only by the flux through the boundaries.

2.1. The model problem

To illustrate most of our points in this paper, it is sufficient to consider the following linear variable coefficient advection 
problem

ut + (au)x = 0, α < x < β, t > 0,

u(x,0) = h(x), α < x < β,

u(α, t) = gα(t), t > 0,

(3)

where a = a(x) and a(α) > 0, a(β) > 0 is assumed. The problem is in conservative form since integration yields

d

dt
(1, u)2 = a(α)gα(t) − a(β)u(β, t), (4)

where the Dirichlet boundary condition has been imposed at x = α.
Energy-boundedness of the solution in terms of the data follows by applying the energy-method to (3) (multiplying by 

u and integrating over [α, β]). The Integration-By-Parts (IBP) rule

(v, wx)2 = v(β)w(β) − v(α)w(α) − (vx, w)2 (5)

leads to

d ‖u‖2
2 = a(α)g2

α(t) − a(β)u2(β, t) − (u,axu)2. (6)

dt
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The energy-rate (6), in combination with the assumption ax ∈ L∞(α, β), leads to an energy estimate for (3), including a 
limited exponential growth given by

|(u,axu)2| ≤ ‖ax‖∞‖u‖2
2, ‖ax‖∞ = maxx∈[α,β]|ax(x)|. (7)

In particular, we find

‖u(·, t)‖2
2 ≤ e‖ax‖∞t

⎡
⎣‖h‖2

2 +
t∫

0

e−‖ax‖∞τ
(

a(α)g2
α(τ ) − a(β)u2(β, τ )

)
dτ

⎤
⎦ ,

which is of the form (2) in Definition 2.1.

3. Standard and generalized Summation-By-Parts discretizations

Here, we define the discrete operators which mimic the IBP rule (5).

3.1. Summation-By-Parts operators

Consider the discrete grid x = [x0, . . . , xN ]T , with the ordering of nodes α = x0 < · · · < xN = β . Furthermore, let the 
spatial derivative of a function ϕ be approximated through the matrix D , i.e. ϕx ≈ Dϕ , with ϕ = [ϕ(x0), . . . , ϕ(xN )]T .

Definition 3.1. An operator D is a qth order accurate approximation of the first derivative on SBP form if

i) Dx j = P−1 Q x j = jx j−1, j ∈ [0, q],
ii) P is a symmetric positive definite matrix,

iii) Q + Q T = eβeT
β − eαeT

α , where eα = [1, 0, . . . , 0]T and eβ = [0, . . . , 0, 1]T .

Condition i) in Definition 3.1 implies that the operator D exactly mimics the first derivative for the grid monomials 
x j = [x j

0, . . . , x
j
N ]T up to the qth order. The matrix P in condition ii) defines a discrete scalar product and norm

(v,w)P = vT P w, ‖v‖P = √
(v,v)P .

To avoid well known stability issues for variable coefficients and nonlinear problems [20–22], we consider P to be diagonal 
in the remainder of this paper. Finally, condition iii) ensures that D mimics the IBP rule (5)

(v, Dw)P = v N w N − v0 w0 − (Dv,w)P . (8)

Remark 3.2. SBP operators were originally developed for finite difference methods on equidistant grids [2]. It is also possible 
to build SBP operators starting from any given quadrature rule, e.g. Gauss–Lobatto [12,18].

3.2. Generalized Summation-By-Parts operators

A first generalization of SBP operators was given in [23,24], where condition iii) in Definition 3.1 was modified by 
introducing an almost skew-symmetric matrix Q with the exception of (k +1) ×(k +1) large boundary blocks. The definition 
of SBP operators can also be extended to non-uniform discrete grids x = [x0, . . . , xN ]T that do not include one or both 
boundary nodes [18].

Definition 3.3. An operator D is a qth order accurate approximation of the first derivative with the Generalized SBP (GSBP) 
property if

i) Dx j = P−1 Q x j = jx j−1, j ∈ [0, q],
ii) P is a symmetric positive definite matrix,

iii) Q + Q T = E , where (xi)T Ex j = β i+ j − αi+ j , i, j = 0, . . . , r, r ≥ q.

Remark 3.4. For standard SBP operators in Definition 3.1, the matrix E = Q + Q T is such that (xi)T Ex j = β i+ j − αi+ j , 
∀i, j ∈N. Consequently, SBP operators can be seen as particular GSBP operators with α, β being nodes on the grid. To avoid 
ambiguity, henceforth D will be called a GSBP operator if one or both boundary nodes are excluded from the discrete grid. 
Operators with both boundary nodes included are called SBP operators.
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The GSBP operators can be constructed from a quadrature rule and may have a non-repeating interior stencil. As an 
example, consider (α, β) = (−1, 1) and the Legendre–Gauss quadrature on the three-point grid x = [−√

15/5, 0, 
√

15/5]T . 
We find

P = 1

9

⎡
⎣5 0 0

0 8 0
0 0 5

⎤
⎦ , Q =

√
15

54

⎡
⎣−15 20 −5

−8 0 8
5 −20 15

⎤
⎦ .

It is easy to verify that the GSBP operator D = P−1 Q exactly differentiates second degree polynomials.
The matrix E in Definition 3.3 can be written in terms of boundary interpolants of degree r. In [18], tα and tβ were 

introduced such that

tT
φu ≈ u(φ) : tT

φx j = φ j, j ∈ [0, r], φ ∈ {α,β}. (9)

This gives rise to E = tβ tT
β − tαtT

α and to the GSBP property

(v, Dw)P = (tT
βv)(tT

β w) − (tT
αv)(tT

αw) − (Dv,w)P . (10)

In the example above, the interpolants are tα = [(5 + √
15)/6, −2/3, (5 − √

15)/6]T and tβ = [(5 − √
15)/6, −2/3, (5 +√

15)/6]T , with r = 2.

Remark 3.5. In the SBP case, we have tα = eα , tβ = eβ and r = ∞.

4. Conservation of single-domain discretizations

Our general goal is to find an approximation of the model problem (3) which is both conservative and stable. Consider the 
standard SBP operators in Definition 3.1. A straightforward semi-discrete approximation of (3) with the SBP-SAT technique 
[5] gives

ut + P−1 Q Au = σα A P−1eα(eT
αu − gα(t)), (11)

where A = diag(a(x0), . . . , a(xN)). Let σα = −1, 1 = (1, 1, . . . , 1, 1)T , multiply (11) from the left by 1T P , and use Q =
eβeT

β − eαeT
α − Q T . We find

d

dt
(1, u)P = a(α)gα(t) − a(β)uN , (12)

which mimics the continuous conservation relation (4) perfectly.

Definition 4.1. A numerical scheme discretizing the model problem (3) is said to be conservative if (12) holds.

4.1. The conventional skew-symmetric SBP approximation

In [21] it was shown that the formulation (11) leads to stability problems. To overcome this issue, we split the continuous 
spatial operator into a symmetric and anti-symmetric part

(au)x = 1

2
(au)x + 1

2
aux + 1

2
axu. (13)

The first two terms constitute the anti-symmetric part, while the third one forms the symmetric portion [21].
By using (13), an SBP-SAT discretization of (3) in skew-symmetric form can be written as

ut + 1

2
P−1 (Q A + A Q )u + 1

2
Axu = σα A P−1eα(eT

αu − gα(t)), (14)

where Ax is a matrix which consistently represents ax . Let for now Ax = diag(ax(x0), . . . , ax(xN )). The formulation (14) is 
energy-stable [21], but not conservative, since for σα = −1 the conservation relation becomes

d

dt
(1,u)P = a(α)gα(t) − a(β)uN + 1

2
(1, (P−1 A Q T − Ax)u)P .

By comparing with (12), we realize that a conservative formulation requires that Ax = P−1 A Q T . However, this does not 
lead to a consistent representation of ax since
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Ax1 = P−1 A Q T 1 = P−1 A(eβeT
β − eαeT

α − Q )1 = P−1 A(eβ − eα)

=
[
−P−1

00 a(x0),0, . . . ,0, P−1
N Na(xN )

]T �= [ax(x0), . . . ,ax(xN )]T .

We have proved

Proposition 4.2. The conventional skew-symmetric approximation (14) of (3), can not be both consistent and conservative.

Consequently, an alternative formulation should be considered.

4.2. Conservation for the skew-symmetric SBP approximation

We start by introducing an alternative way to write a vector [25].

Definition 4.3. Let φ = [φ0, . . . , φN ]T be a general vector. We denote with the capital letter � the matrix � =
diag (φ0, . . . , φN ) such that φ = �1.

Next, let U = diag(u0, . . . , uN) and a be the grid function representing a(x) on x. The symmetric part of (13) can now be 
consistently represented by U Da ≈ axu and the semi-discrete SBP-SAT approximation becomes

ut + 1

2
P−1 (Q A + A Q )u + 1

2
U Da = σα A P−1eα(eT

αu − gα(t)). (15)

This formulation leads to the following result.

Proposition 4.4. The discretization (15) of (3) with a general a(x) using the SBP operators in Definition 3.1 is conservative for σα = −1.

Proof. Consider

ut + 1

2
P−1(Q AU + A Q U + U Q A)1 = σα A P−1eα

(
eT
αu − gα (t)

)
, (16)

which is equivalent to (15) by Definition 4.3. By multiplying (16) from the left with 1T P we find

d

dt
(1,u)P + 1

2
[1T (Q AU + A Q U + U Q A)1] = σα(eT

αa)(eT
αu − gα(t)). (17)

The terms on the left-hand side in (17) can be rewritten by using Q 1 = 0 and property iii) in Definition 3.1 as

1T Q AU 1 = 1T (eβeT
β − eαeT

α − Q T )AU 1 = a(β)uN − a(α)u0,

1T (A Q U + U Q A)1 = 1T A(Q + Q T )U 1 = a(β)uN − a(α)u0.

Thus, the relation (17) becomes

d

dt
(1,u)P = a(α)u0 − a(β)uN + σαa(α)(u0 − gα(t)),

which exactly mimics the conservation relation (12) if σα = −1. �
4.3. Conservation for the skew-symmetric GSBP approximation

The discretization of (3) using GSBP operators and the split in (13) is

ut + 1

2
P−1 (Q A + A Q )u + 1

2
U Da = σ I

α A P−1tα
(

tT
αu − gα (t)

)
+ σ I I

α P−1tα
(

tT
α Au − a(α)gα(t)

)
,

(18)

where we use two penalty terms to weakly impose the boundary condition.
Following the proof of Proposition 4.4, the conservation relation associated to (18) becomes

d

dt
(1,u)P =

(
1

2
+ σ I

α

)
(tT

αa)(tT
αu) +

(
1

2
+ σ I I

α

)
tT
α Au − 1

2
(tT

β a)(tT
β u)

− 1
tT
β Au − σ I

α(tT
αa)gα(t) − σ I I

α a(α)gα(t).

2
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By choosing σ I
α = σ I I

α = −1/2 we find

d

dt
(1,u)P = 1

2

[
tT
αa + a(α)

]
gα(t) − 1

2

[
(tT

β a)(tT
β u) + tT

β Au
]
. (19)

We say that the single domain formulation (18) is weakly conservative since (19) approximately mimics the conservation 
relation (12).

Remark 4.5. Letting either σ I
α or σ I I

α be equal to zero does not lead to any form of conservation.

The choices σ I
α = σ I I

α = −1/2 are optimal, and we have proved

Proposition 4.6. The discretization (18) of (3) with a general a(x) using the GSBP operators in Definition 3.3 is not conservative.

5. Stability of single-domain discretizations

In concert with Definition 2.1, we define energy stability [19].

Definition 5.1. A semi-discrete approximation of (1) is energy-stable if

‖u(t)‖2
d ≤ Kd(t)

[
‖h‖2

d + max
τ∈[0,t](gα(τ )2) + max

τ∈[0,t](gβ(τ )2)

]
(20)

holds. In (20), ‖ · ‖d denotes a suitable discrete norm and u, h are grid functions representing u, h in (1), respectively. The 
function Kd(t) is independent of gα, gβ , h and bounded for finite times and all spatial mesh sizes.

Energy-stable discretizations for the model problem (3) should mimic the continuous energy-rate (6) and lead to an 
energy-estimate of the form (20).

5.1. Stability of SBP discretizations

We begin by considering the conservative SBP-SAT discretization (15) with σα = −1. By multiplying (15) from the left 
with uT P and using the SBP property (8) we find

d

dt
‖u‖2

P = a(α)g2
α(t) − a(β)u2

N − (u, U Da)P − a(α)(u0 − gα(t))2. (21)

This energy-rate is similar to (6), except for an extra damping term. The relation (21), together with a discrete analogue 
of (7), i.e.

|(u, U Da)P | ≤ ‖Da‖∞‖u‖2
P , ‖Da‖∞ = maxi=0,...,N |(Da)i|,

leads to an energy-estimate of the form (20) and proves

Proposition 5.2. The discretization (15) of (3) with a general a(x) using the SBP operators in Definition 3.1 is energy-stable.

5.2. Stability of GSBP discretizations

Next, we move on to the GSBP-SAT approximation (18), which satisfies the weak conservation property (19) with σ I
α =

σ I I
α = −1/2. For simplicity, let gα(t) = 0. The discrete energy-method using the GSBP property (10), gives

d

dt
‖u‖2

P = −uT AtαtT
αu − uT AtβtT

βu − (u, U Da)P . (22)

The relation (22) does not lead to a bound on ‖u‖2
P since the boundary terms are indefinite even if A is positive definite. 

We state the result as

Proposition 5.3. The discretization (18) of (3) with a general a(x) using the GSBP operators in Definition 3.3 is not energy-stable.

Proof. The symmetric parts of the matrices AtαtT
α and Atβ tT

β are indefinite for a general A. �
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Remark 5.4. Proposition 5.3 holds independently of the penalty terms in (18), since uAtβ tT
β u in (22) may be negative. In 

the very special case with GSBP operators which include the right-boundary node, stability can be obtained by the choice 
σ I I

α = −1/2 − σ I
α in (18). However, with that choice, the weak conservation result (19) does not hold anymore.

As a first example, consider the Legendre–Gauss GSBP operators of order 2 introduced previously and the matrix A =
diag(1, 1, 2). In this case both symmetric parts of the matrices AtαtT

α and Atβ tT
β (indicated with the superscript S below) 

are indefinite, as can be seen from their eigenvalues

λ
(
(AtαtT

α)S
)

∈ {−8.5631 · 10−3,0,2.7105},
λ

(
(AtβtT

β)S
)

∈ {−5.3450 · 10−2,0,4.9071}.
As a consequence, the GSBP approximation (18) is not stable.

As a second example, consider the domain (α, β) = (−1, 1) and the GSBP operators based on the Legendre–Gauss–
Radau quadrature on x = [−1, (1 − √

6)/5, (1 + √
6)/5]T with the Lagrange interpolants tα = [1, 0, 0]T and tβ = [1/3, (2 −

3
√

6)/6, (2 + 3
√

6)/6]T , as in [18]. In this case only the left boundary node x = α is included on x. If A = diag(1, 2, 4), the 
right boundary term is indefinite and we find

λ
(
(AtβtT

β)S
)

∈ {−2.1993 · 10−1,0,11.631},
which again leads to an unstable scheme.

6. Conservation for multi-domain discretizations

Multi-block schemes make the standard SBP-SAT technique more useful by allowing for more complex geometries and 
parallel computations [11,26,27]. For GSBP-SAT approximations, the extension to multi-elements becomes necessary even 
for model equations, since typically only a few nodes are used to construct the discrete operators. We treat the two-domain 
case and subsequently generalize to multi-domains.

6.1. Conservation for SBP multi-domain approximations

For clarity, the terms associated with the boundaries {α, β} will be neglected below, since the related boundary proce-
dures are identical to the ones in section 4. Let xI be a point in the interior of the domain [α, β] and define the discrete grids 
xL ∈ R

NL+1 and xR ∈ R
NR +1 on the subintervals [α, xI ] and [xI , β], respectively. Furthermore, consider eα,L = [1, 0, . . . , 0]T , 

exI ,L = [0, . . . , 0, 1]T which exactly project grid functions on xL to x = α and x = xI , respectively. For the domain xR the 
interpolants exI ,R and eβ,R are defined likewise. By indicating the solution vector and the discrete operators on xL and xR

with the subscript L and R , we write

uL,t + 1

2
P−1

L (Q L AL + AL Q L)uL + 1

2
U L D LaL = σL P−1

L exI ,L(eT
xI ,L ALuL − a(xI )eT

xI ,R uR),

uR,t + 1

2
P−1

R (Q R AR + AR Q R)uL + 1

2
U R D R aR = σR P−1

R exI ,R(eT
xI ,R AR uR − a(xI )eT

xI ,LuL),

(23)

where D L = P−1
L Q L , D R = P−1

R Q R and σL, σR ∈ R are penalty parameters.
Next, we rewrite (23) in terms of a compact operator and follow the notation in [29] by introducing the discrete solution 

u = [uT
L , uT

R ]T and the boundary interpolants eα = [eT
α,L, 0

T
R ]T , eβ = [0T

L , eT
β,R ]T . The interface penalty terms in (23) can now 

be represented in matrix form as[
σL P−1

L exI ,L(eT
xI ,L ALuL − a(xI )eT

xI ,R uR)

σR P−1
R exI ,R(eT

xI ,R AR uR − a(xI )eT
xI ,LuL)

]
= a(xI )P−1 ExI 
E T

xI
u, (24)

since eT
xI ,L ALuL = a(xI )eT

xI ,LuL and eT
xI ,R AR uR = a(xI )eT

xI ,R uR .
In (24), we have introduced the block diagonal norm P = diag(P L, P R). Moreover, ExI is a (NL + NR + 2) × 2 matrix that 

projects grid functions on x to the interface points, while 
 is a 2 × 2 penalty matrix:

ExI =
[

exI ,L 0
0 exI ,R

]
, 
 =

[
σL −σL

−σR σR

]
.

By also letting U = diag(U L, U R) and a = [aT
L , aT

R ]T , the approximation (23) can be expressed in compact form as

ut + 1
P−1Qu + 1

UDa = 0, (25)

2 2
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where D = diag(D L, D R) and

Q =
[

Q L AL + AL Q L 0
0 Q R AR + AR Q R

]
− 2a(xI )ExI 
E T

xI
. (26)

We will now prove

Proposition 6.1. The multi-domain discretization (25) of (3) with a general a(x) using the standard SBP operators is conservative for 
σL = σR + 1.

Proof. Let 1 = [1T
L , 1T

R ]T , A = diag(a) and consider the following problem

ut + 1

2
P−1QU1 + 1

2
UDA1 = 0, (27)

which by Definition 4.3 is equivalent to (25). By multiplying (27) from the left with 1TP we find

d

dt
(1,u)P + 1

2
1T QU1 + 1

2
1T UPDA1 = 0. (28)

The second term in (28) can be rewritten using property iii) in Definition 3.1) as

1T QU1 = 1T
L

[(
exI ,LeT

xI ,L − Q T
L

)
AL U L + AL Q L U L

]
1L

+ 1T
R

[
−

(
exI ,R eT

xI ,R + Q T
R

)
AR U R + AR Q R U R

]
1R

− 2a(xI )
(

E T
xI

1
)T



(

E T
xI

u
)

= (eT
xI ,L1L)eT

xI ,L AL U L1L − (Q L1L)
T AL U L1L + 1T

L AL Q L U L1L

− (eT
xI ,R 1R)eT

xI ,R AR U R 1R − (Q R 1R)T AR U R 1R + 1T
R AR Q R U R 1R

− 2a(xI )

[
eT

xI ,L1L

eT
xI ,R 1R

]T [
σL −σL

−σR σR

][
eT

xI ,LuL

eT
xI ,R uR

]

= a(xI )(1 + 2σR − 2σL)(uxI ,L − uxI ,R) + 1T APDU1.

(29)

The substitution of (29) into (28) and the use of 1T UPDA1 + 1TAPDU1 = 1TU
(
PD + (PD)T

)
A1 leads to

d

dt
(1,u)P = a(xI )(σL − σR − 1)(uxI ,L − uxI ,R), (30)

and conservation follows. �
6.2. Conservation for GSBP multi-domain approximations

Consider the two-domain GSBP discretization of (3)

uL,t + 1

2
P−1

L (Q L AL + AL Q L)uL + 1

2
U L D LaL = σL P−1

L txI ,L(tT
xI ,L ALuL − a(xI )tT

xI ,R uR),

uR,t + 1

2
P−1

R (Q R AR + AR Q R)uL + 1

2
U R D R aR = σR P−1

R txI ,R(tT
xI ,R AR uR − a(xI )tT

xI ,LuL),

where we have used the same interface penalties as in (23) and continue to omit the boundary terms. This problem can be 
rewritten as

ut + 1

2
P−1Qu + 1

2
UDa = 0, (31)

where now

Q =
[

Q L AL + AL Q L 0
0 Q R AR + AR Q R

]
− 2

[
σLtxI ,LtT

xI ,L AL −a(xI )σLtxI ,LtT
xI ,R

−a(xI )σR txI ,R tT
xI ,L σR txI ,R tT

xI ,R AR

]
.
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Following the steps in the proof of Proposition 6.1, we find that the conservation relation associated to (31) is

d
dt (1,u)P = 1

2 {(2σL − 1)tT
xI ,L ALuL + (2σR + 1)tT

xI ,R AR uR

−
[

tT
xI ,LaL + 2a(xI )σR

]
tT

xI ,LuL

+
[

tT
xI ,R aR − 2a(xI )σL

]
tT

xI ,R uR}.
(32)

The most natural choice, proposed also in [28], is to set σL = −σR = 1/2 in order to make the first two terms in (32) vanish. 
This gives

d

dt
(1,u)P = −1

2

{[
tT

xI ,LaL − a(xI )
]

tT
xI ,LuL −

[
tT

xI ,R aR − a(xI )
]

tT
xI ,R uR

}
.

In concert with the single domain case we say that the approximation is weakly conservative since the interface terms only 
vanish if tT

xI ,LaL = tT
xI ,R aR = a(xI ). This requirement holds for polynomial advection coefficients of order at most N , see (9).

For other choices of σL and σR , the right-hand side of (32) can not be made identically zero. Hence, we have proved

Proposition 6.2. The multi-domain discretization (31) of (3) with a general a(x) using the GSBP operators in Definition 3.3 is not 
conservative.

Remark 6.3. In order to prove conservation, one may consider an augmented set of penalty terms as in the single-domain 
case, i.e.

P−1
L

[
σ I

L ALtxI ,L

(
tT

xI ,LuL − tT
xI ,R uR

)
+ σ I I

L txI ,L

(
tT

xI ,L ALuL − a(xI )tT
xI ,R uR

)]
,

P−1
R

[
σ I

R AR txI ,R

(
tT

xI ,R uR − tT
xI ,LuL

)
+ σ I I

R txI ,R

(
tT

xI ,R AR uR − a(xI )tT
xI ,LuL

)]
.

The resulting conservation relation becomes

d
dt (1,u)P = 1

2 {(2σ I I
L − 1)tT

xI ,L ALuL + (2σ I I
R + 1)tT

xI ,R AR uR

+
[
σ I

L tT
xI ,LaL − σ I

R tT
xI ,R aR − tT

xI ,LaL − 2a(xI )σ
I I
R

]
tT

xI ,LuL

−
[
σ I

L tT
xI ,LaL − σ I

R tT
xI ,R aR − tT

xI ,R aR + 2a(xI )σ
I I
L

]
tT

xI ,R uR}.

As before, the first two terms are identically zero only if σ I I
L = −σ I I

R = 1/2, while the remaining part vanishes if, and only 
if,

[
1 −1

−1 1

][
σ I

L tT
xI ,LaL

σ I
R tT

xI ,R aR

]
=

[
tT

xI ,LaL − a(xI )

tT
xI ,R aR − a(xI )

]
.

This is a rank-one 2 × 2 system solvable only when tT
xI ,LaL + tT

xI ,R aR = 2a(xI ). As in the previous case, this condition does 
not hold for a general a(x) and the augmented formulation is not conservative. For simplicity we will only continue to study 
the two-parameters GSBP formulation shown above.

7. Stability of multi-domain discretizations

In the previous sections we proved that the SBP-SAT single-domain discretization (15) is stable and that the correspond-
ing two-domain formulation (25) is conservative. The same conclusions does not hold for the GSBP-SAT approach. In this 
section, we will study the stability properties of the inter-element coupling procedure for both types of discretization. Again, 
the two-domain case is studied and the conclusions are generalized to multi-domains.

7.1. Stability for multi-domain SBP approximations

We start with the standard SBP approach and consider the two-domain SBP-SAT discretization (25) with the conservative 
choice σL = σR + 1. By using the parametrization proposed in [30], i.e. σL = σ + 1/2 and σR = σ − 1/2, the matrix Q in 
(26) satisfies the following Summation-By-Parts property

Q+QT

= a(β)eβeT
β − a(α)eαeT

α − 2σa(xI )ExI M E T
xI

, (33)

2
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where the matrix

M =
[+1 −1
−1 +1

]

has the eigenvalues {0, 2}.
We apply the discrete energy-method to (25) with an added penalty term for the boundary condition. The relation (33)

yields

d
dt ‖u‖2

P = a(α)g2
α(t) − a(β)u2

N − (u,UDa)P − a(α)(u0 − gα(t))2 + 2σa(xI )(E T
xI

u)T M(E T
xI

u). (34)

The estimate (34) differs from the single-block energy-rate (21) only by the interface contribution 2σa(xI )(E T
xI

u)T M(E T
xI

u). 
Since the matrix M is symmetric and positive semi-definite, we conclude that the two-domain formulation is stable if σ
and a(xI ) have opposite signs.

We have proved

Proposition 7.1. The multi-domain SBP discretization (25) of (3) with a general a(x) is energy-stable for σ = 0 or sgn(σ ) =
−sgn(a(xI )).

Note that the interface term in (34) adds dissipation for σ �= 0.

7.2. Stability for multi-domain GSBP approximations

Next, we study the stability of the two-domain GSBP-SAT discretization (31) with an added penalty term for the left 
boundary condition. As in the previous case, we write the Summation-By-Parts property associated to the matrix Q as

Q+QT

2
=

[−(tα,LtT
α,L AL)

S 0
0 (tβ,R tT

β,R AR)S

]

+
[
(txI ,LtT

xI ,L AL)
S 0

0 −(txI ,R tT
xI ,R AR)S

]

− 2

⎡
⎢⎣ σL

(
txI ,LtT

xI ,L AL

)S −a(xI )(σL + σR)txI ,LtT
xI ,R

−a(xI )(σL + σR)txI ,R tT
xI ,L σR

(
txI ,R tT

xI ,R AR

)S

⎤
⎥⎦ ,

(35)

where the superscript S denotes the symmetric part. The first matrix in (35) is related to the boundary nodes α and β , 
while the next two relate to the interface at xI . The energy-method for gα = 0 leads to

d

dt
‖u‖2

P = −uT AtαtT
αu − uT AtβtT

βu − (u,UDa)P − uT ITu,

which is similar to the estimate (22), except for the interface term related to

IT =
[
(1 − 2σL)ALtxI ,LtT

xI ,L 2a(xI )σLtxI ,LtT
xI ,R

2a(xI )σR txI ,R tT
xI ,L −(1 + 2σR)AR txI ,R tT

xI ,R

]
.

This matrix is skew-symmetric if, and only if, σL = −σR = 1/2. Otherwise, Sylvester’s criterion [31] implies that the sym-
metric part of IT is indefinite, since both (ALtxI ,LtT

xI ,L)
S and (AR txI ,R tT

xI ,R)S are in general indefinite.
We have proved

Proposition 7.2. The coupling procedure of the multi-domain GSBP discretization (31) of (3) with a general a(x) is stable for σL =
−σR = 1/2.

Remark 7.3. Additional dissipation can be introduced by using upwind SATs, first proposed in [32] (see also [28,33]) of the 
form

1

2
P−1

L txI ,L

[
tT

xI ,L ALuL − a(xI )tT
xI ,R uR − |a(xI )|

(
tT

xI ,LuL − tT
xI ,R uR

)]
,

−1

2
P−1

R txI ,R

[
tT

xI ,R AR uR − a(xI )tT
xI ,LuL − |a(xI )|

(
tT

xI ,LuL − tT
xI ,R uR

)]
.
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8. A possible remedy for GSBP operators

We have shown that the GSBP operators in Definition 3.3 can not be used to construct conservative and stable discretiza-
tions for variable coefficient advection problems. The main issue with this methodology is that the Summation-By-Part 
property does not involve the advection coefficient. In this section we propose a modified version of GSBP operators in-
spired by the splitting in (13) and with dependency on a(x).

Rather than approximating the first derivative, we build a discretization for the anti-symmetric portion of (au)x , i.e. we 
aim for

P−1�u ≈ 1

2
[(au)x + aux] = 1

2
axu + aux. (36)

We refer to these modified operators as a-Generalized Summation-By-Parts (a-GSBP) operators.

Definition 8.1. An operator P−1� is a qth order accurate approximation of the anti-symmetric portion of (au)x in (36) with 
the a-GSBP property if

i) P−1�x j = (1/2)Axx j + j Ax j−1, j ∈ [0, q],
ii) P is a symmetric positive definite matrix,

iii) � + �T = a(β)tβ tT
β − a(α)tαtT

α .

The symmetric part of the operator (au)x , i.e. (1/2)axu, can be consistently represented by U P−1�1, due to (36) and 
condition i). Condition iii) implies that a-GSBP discretizations are based on the continuous property

1

2
(v, (aw)x + awx)2 = a(β)v(β)w(β) − a(α)v(α)w(α) − 1

2
(avx + (av)x, w)2.

For a constant coefficient advection problem, a-GSBP operators represent the first derivative and mimic the IBP rule (5).

Remark 8.2. The standard SBP operators satisfy iii) in Definition 8.1.

8.1. Conservation and stability for a-GSBP operators

It is easy to verify that the conservation and stability analysis made for the SBP-SAT discretizations apply with minor 
modifications to

ut + P−1�u + U P−1�1 = σαa(α)P−1tα(tT
αu − gα(t)). (37)

We can prove

Proposition 8.3. The discretization (37) of (3) with a general a(x) using the a-GSBP operators in Definition 8.1 is conservative for 
σα = −1.

Proof. By multiplying (37) from left with 1T P we find

d

dt
(1,u)P + 1T (�U + U�) 1 = σαa(α)(tT

αu − gα(t)). (38)

The second term on the left-hand side of (38) can be rewritten as 1T (�U + U�) 1 = 1T
(
� + �T

)
U 1 = a(β)tT

β u − a(α)tT
αu. 

This leads to

d

dt
(1,u)P = a(α)tT

αu − a(β)tT
β u + σαa(α)(tT

αu − gα(t)),

which exactly mimics the conservation relation (12) if σα = −1. �
Next, we prove

Proposition 8.4. The discretization (37) of (3) with a general a(x) using the a-GSBP operators in Definition 8.1 is energy-stable.

Proof. Let σα = −1. Multiplying (37) from left by uT P and applying the a-GSBP property leads to

d

dt
‖u‖2

P = a(α)g2
α(t) − a(β)

(
tT
βu

)2 − 2(u, U�1)P − a(α)(tT
αu − gα(t))2.

This energy-rate is analogous to (21) and energy-stability follows. �
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The a-GSBP approach also enables conservative and stable multi-element formulations. The proofs are straightforward 
and left to the reader.

8.2. Examples of a-GSBP operators

As a first example, consider a(x) = √
1 − x2 and the domain (α, β) = (−1, 1). A first order accurate a-GSBP operator on 

the nodes x j = cos ((4 − j)π/5), j = 0, . . . , 3 is given for the norm P = diag[p0, p1, p1, p0] with p0 = 1, p1 = 0.6180339887. 
The associated skew-symmetric matrix � is

� =

⎡
⎢⎢⎣

0 θ12 θ13 θ14
−θ12 0 θ23 θ24
−θ13 −θ23 0 θ34
−θ14 −θ24 −θ34 0

⎤
⎥⎥⎦

where

θ12 =θ34 = −0.5257311121, θ14 = −1.0131106564,

θ13 =θ24 = 2.2270327288, θ23 = −2.6523581330.

As a second example, a 2nd order accurate a-GSBP operator for a(x) = ex cos(x) on (α, β) = (−1, 1) is given on the 
nodes x j = cos ((6 − j)π/7), j = 0, . . . , 5. The a-GSBP norm is P = diag[p0, p1, p2, p3, p4, p5] with p0 = 0.1807450623, 
p1 = 0.4493684668, p2 = 0.3060513005, p3 = 0.5586874298, p4 = 0.2615743465, p5 = 1/4. By considering the Lagrange 
interpolants tα and tβ for r = 2 in (9), the matrix a(β)tβ tT

β − a(α)tαtT
α is block diagonal with 3 × 3 blocks and we find

� =

⎡
⎢⎢⎢⎢⎢⎣

θ11 θ12 θ13 θ14 θ15 θ16
θ21 θ22 θ23 θ24 θ25 θ26
θ31 θ32 θ33 θ34 θ35 θ36

−θ14 −θ24 −θ34 θ44 θ45 θ46
−θ15 −θ25 −θ35 θ54 θ55 θ56
−θ16 −θ26 −θ36 θ64 θ65 θ66

⎤
⎥⎥⎥⎥⎥⎦

where

θ11 = −0.2402977716, θ12 = 0.3953075927, θ13 = −0.0993532508,

θ14 = −0.0253873146, θ15 = 0.0236280213, θ16 = −0.0023318272,

θ21 = −0.1814224545, θ22 = −0.0475939207, θ23 = 0.3606468273,

θ24 = 0.0868083292, θ25 = −0.0140669134, θ26 = −0.0362624660,

θ31 = 0.0569906760, θ32 = −0.3417937080, θ33 = −0.0018670458,

θ34 = 0.6013867421, θ35 = −0.2230998806, θ36 = 0.05489342718,

θ44 = 0.01379570584, θ45 = 0.9039654995, θ46 = 0.0083927376,

θ54 = −1.0432722564, θ55 = 0.3516741501, θ56 = 0.5336790144,

θ64 = 0.3046267038, θ65 = −2.1140882996, θ66 = 1.7755737146.

Remark 8.5. The examples above show that it is possible to construct non-boundary conforming a-GSBP operators. However, 
the procedure is not practical for time-dependent coefficients a(x, t), multi-element formulations and nonlinear problems 
which require frequent reconstruction of operators. The same result can be obtained with SBP operators without reconstruc-
tion.

9. Implication of the linear analysis on nonlinear problems

The conclusions drawn from the previous linear analysis carry over in a straightforward way to smooth nonlin-
ear problems, with minor modifications. As an example, one must split the Burgers equation ut + (

u2/2
)

x = 0 as 
ut + (u2)x/3 + uux/3 = 0 in order to obtain an energy-estimate. The conclusions regarding stability and conservation re-
main the same, i.e. stability and conservation can be proved for SBP operators but not for GSBP operators.

We end the paper by briefly commenting on how the standard SBP-SAT formulation can be applied to nonlinear conser-
vation laws of the form (1) with the boundary condition at x = α. The conservation law (1) yields

d

dt
(1, u)2 = f (gα,α) − f (u(β, t),β), (39)

where u(α, t) = gα .
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Consider a flux of the form f (u) = v(u)w(u) and split it in an arbitrary way as fx = γ fx + (1 − γ )(v wx + vx w). The 
analysis of conservation in [22] of the split form was based on a detailed investigation of the difference operators and the 
use of so called flux points, in addition to the standard grid points. Here we show that Definition 4.3 simplifies the proof of 
conservation considerably. In particular, for the SBP-SAT discretization of (1)

ut + γ Df + (1 − γ )(V Dw + W Dv) = σα P−1eα(eT
αf − f (gα)) (40)

we can prove

Proposition 9.1. The approximation (40) is conservative for any γ and σα = −1.

Proof. By multiplying (40) from the left by 1T P and using property iii) in Definition 4.3 we find

d

dt
(1,u)P + γ 1T Q f + (1 − γ )1T (V Q W + W Q V )1 = σα(eT

αf − f (gα)). (41)

The second term in (41) can be rewritten as 1T Q f = 1T (eβeT
β − eαeT

α − Q T )f = eT
β f − eT

αf = f N − f0 while the third one 
becomes

1T (V Q W + W Q V )1 = 1T [V (Q + Q T )W ]1 = v N w N − v0 w0 = f N − f0.

Consequently, the resulting conservation relation becomes

d

dt
(1,u)P + γ ( f N − f0) + (1 − γ )( f N − f0) = σα( f0 − f (gα))

and by letting σα = −1 we find that it perfectly mimics (39). �
10. Conclusions

We have discussed numerical approximations on Summation-By-Parts form for a linear advection problem with a variable 
coefficient. It was shown that the standard SBP-SAT formulation is conservative and stable for single and multi-element 
formulations.

The same problem was also studied with GSBP operators which do not include (the whole or part of) the boundary or 
interface and do not mimic the continuous integration-by-parts rule exactly. It was shown that the single-block GSBP-SAT 
formulation applied to variable coefficient problems is unstable and not conservative. Furthermore, the coupling between 
two or more of such blocks is stable but does not lead to a conservative scheme.

We have generalized the definition of GSBP operators. The generalization allows for conservative and stable schemes by 
approximating the anti-symmetric part of the continuous spatial operator, rather than the first derivative. However, the new 
GSBP operators are impractical for time-dependent coefficients, multi-element formulations and nonlinear problems.

These results limit the use of generalized Summation-By-Parts formulations as general building blocks in schemes, and 
stress the need for exact numerical mimicking of integration-by-parts.
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