期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:162
Entropy splitting and numerical dissipation
Article
Yee, HC ; Vinokur, M ; Djomehri, MJ
关键词: entropy variables;    symmetrizable nonlinear conservation laws;    thermally perfect gas;    low dissipation;    high order methods;    compact schemes;    high order central differencings;    shock-capturing methods;    nonlinear filters;    conservative differencing;    TVD schemes;    positive schemes;    ENO schemes;   
DOI  :  10.1006/jcph.2000.6517
来源: Elsevier
PDF
【 摘 要 】

A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994, Energy and Maximum Norm Estimates for Nonlinear Conservation Laws, RIACS Report, NASA Ames Research Center) and Olsson (1995, Math. Comput. 64, 212) and was applied to the two-dimensional compressible Euler equations fur a perfect gas by Gerritsen and Olsson (1996, J. Comput. Phys. 129, 245) and Gerritsen (1996, Designing an Efficient Solution Strategy for Fluid Flows, Ph. D. Thesis, Stanford). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative, hereafter referred to as the entropy splitting. There art: several potentially desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. This paper has several objectives, The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes fur long time integrations of unsteady Rows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes furlong time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock-turbulence interactions. The fourth is to determine if this method can be extended to other physical equations of state and other evolutionary equation sets. Tf numerical dissipation is needed, the Yee, Sandham, and Djomehri (1999, J. Comput. Phys. 150, 199) numerical dissipation is employed. The Yee er al. schemes fit in the Olsson and Oliger framework.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jcph_2000_6517.pdf 520KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次