期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:233
Geometrical validity of curvilinear finite elements
Article
Johnen, A.1  Remacle, J. -F.2  Geuzaine, C.1 
[1] Univ Liege, Dept Elect Engn & Comp Sci, Montefiore Inst B28, B-4000 Liege, Belgium
[2] Catholic Univ Louvain, Inst Mech Mat & Civil Engn iMMC, B-1348 Louvain, Belgium
关键词: Finite element method;    High-order methods;    Mesh generation;    Bezier functions;   
DOI  :  10.1016/j.jcp.2012.08.051
来源: Elsevier
PDF
【 摘 要 】

In this paper, we describe a way to compute accurate bounds on Jacobian determinants of curvilinear polynomial finite elements. Our condition enables to guarantee that an element is geometrically valid, i.e., that its Jacobian determinant is strictly positive everywhere in its reference domain. It also provides an efficient way to measure the distortion of curvilinear elements. The key feature of the method is to expand the Jacobian determinant using a polynomial basis, built using Bezier functions, that has both properties of boundedness and positivity. Numerical results show the sharpness of our estimates. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2012_08_051.pdf 2745KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次