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A rigorous stability estimate for arbitrary order of accuracy of spatial central dif-
ference schemes for initial boundary value problems of nonlinear symmetrizable
systems of hyperbolic conservation laws was established recently by Olsson and
Oliger (1994, “Energy and Maximum Norm Estimates for Nonlinear Conservation
Laws,” RIACS Report, NASA Ames Research Center) and Olsson (19@%h.
Comput64, 212) and was applied to the two-dimensional compressible Euler equa-
tions for a perfect gas by Gerritsen and Olsson (1996pmput. Phy<.29 245) and
Gerritsen (1996, “Designing an Efficient Solution Strategy for Fluid Flows, Ph.D.
Thesis, Stanford). The basic building block in developing the stability estimate is a
generalized energy approach based on a special splitting of the flux derivative via
a convex entropy function and certain homogeneous properties. Due to some of the
unique properties of the compressible Euler equations for a perfect gas, the split-
ting resulted in the sum of a conservative portion and a non-conservative portion of
the flux derivative, hereafter referred to as the “entropy splitting.” There are several
potentially desirable attributes and side benefits of the entropy splitting for the com-
pressible Euler equations that were not fully explored in Gerritsen and Olsson. This
paper has several objectives. The first is to investigate the choice of the arbitrary
parameter that determines the amount of splitting and its dependence on the type of
physics of current interest to computational fluid dynamics. The second is to investi-
gate in what manner the splitting affects the nonlinear stability of the central schemes
for long time integrations of unsteady flows such as in nonlinear aeroacoustics and
turbulence dynamics. If numerical dissipation indeed is needed to stabilize the cen-
tral scheme, can the splitting help minimize the numerical dissipation compared to
its un-split cousin? Extensive numerical study on the vortex preservation capability
of the splitting in conjunction with central schemes for long time integrations will be
presented. The third is to study the effect of the non-conservative proportion of split-
ting in obtaining the correct shock location for high speed complex shock-turbulence
interactions. The fourth is to determine if this method can be extended to other phys-
ical equations of state and other evolutionary equation sets. If numerical dissipation

! Longer version of this paper was published as a NASA Technical Memorandum 208793, August 1999, NA
Ames Research Center; presented at the 8th International Symposium on CFD, September 5-10, 1999, Br
Germany.
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is needed, the Yee, Sandham, and Djomehri (199€omput. Physl50 199) nu-
merical dissipation is employed. The Yetal. schemes fit in the Olsson and Oliger
framework.

Key Words:entropy variables; symmetrizable nonlinear conservation laws; ther-
mally perfect gas; low dissipation; high order methods; compact schemes; high order
central differencings; shock-capturing methods; nonlinear filters; conservative dif-
ferencing; TVD schemes; positive schemes; ENO schemes.

I. INTRODUCTION

The construction of efficient high order low dissipation numerical methods for nonline
conservation laws has been the subject of much research recently. For smooth flows,
well known that the standard high order non-dissipative central schemes generate sj
ous noise leading to nonlinear instability, especially for long time integration applicatio
such as in aeroacoustics, rotorcraft dynamics, and turbulence physics. On the other t
central schemes in conjunction with linear numerical dissipations are too diffusive for t
physical problems in question. At the same time the majority of the available high orc
high-resolution shock-capturing schemes are too CPU intensive for practical computatic
In spite of their high-resolution capability for rapidly evolving flows and short term tim
integrations, for long time integrations these schemes often exhibit undesirable amplit
errors for aeroacoustics and turbulence computations. Current focus has been mainly c
gorithmic issues in constructing highly accurate methods away from boundaries. Rigor
stability estimates for accurate and appropriate numerical boundary conditions associ
with fourth- or higher-order methods are equally important and have been the major stt
bling block in the theoretical development of these schemes for nonlinear systems. M
of the existing theory for nonlinear conservation laws and their finite discretizations
concerned with the initial value problem (IVP). Standard practice in computational flu
dynamics (CFD) involving boundary conditions relies on guidelines from theory for lir
ear stability analysis of initial boundary value problems (IBVPSs) or IVP theories with tk
boundary conditions ignored. These linearized stability guidelines are only necessary
not sufficient for nonlinear stability. Spatial nonlinear stability of IBVPs goes hand-in-hat
with the appropriate amount of nonlinear numerical dissipation required to stabilize 1
spatial scheme. The delicate balance of the numerical dissipation for stability without |
expense of excessive smearing of the flow physics after long time integrations poses a s¢
challenge for unsteady flow simulations of this type. Actually, there are two possible sour
of stabilizing mechanisms, namely, (a) from the governing equation level and (b) from
numerical scheme level. Employing a nonlinear stable form of the governing equatic
(more conditioned form of the PDE) in conjunction with the appropriate nonlinear stak
scheme for IBVPs is one way of minimizing the use of numerical dissipation.

Until recently it was not known how to derive the proper numerical boundary conc
tions for a rigorous stability estimate for conventiogphtial high order central difference
schemes for nonlinear hyperbolic IBVPs. Advances by Kreiss and Scherer [1], Strand
and Olsson [3] led to the construction of high order boundary difference operators t
enabled the design of stable high order central schemes for linear hyperbolic systems.
major tool used to overcome the stumbling block is a generalized energy method.
basic building block in establishing a stable energy estimate for high order spatial cen
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schemes for nonlinear hyperbolic conservation laws consists of two parts. The first |
special transformation of the conservation laws to an appropriate form for the applicat
of the continuous energy estimate for a stable IBVP of the governing equations. The sec
is a compatible numerical boundary difference operator for the application of the discr
analogue of the continuous energy estimate for a stable IBVP of the discretized counterp

From the governing equation levelThe energy method for deriving stability estimates
for hyperbolic IBVPs was first applied to the nonlinear scalar case by Gustafsson and Ol
[4]. It was then generalized and extended to nonlinear systems of symmetrizable hypert
conservation laws by Olsson and Oliger [5] and Olsson [6, 7], and it was applied to
two-dimensional (2-D) compressible Euler equations for a perfect gas by Gerritsen [8]
Gerritsen and Olsson [9]. The transformation that is used relies on the symmetrizabilit
the systems of nonlinear hyperbolic conservation laws, the possession of a convex ent
function, and a suitable splitting of the flux derivative vector with certain homogeneo
properties. Olsson and Oliger [5] utilized the result of Harten [10] on symmetric forn
for systems of conservation laws as the backbone. Convexity of the flux functions is
required.

From the numerical scheme levelThe aforementioned building blocks in turn allow
one to use a modified form of the energy estimate (or generalized energy estimate
deriving a compatible set of numerical boundary conditions that are stable for the higt
order central differencing schemes. The compatible boundary difference operator he
satisfy the discrete analogue of the integration-by-parts procedure used in the contint
energy estimate (Strand [2]).

Olsson proved that conservation is possible for second-order central schemes. To ol
arigorous estimate for higher-order central schemes, one must apply the scheme to the
form of the flux derivative, written in non-conservative form, in terms of the transforme
variables. The resulting splitting is hereafter referred to as the entropy splitting of t
flux derivative orentropy splittingfor ease of reference. Here, the entropy splitting shouls
not be confused with the traditional flux vector splittings such as the Steger and Warm
splitting [11] or other variants. The traditional flux vector splitting splitsfthe functiorinto
different parts and most often into upwind and downwind portions. However, the entrc
splitting splits theflux derivativeusing the properties of the chosen entropy function an
the symmetrizability of the conservation laws without reference to any upwinding.

Compressible Navier—Stokes equationdarten showed that the viscous terms of the
compressible Navier—Stokes equations can also be symmetrized. In this case, only symr
is needed inthe derivation of the energy estimate. Due to the parabolic nature of the boun
conditions, the homogeneity properties are not required for the Navier—Stokes equati
For the numerical study involving the compressible Navier—Stokes equations in the pre:
study, we apply the entropy splitting to the inviscid fluxes and the symmetric form of tl
viscous terms is not used. This is an attempt to examine if entropy splitting of the invisi
flux derivatives alone will provide side benefits over the un-split approach.

Active research in the use of the symmetric form of the governing equations was ¢
ried out by Hughest al. [12] and related recent work. Hughes al. utilized only the
symmetric idea and employed the physical entropy as one of the entropy variables. T
resulting inviscid flux vector and transformed state vector are not homogeneous in
entropy variables. Unlike the entropy splitting, their transformed equations are in pur
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non-conservative form. They have enjoyed improved results over the standard conserve
law formulation. Their approach, however, does not allow a rigorous stability estimate |
IBVPs for nonlinear hyperbolic conservation laws. In addition, due to their use of the pure
non-conservative form, itis not certain that a correct shock speed can be obtained in gen

Entropy splitting and weak solutionsThe entropy splitting is not limited to smooth
solutions. Olsson and Oliger also extended their result to weak solutions (problems c
taining discontinuities) that are obtained as pointwise limits of vanishing viscosity solutiol
The entropy equality condition for the smooth solution case now becomes an entropy
equality condition. In addition, appropriate numerical dissipation is needed in conjuncti
with central schemes to pick out the physically relevant solutions if weak solutions ¢
present. Gustafsson and Olsson proposed a scalar filter as numerical dissipation. Geri
and Olsson proposed the use of a slightly different nonlinear scalar filter in conjuncti
with wavelets as a shock detection and grid adaptation. The recently developed high o
low-dissipative shock-capturing schemes using characteristic filters aét\@d13] fit in
the entropy splitting framework. Instead of applying a scalar filter, they supply nonline
filters based on, locally, the different wave characteristics of the convective flux. For co
plex shock waves, shear and turbulence interactions, one has better control of the amot
dissipation associated with each wave. For efficiency,etes. proposed a combination of
narrow grid stencil higher-order compact or non-compact centered non-dissipative class
spatial differencing schemes and low order total variation diminishing (TVD), essentia
non-oscillatory (ENO) or weighted ENO (WENO) dissipations as nonlinear characteris
filters with an artificial compression method (ACM) sensor. The ACM sensor is the same
that of Harten [14] but utilized in a slightly different context. As an alternative to the ACN
sensor, Sjogreen and Yee [15] utilized non-orthogonal wavelet basis functions as mi
resolution sensors to dynamically determine the amount of nonlinear numerical dissipa
to be added at each grid point. The resulting sensor function is also readily applicable
grid adaptation purposes. The multi-resolution wavelet sensor, to some extent, is simile
the one of Gerritsen and Olsson, but is utilized in a different context.

Unlike the hybrid schemes, the higher-order non-dissipative scheme is always activa
The final grid stencil of these schemes is five in each spatial direction if second-order T
schemes are used as filters and seven if second-order ENO schemes are used as
for a fourth-order base scheme. There is only a 10% increase in operations count
standard second-order TVD schemes for 2-D direct numerical simulations (DNS). Stuc
showed that higher accuracy was achieved with fewer grid points when compared v
that of standard higher-order TVD, positive, ENO or WENO schemes. Seet¥ad13],
Sandhamand Yee [16], Sjogreen and Yee [15], Hadjtali[17], or references cited therein.
Extension of these schemes to curvilinear time varying grids with freestream preserva
higher-order metric evaluations is reported in Vinokur and Yee [18]. Table | shows the flc
chart of the Yeeet al.[13] schemes.

Objectives. Motivated by the aforementioned development of entropy splitting, Ye
et al. [13] proposed, as a followup work, to apply their schemes to the entropy splittir
form of the inviscid flux derivatives. This paper is a sequel to [13]. Besides investigatil
some of the fundamental issues described below, studies will be conducted to determir
what extent the entropy splitting form of the flux derivative can help in minimizing numeric:
dissipation, or equivalently, inimproving nonlinear stability in conjunction with thesteé
[13] schemes. Our main goal is to explore the possible side benefits of the entropy split
withoutconsidering the accompanying stable numerical boundary difference operator :
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TABLE |
Flow Chart of the Efficient Low Dissipative High Order Schemes

Hi gh order Nonlinear characteristic
e - + ..... - filters
ba_'se SCheme (Minimize the use of num. dissip.)
(Activated at all times)
Nondissipative I |
(Compact or non-compact 1 TeQi H
hieh ordet sehemes) Sensor - _ ok .| Nonlinear dissipation
- (Sense each (Dissipative portion of TVD, ENO. or WENO)
I characteristic wave) I
Inviscid & viscous ACM” or “wavelets | |
fluxes I Flux limiters I Roe's approx. Riemann solver
Full strength: Shocks & high gradients I
Reduce strength: Smooth regions Suppress spurious oscil. Satisfy shock condition
(or zero) (High gradients) (Exactly in 1-D)
Improve nonlinear stability Stationary expansion—as expansion shock
(Can be corrected easily)
Standard New
L) 1 I 1
Apply schemes to the "entropy split form" of the flux derivatives F = B F_+ L F,W
! ' L T R I P I ALY
(Compare with un-split approach—f = =) H :

Use the same base scheme

complete package for stability requirements. This is accomplished by choosing numer
examples with periodic boundary conditions, or computational domains whose bounda
are far enough away so as not to affect the mainstream flow activities, and/or by using lo
order non-characteristic boundary schemes.

The related fundamental issues to be addressed are that there are several poter
desirable attributes of the entropy splitting for the compressible Euler equations that w
not fully explored in Gerritsen and Olsson. First, in regions of smooth flows, addition
numerical dissipation might not be required by the entropy splitting in conjunction wi
non-dissipative spatial central difference schemes. Second, the splitting appears to img
nonlinear stability over the un-split approach employing the same non-dissipative higt
order central schemes even for periodic boundary conditions. Third, the non-conserve
portion of the flux derivative seems to have a small effectin obtaining correct shock speed
the physical problems that Gerritsen and Olsson considered. Fourth, the entropy splittir
conjunction with higher-order central differencing could be a good candidate for nonline
aeroacoustics, rotorcraft dynamics, and turbulence computations where simplicity, t
accuracy, and low numerical dissipation are essential. But most of all, the splitting co
possibly be extended to other physical equations of state and other evolutionary equz
sets.

Aside from stability considerations, as explained in Harten [10], another potentia
desirable attribute in the use of the symmetric form of the governing equations is
the computation of the steady-state solution of the conservation laws. In solving the ste
nonlinear conservation laws, the symmetry of the matrix coefficients could possibly enha
the structure of iterative matrices in direct Newton-iteration methods. For time-marchinc
steady states or time accurate subiteration procedures using implicit methods, the symrr
form in conjunction with the entropy splitting might result in an improved convergence re
over the un-split approach. This will be a subject of future research.
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Outline. Section Il reviews the entropy splitting and the numerical schemes for the 2
compressible Euler equations for a perfect gas. The choice of the entropy splitting param
is discussed in Subsection 2.2. Section Il describes the extension of the entropy splittin
other physical equations of states and evolutionary equation sets. Section IV illustrates
performance of the entropy splitting for a variety of unsteady flows and compares the res
with those obtained using the un-split conservative approach. The study concentrates
on perfect gases.

In this paper, unless indicated, Euler or Navier—Stokes equations pertain to compres:
fluids. High order central difference schemes refer to fourth or higher-order spatial ¢
tral difference schemes (compact or non-compact methods) without numerical dissipa
added. Compatible time discretizations (in terms of stability and accuracy) should be us
but these are not the subject of this paper. The terms “split” and “un-split” mean the appli
tion of the same discretization to the “entropy splitting of the inviscid flux derivative” and tf
standard “inviscid flux derivative in terms of the conservative variables without splitting.

II. ENTROPY SPLITTING FOR A PERFECT GAS

This section reviews the basic building blocks for the entropy splitting for the 2-D con
pressible Euler equations for a perfect gas in Cartesian coordinates. Formulas for the ¢
sponding 3-D case can be found in Appendix B of ¥eal.[19] and in curvilinear moving
grids in Section Ill and in Vinokur and Yee [18]. The mathematical theory is quite involve
Interested readers are referred to references cited. Thet¥de13] numerical methods
used in conjunction with the entropy splitting are also summarized.

2.1. Summary of Entropy Splitting for a Perfect Gas

In vector notation the 2-D compressible time-dependent Euler equations in conserva
form for an equilibrium real gas can be written, in Cartesian coordinates, as

whereU; = 2, F, = 2F andG, = % and theU, F, G, are vectors given by

p pu pv
2
u= "M, F=|PUTPLL e | A (2.1.1b)
PV puv pv-+ P
e eu+ pu ev + pv

The dependent variablg is the vector of conservative variables, apdu, v, p)' is the
vector of primitive variables. Hergis the densityy andv are the velocity componentsu
andpv are thex- andy-components of the momentum per unit volumeés the pressure,
e=ple + (U? 4+ v?)/2] is the total energy per unit volume, anads the specific internal
energy.

For a thermally perfect gas, the equation of state is

p=pRT, (2.1.2)
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whereR is the specific gas constant, ands the temperature with=¢(T). For constant
specific heats (calorically perfect gas)

e=c,T, (2.1.3)

wherec, is the specific heat at constant volume.

The eigenvalues associated with the flux Jacobian matricEsaofdG are(u, u, u £ ¢)
and(v, v, vtc), wherecis the sound speed. The twpu andv, v characteristics are linearly
degenerate. Hereafter, we refer to the fields associated withttb@ndv + ¢ characteristics
as thenonlinear fieldsand the fields associated with theu andv, v characteristics as the
linear fields

Gerritsen and Olsson extended the summation-by-parts idea of Strand, and the ent
splitting of Olsson and Olsson and Oliger to the 2-D Euler equations for an ideal ¢
in conjunction with high order central schemes. The first step in deriving the entro
splitting for the compressible Euler equations for a perfect gas is to introduce a symm
transformation from the vector of conservative varialileto a new vector of symmetry
variablesW, referred to as the “entropy variables.” The transformation is chosen so tl
Fw = 25 andGy = & are symmetric, anty = & is symmetric and positive definite.
A family of symmetry transformations, based on a scalar convex fungtiogferred to as
an “entropy function,” derived for the Euler equations for a perfect gas by Harten [10], w
employed by Gerritsen and Olsson. It has the form

n = p&(S). (2.1.4)

The function&(S) is an arbitrary but differentiable function of a dimensionless physice
entropy

S= log(pp™7), (2.1.5)

whereS has been non-dimensionalized tyy The entropy variable®/ are then given by
W= ;’—L’j The entropy functiom is not to be confused with the “physical entrop§’br the
entropy variables vectolV. The next step is to restrict the transformations to those th:
allow a special splitting of the flux derivatives. This requires that the entropy vanble
is chosen such that (U (W)), G(U (W)), andU (W) are homogeneous functions\of of
degrees; i.e., there is a constagtsuch that for alk

UEWw) = Puw), (2.1.6)
F(zW) = T F(W). (2.1.7)

The homogeneity property implies that

FwW = BF(U(W)) (2.1.8)
UwW = gU. (2.1.9)
Then the splitting of results in
1 B 1
Fx = ——(FwW), + Fw W Fx + Fw W, B # -1 (2.1.10)

T B+1 B+1 “B+1 B+1
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A similar splitting can be written foGy andU;. Under these conditions one can rigor-
ously establish a bound on the rate of growth of the energy norm in terms of the abso
eigenvalues corresponding to the incoming characteristic variables at the boundary of
domain. ~

For a perfect gas, the required entropy function is obtained by Iegt(i§g: KeS/ @ty
whereK anda are constants. The correspondigcan be written as

p*

W=[w wr ws wal = F[e+ elp —pu —pv p] (2.1.11a)
and the upper triangular part of the symmetric malthx is
a0  apu apv SoU?+0?) — “Lip
1 apu2—p  apuv u[3p(u?+v?) — bp|
Uy = —
Y apv? - p v[3p(U? +v?) — bp]

2
— 235 — bp(u® 4 v?) + §p(U? 4 v?)?
(2.1.11b)

The constanta andbarea= (1—«o — y)/a andb=y/(y — 1). Here,p* andp are related
through

p* = xe% = x(pp™7)@7, (2.1.11¢)
with x = —% < 0. Inthe authors’ opinion, the simplest choice is tolset 8. The param-
eterg is given by

B= ot v (2.1.11d)
1-y

Using (2.1.1b), (2.1.2), (2.1.3), (2.1.11a), and (2.1.11d), we can show (see Subsection
thatU, F, and G are homogeneous functions @ of degrees. The positive definite
condition onUy, (see Subsection 3.1) restrigtdo the two rangea > 0 ora < —y.

The flux vectors, expressed in thi¢ variables, are given by

w? wWorw3z wy —O %
FUW)) = #[—wz WPt 2 (wy+ I p )]T, (2.1.11e)
GUW) = P [cwy s 2y g sy 4z )T (2.1.11f)

The upper triangular parts of the symmetric matridedJ (W))w and G(U (W))w,
expressed in thel variables, are given by

fapu  apu?—p apuv u[3p(u? +v? — bp]
u@u? —3p) v(@pU?—p) —bZ +Ept?+ 2p(U? + VAU
—2p(U? + v?)
Fw =5 2 A a 112 1L .2
p u@pv? — p) uv[Ep+ 5o+ v?)]

u [b(‘:‘%2 +ep(u? +v?)

(2.1.11g)

L + 2p(u? + v?)?]
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apv apuv apv?> —p v[3p (U2 +v?) — bp|
v(@pu? — p) u(apv?— p) uw[ep+ 5o+ v?)]

1 v(apv? — 3p) —b%z +va2—%p(u2+ v?)

Cw =1 +2p2 + V202 ’

v [bé%z + Ep(u? + v?)

+ 2p(U? +v?)?] |
(2.1.11h)

where€ = (1—2y)/(y — 1).

2.2. Choice of the Entropy Splitting Parameter

From the structure of (2.1.10), the entropy splitting divides the flux derivative into
conservative and a non-conservative part. The ratio between the conservative and
conservative parts depends on the choice of the parageBeth Harten [10] and Gerritsen
and Olsson introduced the parametein the authors’ opinion, the introduction @fis not
necessary. However, to adhere to the discussion when referencing their work, we retail
use ofx in the perfect gas case. The convexity condition on the entropy fungtiestricts
the valuex to two possible ranges; namety,> 0 ora < —y (or equivalently,8 < ﬁ
or B > 0). Although Gerritsen and Olsson considereddhe: —y range which Harten
overlooked, they set =1 — 2y (8 = 1) in conjunction with high order central differencing
schemes in all of their numerical examples. This choice obrresponds to the splitting
of the flux derivative into equal conservative and non-conservative proportions. They
not give any guidelines or examples of the effect of the choice of the quality of the
numerical solutions for different flow physics. In addition, all of their examples deal with
most simple shock waves, if present. Wavelets are used as shock detectors and to guic
grid adaptation. Due to the type of problem they addressed and the dense clustering ¢
grid points near the shocks using very small time steps, it is not certain that correct sh
speeds were really obtained with a reasonably practical time step and grid distribution.
the purpose of this section to discuss the choice ofitharameter value. We discuss> 0
anda < —y separately.

Thea > 0(or 8 < ﬁ) Case. Thisis the only case that Harten considered. This corre

sponds to a negatiyg&which results in a conservative proportiog = % > landanon-
conservative proportiofr, .= ﬁ < 0.Asa — 0%, fr, - y~ andfr,, > (1—y)*.
Here, the superscripts and— indicate the values approach the limit from above and belov
respectively. Thus, it appears that- 0 is “nonstandard” or “nonphysical” in the sense that
a larger than 100% of the conservative proportion and a negative non-conservative
portion is used. A&« — 0T, the proportion becomes extremely unphysical.cAs> oo,

fr. - 17 andfr,, — 0. Therefore asx — oo, the proportion becomes more

physical.

Thea < —y (or B > 0) Case. Thea < —y case corresponds to a positigeand
consequenthyfr. < 1 andfr,. < 1. We have the following five situations.

() Asa - —y, 8 — 0", fr, — O, andfr . — 1.
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(i) Fora=1-2y, g=1,fr,=1/2, andfr,.,=1/2.
(i) Forl —2y <a < —y, fr, < 1/2 andfr,, > 1/2.
(iv) Fora <1—2y,fr. > 1/2 andfr,. < 1/2.

(v) Asa - —oo, fr, — 1~ andfr,. — O*.

Section IV gives a parameter studymfor three different types of flow physics.

2.3. Numerical Methods

The spatial discretizations for weak solutions proposed in [13] consist of two par
namely, a base scheme and a filter. When numerical dissipations or filters are not u
the scheme consists of only the base scheme. This section discusses the base scher
Subsection 2.4 discusses the form of the filter (numerical dissipation) for complex sh
waves, shear and turbulence interactions. Subsection 2.6 discusses the blending of th
et al.[13]filters with other filters for the suppression of spurious high frequency oscillation

2.3.1. Spatial base schemes for the convection teridenoteF; x as the discrete ap-
proximation of the convection fluk at(j Ax, kAy), whereAx andAy are the grid spacing
in the x- andy-directions and andk are the corresponding spatial indices. Possible nor
dissipative high order base schemesHgr(similarly for Gy) can be of the following two

types.

Central differencinggfourth and sixth order).

1

P~ oax (Fivak = 8Fjiakc+ 8Fj 1 = Fjai), (2.3.1)
1

P~ soax (Fitek = OFj2ik + 45Fj11ic — 45F 1+ OFj 2 — Fjsi).  (2.3:2)

Compact central differencing$ourth and sixth order).

1
Fer o (ACTBF) (2.3.3a)
where for a fourth-order approximation
1
(AxF)jk = E(Fj+1.k +4F 4+ Fj_10), (2.3.3b)
1
(BxF)jk = E(Fj+1,k - Fj_11), (2.3.3¢)
and for a sixth-order approximation
1
(AxF)jk = E(FjJrl,k + 3Fj k+ Fj—1k), (2.3.3d)
1
(BxF)jx = 670(Fj+2'k + 28Fj 1k — 28Fj_1k — Fj—2k)- (2.3.3e)

2.3.2. Spatial schemes for viscous termiSor simplicity letVyx be a viscous term in one
dimension. The possible high order base schemeg,fpcan be
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Central differencinggfourth and sixth order).

1
VXX ~ m(vl+2 - 16VJ+1 + 3OVJ - 16V171 + V] 72), (234)
1
VXX ~ W(ZVJ +3 — 27\/] +2 + 27WJ+1 - 490\/] + 270\/]*1 - 27Vj72 + 2Vj ,3).
(2.3.5)
Compact central differencing$ourth and sixth order).
~ 1 -1
VXX ~ m (CX DxV)J, (2.3.66.)
where for a fourth-order approximation
1
(CxV)j = 1—2(Vj+1 + 10V + Vj_1), (2.3.6b)
(DxV)j = Vjt1— 2V + Vj_1, (2.3.6¢0)
and for a sixth-order approximation
(CxV)j = Vjp1 +aV) +V_1, (2.3.6d)
Co
(DxV)j = bo(Vj41 —2Vj + Vj_1) + Z(Vj+2 -2V +Vj_2), (2.3.6e)
ap = 5.5, (2.3.6f)
bo = 4(a0 — 1)/3, (2.3.69)
Co = (10— ap)/3. (2.3.6h)

2.4. Filters

In this section we first review the procedure for applying the characteristic filter to mul
stage Runge—Kutta type and linear multistep method (LMM) types of time discretizatic
[13]. Examples of explicit LMMs are forward Euler and Adams—Bashforth. Examples |
implicit LMMs are backward Euler, trapezoidal rule, and three-point backward differen
ation. The one-leg formulation of the LMMs of Dahlquist [20] is also applicable. We the
discuss forms of the characteristic filter.

2.4.1. Procedure to apply the filter stepf a multistage time discretization such as
the Runge—Kutta method is desired, the spatial differencing base scheme discussed i
previous section is applied at every stage of the Runge—Kutta method. If viscous terms
present, we use the same order and type of base scheme for the viscous terms as f
convection terms.

There are two methods for applying the characteristic filter. Method 1 is to apply t
filter at every stage of the Runge—Kutta step. Method 2 is to apply the filter at the enc
the full Runge—Kutta step. For inviscid and strong shock interactions, method 1 might
more stable.

If one desires a time discretization that belongs to the class of LMMs, then the filter
be applied as a numerical dissipation vector in conjunction with the base scheme. The
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in this case is evaluated ®it" for explicit LMMs. For implicit LMMs additional similar
filters evaluated at the+ 1 time level are involved. Alternatively, method 2 can be appliec
to LMMs as well. In this case, we apply the filter after the completion of the implicit tim
step. One can minimize flux evaluations by using the one-leg formulation of the LMMs
Dahlquist. The least dissipative (in time) second-order, two-time level one-leg methoc
the mid-point implicit method. Note that the noniterative linearized form of the midpoir
implicit formula reduces to the regular noniterative linearized trapezoidal formula.

For time marching to steady states using implicit LMMs, certain flow physics only requi
an explicit dissipation term. Also, the implicit operator can be different from the explic
operator. See [21-26] for some efficient conservative linearized implicit forms.

2.4.2. Nonlinear characteristic filters.There are many possible candidates for the filte
operator in conjunction with high order base schemes. Here, we propose using filter o|
ators that have similar width of grid stencils as the base scheme for efficiency and eas
numerical boundary treatment. Higher than third-order filter operators are of course ap
cable, but they are more CPU intensive and require special treatment near boundary p
for stability and accuracy. The filter operator usually consists of the product of a sen
and nonlinear dissipations. Two possible sensor are considered: the ACM sensor [12
the wavelet sensor (Sjogreen and Yee [15]). See Table | for the roadmap. Here we bri
review the ACM sensor and interested readers are referred to [15] for the wavelet sens

We use nonlinear dissipation terms in conjunction with the Harten ACM sensor appli
to each characteristic wave as the filter vector. In essence, the nonlinear dissipation te
act as second- or third-order ACM-like operators unlike Harten'’s first-order ACM (Harte
[14]). The sensor is used to signal the amount of nonlinear dissipation to be added to
high order non-dissipative scheme, one wave at a time. Thus, the current approach is
different in spirit to the original Harten [27] second-order TVD scheme which uses AC
to sharpen the contact discontinuities. Let the filter vector irxthd@ection be of the form

1 [N (2.4.2)
'ET+1/2,k is the modified form of the nonlinear dissipation portion of the standard numeric
flux. For characteristic based methods, the quaiRijty» is the right eigenvector matrix of
% using, for example, Roe’s approximate average state. Note that the eigerRRggctor
should not be confused with tiein (2.1.2). We cast th&] ., , in the same manner. The
elements ofb7], , , denoted b)(¢'j+1/z)* are

(I SN

The ¢'j+1/2 in (2.4.2) are the elements db;1,,—the dissipative vector of the high-
resolution schemes resulting from using a TVD, ENO, or WENO scheme. Hereafter,
refer to (2.4.2) as the ACM filter.

Formulae f0r¢'j+l/2 are well known and can be found in the literature. In most of the
numerical computations in Section IV, we use the Harten and Yee [25, 26] second-order
wind TVD numerical dissipation. Computations using the symmetric TVD dissipation (Ye
[22]) will also be presented. See [13] for details and for a discussion of other possible filte

The functionxé’}H/2 is the key mechanism for achieving high accuracy of the fine sca
flow structure as well as shock waves in a stable manner. In other words, the elemen
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7/, are the same as the nonlinear dissipation term of the TVD, ENO, or WENO sche
with the exception of premultiplying byG}H/Z. The parameter is problem dependent.
For smooth flowsy is used to improve nonlinear stability and can be very small. Differer
physical problems require a different value vofbecause of the large variation in flow
properties. The value may vary from one characteristic wave to another, and from or
region of the flow field to another region with different flow structure. The rangefof
our present numerical experiments i@ & k <0.7. The functior\9}+l/2 is the Harten ACM
sensor. For a generalr+ 1 points base scheme, Harten recommended

9}+% =max(0' 1.0 4m)- (2.4.3)
R lod o] = et o] |P
6\ = |a,”2|+|a,1 2| (2.4.4)
il 1%

Thed!, ,, , are elements oR 1 »(Uj 1k — Uj ).

Instead of varyinge for the particular flow problem, one can vapy For largerp, less
numerical dissipation is added. Note that by varymg 1 in (2.4.4), one can essentially
increase the order of accuracy of the dissipation term. The order of the dissipation dep
on the value ofp (Bjorn Sjogreen, private communication, 1998). One can switch fror
p = 1 near shock locations o > 1 at smooth regions. For all of the numerical examples
we usep=1 and

[
6.
i+3

= max(8'. 6} ). (2.4.5)
The shock-turbulence interaction problems appear to favor this for%}qg/g. To avoid the
tuning of the arbitrary parameterand/orp, one can replacee} +1/2 by a wavelet sensor
a)lj +1/2 (Sjogreen and Yee [15]) which has been shown to give comparable accuracy for
numerical examples in Yee et al. [13].

2.5. Computer Implementation

To avoid some conditional statements in the actual computer code and to promote
torization, several of the functions inside the filter with the potential of dividing by zero a
modified. See [13] for details. In particular, the sensor (2.4.4), with1, is replaced by

o — H“'j+1/2’—\“lj—1/2|| . (2.4.6)
R P

In all of the computations, we take=10"". (Actually, e should have the same dimension
asaj, ;).

2.6. Blending ACM or Wavelet Filters with Other Filters

The ACM filter (2.4.2) or wavelet filters might not be sufficient for (a) time-marching t
steady state and (b) spurious high frequency oscillations due to insufficient grid resolu
and nonlinear instability away from discontinuities, especially for turbulent and large-ed
simulations. This section discusses the blending of other filters with ACM or wavelet filte



46 YEE, VINOKUR, AND DJOMEHRI

(a) Time-marching to steady statel-or time-marching to steady state one usually need
to add fourth-order linear dissipation to a second-order spatial differencing scheme (Be
and Warming [28]). For the present schemes using characteristic filters, in addition
our filters, one might need to add a sixth-order linear dissipation to a fourth-order spa
base scheme and an eighth-order linear dissipation to a sixth-order spatial base schel
regions away from shocks for stability and convergence Ligdte such an additional filter
operator. Take the case of a Runge—Kutta time discretization. There are again two way
incorporating theL 4 operator. One way is to incorporate thg operator at every stage of
the Runge—Kutta method. Another way is to includelth@perator after the completion of
the Runge—Kutta full step. The best way of applyingtheoperator is most likely problem
dependent and time integrator dependent. For LMM type of time integratgiis,used in
conjunction with our filter step as an additional dissipation.

To minimize the amount of dissipation dueltq in the vicinity of shock waves, there
should be a parametey (different from in (2.4.2)) to reduce the amount in the vicinity of
shock waves. Thiey operator can be applied to the conservative, primitive, or characteris
variables. The simplest form is to apfly to the conservative variables. Alternatively, since
all of the work in computing the average states and the characteristic variables is done fo
shock-capturing filter operator, one can applylteperator to the characteristic variables.
In this case, parametep can be a vector so that it is more in tune with our characteristi
filters using the approximate Riemann solver. For example, one can=sefor the linearly
degenerate fields and blend a small amountsofo remove spurious noise generated by
the lack of ACM or wavelet filters. This blending of the ACM or wavelet filter with the
L4 operator can be applied to time-accurate computations as well. When using the wav
sensor, one can séty)' 1, =1— | 4.

(b) Suppression of spurious high frequency oscillatiorghe ACM filters might not be
able to remove spurious high frequency oscillations effectively unless sufficient grid poil
are used. For the suppression of unphysical high frequency oscillations due to insuffic
grid resolution and nonlinear instability away from discontinuities, higher-order spectr:
like filters [29—33] might be needed at the locations where the value of the ACM senso
very small or zero. If spectral-like filters are needed, a proper blending of ACM or wave
filters with spectral-like filters can be applied. In this case, we can use the same proced
as the time-marching to the steady state except theperator should be replaced with the
spectral-like filters (for compact central schemes).

[lI. EXTENSION TO OTHER EQUATIONS OF STATE AND EQUATION SETS

In this section we discuss the extension of entropy splitting to more general cases.
method originally was developed for the 2-D Euler equations in Cartesian coordinates
a perfect gas. We show here how it can be extended to flow of a gas that is only therm
perfect. For maximum generality, the analysis is presented for arbitrary three-dimensio
time varying grids. A detailed formulation in conjunction with freestream preservatic
higher-order metric evaluations for the Yeteal. schemes [13] can be found in Vinokur and
Yee [18]. For compactness, we employ the vector approach of Vinokur [34]. Here the w
vector refers to a physical vector such as velocity or momentum, as distinguished fr
an algebraiosectorrepresenting a set of variables. For completeness, the Roe Riemz
solver for a thermally perfect gas is included. This is motivated by the fact that if tf
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characteristic type of nonlinear dissipation or filter is desired, Roe’s Riemann solvel
normally employed. It is noted that both Steger—Warming flux-vector splitting and Ro«
approximate Riemann solver have an exact extension for this case. For the readers unfar
with the vector approach of Vinokur, the results for the 2-D and 3-D Euler equations
Cartesian coordinates are given in Appendixes A and B of éteal. [19]. The caloric
equation for an ideal diatomic gas is given in Appendix C of [19]. We also examine t
possible extensions to a nonequilibrium mixture of species, magnetohydrodynamics,
the artificial compressibility method for incompressible flow.

3.1. Entropy Splitting for a Thermally Perfect Gas

In this subsection we derive entropy splitting for a gas that is only thermally perfect, w
the internal energy being an arbitrary function of temperature. This law is valid for a dilt
gas consisting of a single chemical species and is also a very good approximation fo
below the temperature when oxygen starts to dissociate (approximatelyy RR0O

The following development describes the derivation leading to a final form of the entro
splitting of the flux derivative for a thermally perfect gas. It has the same form as the perf
gas case, but, the corresponding ranges of th@ameter are different, avd, Uy, andFy
have different expressions. In fact, the derivation of entropy splitting for a perfect gas ha
be modified. Certain parameters that are constant for a perfect gas are no longer consta
a thermally perfect gas. In particular, Harten and Gerritsen normalized their er8impy
C,, Which is now a variable for a thermally perfect gas. We therefore normaliz8 loyithe
gas constanR. This results in differences in our results from theirs involving the quantit
y — 1. The positive definite condition (or equivalently, the convexity condition)gragain
restrictsg to be in two possible ranges. As mentioned previously, Harten [10] overlook
one of the more physical ranges, and needlessly introduced a paranieteis solution.
Such a parameter has no analogue for the more general thermally perfect gas case, an
serves to complicate the derivation. Harten also introduced an arbitrary colstahich
he then set equal to a particular value in order to simplify the final expressions. We cho
a particular value from the beginning and avoided introducing an unneeded constant.

We repeat the equation of state for a thermally perfect gas (2.1.2)

p=pRT, (3.1.1)

wherep, p, T, andR are the pressure, density, temperature, and gas constant, respectiy
The entropySand internal energy are then related tp andT through the first and second
laws of thermodynamics by

as=9¢ _ di’, (3.1.2)
T »

where we have introduced the normalized variables

~ S -
§=- and T=RT (3.1.3)

Equation (3.1.1) can then be rewritten as

p=pT. (3.1.4)
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While §is dimensionless] has the same dimension aslt follows from (3.1.2) that
€ =¢(T) only. All real gases satisfy the conditioas>- 0 ande > 0, whereé =de/dT.
Equation (3.1.2) can be integrated to obtain

pf =¢S5, (3.1.5)

where

f(T) =exp<—/;dT>. (3.1.6)

The arbitrary constant in the integral of (3.1.6) can be absorbed in the definitian of
Since conservation laws are expressed in terms of of conserved quantities per unit volt

it is convenient to introduce the internal energy per unit volumege. If u is the fluid

velocity vector, then the set of conservative variatiesan be represented by tliector

U=[p m €, (3.1.7)

wherem = pu is the momentum vector per unit volume, ame € + %pu - u is the total
energy per unit volume. Note the algebregctor Uhas three elements, of which the second
elementis the physical vector. The temperatur& (U) is obtained by solving the equation

('f) e 1Im-m
€ = — — =
o2 p?

(3.1.8)

Equation (3.1.8) has a unique solution sidce 0. Let n be the unit normal vector in a
positive direction to a cell surface in a finite-volume grid, or a coordinate surface in a fini
difference grid. Ifv, is the normal component of the velocity of a time-varying surface, an
Un =U - n, one can define the normal relative velocity compongst u, — v,. The set of
inviscid normal flux components, is given by thevector

Fo=[pu mu +pn ed+ pu]'. (3.1.9)

Following Harten [10], we obtain the transformed variatldrom

an
W=_—, 3.1.10
50 ( )
where the functiom(U) is given by
n = p&(S). (3.1.11)

Here again the second element of the algebradator F, is a physical vector quantity(é)
is an arbitrary function 0§, andScan be expressed as a functiotofising (3.1.5), (3.1.6),
and (3.1.8). Using (3.1.2) and (3.1.8), we can express the differential of (3.1.11) as

dn = %{[e— 2¢ — p(1+ Bl dp —m-dm + pde), (3112)
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whereé =dg/dSand

B=—=. (3.1.13)

Note thatg is in general a function o6. We can rewrite (3.1.12) in the form of a matrix
multiplication as

é o
dp=2[e—26—pl+pB) —-m p] [dm] , (3.1.14)

P de

where the vector dot product is implied in multiplying the second element of theeoter

by the second element of the colunaactor. In the rest of the paper, we will use the
convention that in forming the product of two matrix elements, a dot product is implied
each element is either a physical vector or a tensor. From (3.1.10) we can eXprass
dn=WTdU. We thus obtain

W=[w w ujT=i[e—2g—p(1+/3) -m p]". (3.1.15)

In order to investigate the homogeneity condition, it is useful to introduce the function

Y e -Ta+p. (3.1.16)

W =
w(W) 20)

g g

Note thatu involves only thermodynamic variables and is also a homogeneous function
W of degree 0. Since is in general a nonlinear function @f, the homogeneity condition
can only be satisfied if is a homogeneous function & of degree 0. In view of (3.1.5)
and (3.1.16) this can only be accomplished if

B(S) = constant (3.1.17)

We can now solve fo£(S) from (3.1.13). The sign of determines the positive definite
condition onUyy; the scale of does not affect any numerical calculations. Anticipating the
positive definite condition which will be derived below, we find that the simplest solutic
of (3.1.13) is

§=pe P, (3.1.18)
which then gives

1 (3.1.19a)

Substituting (3.1.5), this can be expressed as

E=—(pH)"’. (3.1.19b)
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The expression fop (W) obtained using (3.1.4), (3.1.7), (3.1.15), and (3.1.19b) is

TE
= f(f)(_w)ﬂ' (3.1.20)

0

Thereforep is a homogeneous function @ of degrees. From (3.1.15) and the definition
of m it follows thatu, u,, andu’ are all homogeneous functions @t of degree 0. We
conclude from definitions (3.1.7) and (3.1.9) thattketors UandF, are both homogeneous
functions ofW of degrees.

While we cannot obtain an explicit formula fdn\W), we can derive an explicit expression
for the symmetric matrixtJyy as functions ofJ. The upper triangular part can be written
as

ap apu ae+ bp
Uw = ; apuu — pl ufae+ (b —1)p] : (3.1.21a)
2 4 p(2e—u-u) + 2 1+p)
where
aT. p) = ﬁ ~1, (3.1.21b)
b(F.f) = A1+ pra+p=— (3.1.210)

E+1+p
andl is the identity tensor.

Let A = Uy andu = ge, wheree is a unit vector in the direction af andq is the
magnitude ofu. The positive definite condition foA is determined by the quadratic form
XT AX, where thevector X has the general fornX =[x; x»e x3]T, and the dot product
is implied in a product involving the unit vecter Sincee-ee-e=e- |l -e=e-e=1,
the quadratic form can be written in terms of ordinary scalar quantitie('éTaA/X’, where
X' =[x1 X2 X3]T, and the upper triangular part &f becomes

ap apq ae+ bp
A = ; apq” — p qlae+ (b —1)p] : (3.1.22a)
& 2b 2 bp®
&P -a) + A+

Therefore the positive definite condition foky is obtained by calculating the signs of
the leading principal minors of (3.1.22a). Since the elementary operation of subtractin
multiple of one row from another leaves a determinant unchanged, we can reduce (3.1.
by a series of elementary operations to the matrix

ap apq ae+bp

gl 0 -p -—pq (3.1.22b)
o o -

pa

This matrix is positive definite if the leading principal minors are positive. Spse) and
o > 0, we obtain the conditions

a/€ >0, (3.1.23a)
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—a/é? >0, (3.1.23b)
and
bg/E3 > 0. (3.1.23c)

From (3.1.23a) and (3.1.23b) it follows that 0, a condition already satisfied by (3.1.19a).
It then follows from (3.1.23c) thdi8 < 0, which can be reduced to

1 -1

> .
B 1+¢

(3.1.24)

Condition (3.1.24) is satisfied f > 0 or 8 < —(1 + €). It is easy to show that a value of
B in these two ranges satisfias< 0, as required by (3.1.23a). Sinee-"0, the maximum
value ofé occurs aflhax. Therefore, foB < 0,

B < —[1+&(Tmaxl. (3.1.25)

A sufficiency condition, independent of the flow problem, is obtained by replac¢ifigay)
by € (00).

We can also derive an explicit expression for the symmetric flux Jacobian with resp
to the transformed variableéf,)w, as functions ofJ. The upper triangular part can be
written as

vap u'apu — pn u'(ae+ bp) —unp
1
(Fow = g U (apuu — pl) — p(un + nu) a3 , (3.1.26a)
az3
where
203 = {U[ae+ (b— 1)p] — Unpiu — g(e+ on, (3.1.26b)
and
ae 2be b
azgz=U {p + p(p —-u- u) + 52(1+ ,8)} — ZUnE(e+ p). (3.1.26¢)

3.2. Roe Riemann Solver for a Thermally Perfect Gas

The extension of Roe’s approximate Riemann solver to a thermally perfect gas has &
given by Abgrall [35] and also Spekreijse and Hagmeijer [36]. (They actually considered
more general case of a mixture of thermally perfect gases, valid for nonequilibrium floy
We present the results here for arbitrary three-dimensional grids, using our compact ve
notation. The Riemann solver is based on properties of the ordinary flux Jacobian me
A=0F,/0U. From (3.1.7) and (3.1.9) it follows that we need the pressure differential

dp= x dp + « dé, (3.2.1)
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where
~ 1 ~ -
k(M) = - and x(M) =T —«ke. (3.2.2)
é

The matrixA can then be written as

—n n 0
A= | Kin—uyu un—«nu+ul Kn , (3.2.3)
(K1 — H)u, Hn — «kupu u + kuUp

whereK; = ku-u+ x, H = h+ Ju-uis the total enthalpy per unit mass, ame- e + T
is the specific enthalpy. The three distinct eigenvalues afe

AM=u, A°=u+c, and Ar¥=u-—c, (3.2.4)
where the speed of sourds given by
c? = x +«h. (3.2.5)

The multiple eigenvalug? is associated with those conservative variables whose flux
purely convective. These apeand the tangential componentrof In order to construct the
corresponding linearly independent eigenvectors associated with the multiple eigenva
we span the plane normal toby an arbitrary set of two basis vectdss and the set of
reciprocal basis vectols , satisfyingp; - b/ =8/, wheres! is the Kronecker delta. It follows
thatb; - n=Dbl . n=0. The right eigenvector matriR can then be written as

0 1 1
R=|u chb; u+cn u-—cn |, (3.2.6)
K, cbj-u H+cu, H-—cu,
whereK,=1u-u — x/k.
Among the various approximate Riemann solvers, the most common one uses the
average because of its simplicity and its ability to satisfy the jump conditions across disc
tinuities exactly. In those solvers based on local linearization, the flux at a point separa

two stated) “andU R_is based on the eigenvalues and eigenvectors of some av@.rige
optimum choice folA is one satisfying

AF, = AAU, (3.2.7)

whereA(-) = (HR — (). This choice_of,& captures discontinuities exactly. One way of
obtainingA is to seek an average stale which is a function ofJ- andU R, such that

A= A). (3.2.8)
Such a state is known as a Roe-averaged state. One can easily show that

U=au"+ @ —a)uR (3.2.9)
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and
H=aH"+1-a)HR, (3.2.10)
where
1 (3.2.11)
0= —F—. L.
1+ pR/p-
From the definition oH one then obtains
= - 1_ _
h=H - Eu -u. (3.2.12)
The discrete form of (3.2.1) yields the relation
X Ap +k Aé = Ap. (3.2.13)
The Roe-averaged sound speed is given by (3.2.5) as
¢ = x +ih. (3.2.14)

Equation (3.2.13) provides only one relation to determinand«. Sincey and« are
functions of T only, the simplest assumption is thatand« depend only ol R andT*L.
Eliminating p, using (3.1.4), we rewrite (3.2.13) as

X(pR = pb) +ic(pReR — pleby = pRTR — pLTL. (3.2.15)

Equating the coefficients @ff andp" on the two sides of (3.2.15) we obtain the relations

>

_ A
K= — (3.1.16a)
Ae

and

B RTL _ (LR
X = %. (3.1.16b)

Equations (3.2.16a), (3.2.16b) are replaced by (3.2.2) wern- 0. An important quantity
in the approximate Riemann solver is the colunettor R*AU. Its components are the
jumps in the characteristic variables. It is given by
Ap — Ap/c?
pbl - Au/c
RMAU = |, o _ (3.2.17)
3(Ap/C®+ pn - Au/C)

2(Ap/C — pn - Au/C)
where

o =/ pRot. (3.2.18)
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3.3. Entropy Splitting for Other Equation Sets

In this subsection we examine the possibility of applying entropy splitting to other eqt
tion sets. We first consider nonequilibrium flow, consisting of a mixture of different specie
each obeying a thermally perfect gas law. The motivation is again the fact that this case
also be treated exactly with Steger—Warming flux-vector splitting and Roe’s approxim:
Riemann solver. We next consider the equations of magnetohydrodynamics, since the
much current interest in their solution. Finally, we investigate the artificial compressibili
method applied to the solution of the incompressible equations.

3.3.1. Nonequilibrium flow. In nonequilibrium flow, we consider a mixture of species,
each obeying a thermally perfect gas law. The conservation law now takes the form
U+V-F=S, (3.3.1)

whereS is avectorconsisting of source terms for each species. The equation of state

species is

p=pRT, (3.3.2)
wherep', o', andR' are the pressure, density, and gas constant for specispectively,

andT is the temperature of the mixture, assumed to be in thermal equilibrium. If there ¢

ns species in the mixture, the indéxakes on values from 1 ts. The entropyS and
internal energy' are then related tp' andT by

N de’ do'
dsS = — — —, 3.3.3
R'T o ( )
where we have introduced the normalized variable
~ S
S

Note that we have not introduced a normalifedince theR' are different for each species.
It again follows from (3.3.3) that' =¢€'(T) only. All real species satisfy the conditions
¢ > 0ande' > 0, where¢' =de' /d T. Equation (3.3.3) can be integrated to obtain

o fl=eS, (3.3.5)

where

fi(T) = exp(—/ Réi'T dT). (3.3.6)

The arbitrary constant in the integral of (3.3.6) can be absorbed in the definitn of
We can now define the density of the mixtupe as

p= Zpi, (3.3.7)
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the pressurg as
p=> p =pRT. (3.3.8)
i
where
pR=> p'R, (3.3.9)
i
and the entropy per unit volumesS, as

pS=> p'S. (3.3.10a)

Using (3.3.4), the last equation can be written as

pRS=> p'R'S, (3.3.10b)
i
where
~ S
S=2. 3.3.11
R ( )

Note that sinceR is no longer a constan§is not proportional tc. Finally, we define the
internal energy of the mixture per unit volume as

€ = pe = Zpiei. (3.3.12)
i
The set of conservative variablelscan be represented by thiector
U=[R m ¢, (3.3.13a)
where thevectorR is defined as
R=@p! p? ... p™. (3.3.13b)
The temperatur@ (U) is obtained by solving implicitly the equation
iniei(T) =e—%¥, (3.3.14)
wherep is given by (3.3.7). Equation (3.3.14) has a unique solution sihee0 andé' > 0.
The set of inviscid normal flux componerfs is given by thevector
Fo=[RU mu +pn eu+ puy]’. (3.3.15)

The procedure to obtain the transformed varialMefollows that of Subsection 3.1.
Equations (3.1.10)—(3.1.13), and (3.1.17)—(3.1.19a) in that subsection are still valid. W
the aid of (3.3.3), (3.3.7), (3.3.9), (3.3.10b), and (3.3.14) we obtain

W=[Ww w w]", (3.3.16a)
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where
W= w? - w"), (3.3.16hb)
. £ . N . 1Im-m .
i _ ) _ _ _ I - —
w= o= RT@A+S-S)-BRT e+2 | i=1,...,ns, (3.3.16¢)
£m
=———, 3.3.16d
W=—"RT ( )
and
T (3.3.16¢)
RT

It is again useful to define a set of functions \&f that are homogeneous of degree 0,
involving only thermodynamic variables, as

=

VW RTA+S8-§)—BRT—€, i=1...ns (3317)
2(w)?

S||‘S.

W (W) =
Equations (3.3.16€e) and (3.1.19a) can be combined to yield
(—w)P(RTY =eS, (3.3.18)
In order to prove homogeneity, we let
o =a (—w)’. (3.3.19)
Substituting (3.3.5), (3.3.18), and (3.3.19) into (3.3.17), we obtain

w+e  BR gy
S+ s+ 1= BINRT) +In(al ) =0, (3.3.20)

Combining (3.3.4), (3.3.9), and (3.3.10b) to eliminateyields

R_ZiaiRi

=S a (3.3.21)
Substituting (3.3.5), (3.3.18), and (3.3.19) into (3.3.10b), we obtain
_Y;aRIn@ fh
BIN(RT) = —Zi TR . (3.3.22)

Equation (3.3.20), (3.3.21), and (3.3.22) comprise a set of coupled nonlinear equations
R, T, anda' as functions ofi'. Since thex' are homogeneous functions\of of degree 0,
it follows thatR, T, anda’ are all homogeneous functions\M of degree 0. It is then easy
to show that) andF,, are homogeneous functions\&f of degrees.

In order to obtain an expression foky, we can combine the differentials of (3.3.5),
(3.3.17), and (3.3.18) to expreds' as a linear combination afw', dw, dw, dR, anddT.
From the differentials of (3.3.4), (3.3.5), (3.3.10b), and (3.3.18) we finddfhagquals a
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linear combination oflw, dR, andall thedp'. By eliminatingdp from the differentials
of (3.3.4) and (3.3.5) we see thdRR is also equal to a linear combination afi the
dp'. Therefore, obtainind)y requires inverting a dense linear system. It would thus b
difficult to establish the positive definite condition. Therefore the extension of the meth
to nonequilibrium flow is not practically feasible. If the homogeneity condition is nc
required, then one can use symmetry variables based on the physical entropy, as was s
by Chalotet al. [37].

3.3.2. MagnetohydrodynamicsThe set of conservative variablesfor magnetohydro-
dynamics is represented by thector

U=[p m e B]", (3.3.23a)

whereB is the magnetic field vector, and

Im-m 1
e=pe(T)+ —— + =B -B. (3.3.23b)
2 p 2

The set of inviscid normal flux componerfts is given by thevector

!

pu
puw'u+n(p+3B-B) — BB
F = ) , (3.3.24)
eu+ (p+ 1B -B)u, — By(u-B)
u,B — Byu

whereB, = B - n.

Equation (3.3.23a) shows thatis an element ofJ, while (3.3.23b) shows théB -Bis
aterm ine, which is also an element &f. It follows that bothB ande cannot have the same
degree of homogeneity, and thereftrecannot be a homogeneous function. This result i
not surprising, since the magnetic field vector is not a true conservative variable and is
expected to behave the same way as the physical conservative variables.

3.3.3. Artificial compressibility method for incompressible flowor the artificial com-
pressibility method for incompressible flows, the set of conservative variables this
case is given by

U=[p u]', (3.3.25)
while the set of inviscid normal flux componerig is given by
Fn=[ou uu+pn]", (3.3.26)

whereo is the artificial compressibility. Since the second elemertd é$ u, while one of
the terms in the second elementkgfis uu - n it follows thatU and F, cannot have the
same degree of homogeneity. This is also not surprising, ginseot a true conservative
variable. In the compressible case, the velocity has homogeneity of degree 0, and it is
density that is homogeneous of deggeWhen the density is no longer a variable, the
homogeneity property disappears.



58 YEE, VINOKUR, AND DJOMEHRI

IV. NUMERICAL EXAMPLES

The numerical experiments will be limited to a perfect gas. Three test cases are conside
The firstis inviscid and the last two are compressible mixing layer computations. These
cases were also considered in [13]. The three test cases are: (1) a horizontally conve
vortex, (2) a vortex pairing in a time-developing mixing layer with shock waves forme
around the vortices, and (3) a shock wave impinging on a spatially evolving mixing lay
where the evolving vortices must pass through a shock wave, which in turn is deformec
the vortex passage. For the two mixing layer computations, the study will be limited to t
choice of thes that determines the amount of splitting in obtaining the same shock locatit
as the un-split approach. For the Navier—Stokes computations involving entropy splitti
the splitting is applied to the inviscid flux terms, and the symmetric form of the viscous flt
is not used (see Section I).

In all of the computations the classical fourth-order Runge—Kutta time discretizati
is employed. For the purposes of this paper we concentrate on the non-compact ce
schemes (2.3.1) and (2.3.2) with the same order of accuracy and type of base scheme fi
convection and viscous terms (if viscosities are present). Compact schemes (2.3.3) are
applicable, but require nearly twice the CPU time that the non-compact central schel
require for 2-D compressible mixing layer computations and will not be addressed in t
paper.

If numerical dissipation is added, the filters (2.4.2), (2.4.5), and (2.4.6) are used at
end of the full Runge—Kutta time step. Roe’s average states [38] are used in (2.4.1).
most of the computations, the Harten and Yee (see [21-26]) second-order upwind T
dissipation for¢'j+1/2 in (2.4.2) is used. These will be notated as ACM with the fol-
lowing numbers indicating the order of the base scheme for the convection and visc
terms. For example, ACM44 means the use of fourth-order central as the base sch
for both the convection and viscous terms. In order not to introduce additional notati
inviscid flow simulations are designated by the same notation, with the viscous terms
activated. Computations using symmetric TVD dissipation (Yee [22, limiter (2.7b)]) al
indicated by adding the letted, as in ACM445. Computations using entropy splitting
are indicated by adding the letters ENT at the end as in ACM44-ENT. To examine t
performance of the entropy splitting schemes where shock waves are absent, the com
tions also employ only the non-dissipative central base schemes (without the ACM filte
designated as CEN22, CEN44, and CENG66 for second, fourth, and sixth order, respe
vely.

The inviscid case uses a uniform Cartesian grid. The two compressible mixing layer |
cases use a uniform Cartesian grid in ¥adirection and a mildly stretched Cartesian grid
in the y-direction. In order to assess the true performance of the algorithm, no attemp
made to enhance the resolution using appropriate adaptive grid procedures. The code
for the Yeeet al. [13] study is employed for the present study. For non-periodic bounda
conditions (BCs), the code reduces to lower order central base schemes near the bout
points. For the current study, we employ the same numerical BCs treatment in orde
have a one-to-one comparison with the results obtained in [13]. Appropriate stable bou
ary difference operators developed by Strand should be used but are not yet impleme
for the present study. The global accuracy of the scheme related to intermediate BC t
ment for the multi-stage Runge—Kutta method (Carpeateal. [39]) is not addressed
here. Except for the vortex convection problem, all computations impose intermediate
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updates. Special treatment of the temporally (Carpesiterl) and spatially dependent
physical BCs related to the Runge—Kutta method is not considered for the two compr
ible mixing layer cases and such treatment is beyond the scope of this paper. Nonreflec
BCs or characteristic inflow and outflow boundary treatments are also not implement
As indicated in the objective section, we explore the possible side benefits of the entr
splitting without considering the accompanying stable numerical boundary difference oy
ator as a complete package for stability requirements. The three numerical examples
chosen to consist of periodic BCs, or computational domains whose boundaries are
enough away so as to not affect the mainstream flow activities. For the non-periodic ca
lower order non-characteristic boundary schemes are used. Evaluation of the perform
of these schemes for the two compressible mixing layer test cases should take the a
assumption into consideration.

4.1. Isentropic Vortex Evolution

The first test case is the evolution of a 2-D inviscid isentropic vortex in a freestream w
periodic BCs in both spatial directions. The freestream flow velogityandv,,, pressure,
Poo, @and densityp., are(Us, Vo) = (1, 0) and p, = poo = 1. Anisentropic vortex with no
perturbation in entropysS= 0) is added to the freestream flow field as initial conditions
The perturbation values are given by

(5u, 8v) = %e#(—y, %). 4.1.1)
@ =DB e
T =T e (4.1.2)

whereg is the vortex strength and = 1.4. Note that the vortex strengfhshould not be
confused with the8 in Subsection 2.1.2. Hefe= %, Too = 1.0,(X, ¥) = (X—Xug Y — Yuo)»
wherex,, andy,, are the initial coordinates of the center of the vortex, ehe X + y2.
The entire flow field is required to be isentropic. Thus, for a perfectggs;, = 1.
Fromthe relations) = Uy, + 38U, v = vy +8v, T = To, + 8T, and the isentropic relation,

the resulting initial state for the conservative variables is given by

1 1 —_ "2 2 ﬁ
p=Tr1 =Ty +8T)7 1 = [1— wé*r } (4.1.3)
8yn
pU = p(Uso + 8U) = ,0[1— ZﬁeT y} (4.1.4)
B .
oV = p(Vso + 8V) = p— X (4.1.5)
p=p” (4.1.6)
e Ll + p(u 2. 4.1.7)

Note that there are misprints for the corresponding Egs. (4.1.4) and (4.1.5) in [13] (Egs. (:
and (3.5) in [13]).
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The exact solution with given initial states is just a passive convection of the vortex w
the freestream velocity and thus provides a good measure of the accuracy of the sche
for smooth solutions of the nonlinear Euler equations. The vortex strghgttb is fixed
for all runs. Letk be the order of the central scheme; then the initial vortex covers a domé
0 <x <10+ 0.12% and—5 < y < 5 and its center is placed &at,,, y.,,) =(5,0). A
uniform grid spacing oAx = 0.125 andAy = 10/(79+ K) is used. Although the actual grid
size is 80x 79, regardless of the order of the scheme, the grid size including ghost cells
accommodate the periodic BCS80+ k) x (79+ k). The reason for using an odd number
of grid points in they-direction is due to the compressible mixing layer structure of the coc
to accommodate fluctuations added to the inflow. The vortex is convected to the right by
mean flow velocity. Since there are no shock waves or steep gradient regions for this fi
the filter is used only to stabilize the nonlinear governing equations. For this reason,
filter coefficientx (2.4.2), if needed, should be kept very small. We u€90< « < 0.07
for the computations. Due to the isentropic flow property, one cap’s€.1.11c) to be a
constantp* =1 is used for this test case.

Density profiles at the centerling,= 0, cutting through the center of the initial vortex
are used for comparing the various schemes. Due to the time and spatial discretize
numerical errors, the vortex, after long time integrations, can drift away from the centerli
The amount of drift depends on the scheme, grid size, and the time step. If the compt
vortex drifts away from the centerline but still preserves the vortex shape and strength,
centerliney = 0, density profiles do not convey the full information and can be misleadin
We complement the comparison with snap shots of density contours at different times u
110 spatial periods. Here, one period is defined as the length of the periodic computati
domain. The time required for one spatial periotks10. In all of the computations= 0.1,
wheres is defined by (2.26a) of [13]. The limiter used is that given by Eqgs. (2.25f) of [13
Here,s is the entropy satisfying parameter of Harten and Hyman [40] for TVD schemes. .
recommended by Carpentdral, no intermediate BC update isimposed to improve the time
accuracy of the multistage Runge—Kutta methods. The computations using intermediate
updates do not have a drastic effect, but tend to diverge a little earlier than the case wi
there are no intermediate BC updates.

We present results for sixth-order schemes. (Comparisons with second- and fourth-o
results are made in the following discussions.) Centerline distributions for CEN66, CEN(
ENT, ACM66, ACM66-ENT, and ACM66-ENT are shown in Figs. 4.1.1-4.1.7. Snapshot:
of selected density contours for these schemes are shown in Figs. 4.1.8-4.1.12. The
formance of the central schemes (with or without ACM) using entropy splitting and the
un-split cousins is evaluated based primarily on vortex preservation capability after Ic
time integrations of up to 130 periods=£ 1300). The discussion of numerical results is
divided into the following:

(a) Effect of the order of accuracy of the base schente=£0.04). We ran some com-
putations with second- and fourth-order accurate base schemas $96.04 (not shown)
and compared them with the sixth-order results. CEN22 diverged after 3.5 periods, CEI
diverged after 6.8 periods, and CENG66 diverged after 5.17 periods. With no dissipation,
more accurate CEN66 computations had nonlinear instability which caused it to dive
slightly earlier than the CEN44 case. Even so, the CEN66 density distribution was vi
accurate up to 5 periods, as seen from Fig. 4.1.1c. It did show oscillations at perioc
indicating incipient instability at period 5.17.
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FIG. 4.1.1. Convecting vortex: Comparison of CEN66 with the exact solution (solid line), illustrated b
density profiles at the centerline= 0, att =10, 20, 30, 40, 50 (curves 2-6) faxt =0.01, 0.02, 0.04, on a

80 x 79 grid.
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FIG.4.1.2. Convecting vortex: Comparison of CEN66-ENT with the exact solution (solid line), illustrated b
density profiles at the centerline=0, att =100, 200, 300, 400, 500 (curves 2-6) for = 0.01, att = 100, 200,
300 (curves 2—-4) font =0.02, and at = 30, 50, 100, 150, 160 (curves 2—-6) fat = 0.04 on a 80x 79 grid.
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FIG. 4.1.3. Convecting vortex: Comparison of ACM66 with the exact solution (solid line), illustrated by
density profiles at the centerline=0, att = 100, 200, 300 (curves 2—4) foat =0.01, 0.02, 0.04,x =0.06 on a
80x 79 grid.
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FIG.4.1.4. Convecting vortex: Comparison of ACM66-ENT with the exact solution (solid line), illustrated by
density profiles at the centerline=0, att =100, 200, 300 (curves 2—4) font = 0.01, 0.02, 0.04 and« =0.01,
and forAt =0.04 and« = 0.04 on a 80« 79 grid.
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0.0 2.5 5.0 7.5 10.0 12.5
FIG. 4.1.5. Convecting vortex: Comparison of ACM66-ENT with the exact solution (left-most solid line)
illustrated by density profiles at the centerlipe- 0, att =100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1100, 1200 forAt =0.02 and« =0.01 on a 80x 79 grid. The left-most solid curve is the exact solution and the
rest of the curves shifted to the right are the corresponding time sequences in an increasing order.
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FIG. 4.1.6. Convecting vortex: Comparison of ACM66-ENT with the exact solution (left-most solid line)
illustrated by density profiles at the centerlipe- 0, att =100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1100, 1200, 1300 foAt =0.01 and« =0.01 on a 80x 79 grid. The left-most solid curve is the exact solution
and the rest of the curves shifted to the right are the corresponding time sequences in an increasing order.
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FIG. 4.1.7. Convecting vortex: Comparison of ACMBEENT with the exact solution (solid line), illustrated
by density profiles at the centerline=0, att =100, 200 300 (curves 2—4) font =0.01 andx =0.005 on a
80 x 79 grid.
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Density Contours (0.47 -1.04, 0.03 inc)
CEN66, dt=0.01

FIG. 4.1.8. Convecting vortex: Comparison of CEN66 with the exact solution (I.C.), illustrated by densit
contours at =20, 30, 40, 50, 55 foAt =0.01 on a 80x 79 grid.

Density Contours (0.47 - 1.04, 0.03 inc)
CENG6-ENT, dt=0.01

FIG. 4.1.9. Convecting vortex: Comparison of CEN66-ENT with the exact solution (I.C.), illustrated by
density contours &t= 100, 200, 300, 400, 500 faxt = 0.01 on a 80x 79 grid.
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Density Contours (0.47 - 1.04, 0.03 inc)

ACM66-ENT, k=0.04, dt=0.04
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FIG. 4.1.10. Convecting vortex: Comparison of ACM66-ENT with the exact solution (I.C.), illustrated by
density contours gt= 100, 200, 300, 400, 500, 600 700, 800, 900, 100Q 1100 forAt =0.04 and« =0.04 on a
80x 79 grid.

With the entropy splitting, the CEN22-ENT case diverged at 4.4 periods, the CEN44-E|
at 13 periods, and the CEN66-ENT at 17 periodsAd¢r= 0.04. The latter distribution is
shownin Fig. 4.1.2c. Note that the entropy splitting allowed the calculation to proceed m:
periods further before it diverged, but, more significantly, the stability was improved as 1
order of accuracy was increased. This demonstrates the stabilizing effect of the ent
splitting. For a smallent =0.01, the CEN66-ENT is stable up to 53 periods. See the late
discussions.

The addition of dissipation improved the performance markedly. Using the adme
0.04, the ACM22 case with = 0.07 diverged after 10 periods, the ACM44 with=0.06
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Density Contours (0.47 - 1.04, 0.03 inc)

ACM66-ENT, k=0.01, dt=0
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FIG. 4.1.11. Convecting vortex: Comparison of ACM66-ENT with the exact solution (I.C.), illustrated by
density contours &t= 100, 200, 300, 400, 500, 60000, 800, 900, 100Q 1100 forAt =0.02 and« =0.01 on a

80 x 79 grid.

became very distorted after 40 periods (witk= 0.04 diverged after 32 periods), and the
ACMG66 with « =0.06 remained stable for as long as we ran. (We stopped computing af
120 periods.) The density contours for this last case are shown in Fig. 4.1.12 ef &ke

[19]. Note that the vortex center starts to drift vertically and horizontally, and undergo
gradual smearing and distortion starting at period 40 (see later discussion). The cente
distribution in Fig. 4.1.3c is therefore shown only up to period 30. The agreement with t

exact solution is excellent.
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Density Contours (0.47 - 1.04, 0.03 inc)
ACM66-ENT, k=0.01, dt=0.01

x X ®

FIG. 4.1.12. Convecting vortex: Comparison of ACM66-ENT with the exact solution (I.C.), illustrated by
density contours &t= 100, 200, 300, 400, 500, 600 700, 800, 900, 100Q 1100 forAt =0.01 and« =0.01 on a
80x 79 grid.

The addition of the entropy splitting yields further improvement. The ACM22-EN
with « =0.07 remained stable, but the solution became very distorted at 30 periods. -
ACM44-ENT with x = 0.04 similarly became severely distorted and drifted vertically an
horizontally beyond 40 periods. The ACM66-ENT solution with- 0.04 remained very
good up to period 120 (Fig. 4.1.10), although it started to drift to the right and upward e\
at period 30. This drift is evident from the centerline distributions in Fig. 4.1.4d.
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(b) Effect of ACM dissipation. We first will compare sixth-order computational results
without dissipation (CEN66) with those due to added second-order upwind dissipat
(ACM66). Results without entropy splitting fokt =0.04, 0.02, and 001 are shown in
Figs. 4.1.1 and 4.1.8 for CEN66, and Figs. 4.1.3 for ACM66. The CEN66 computatio
diverged shortly after five periods for all three time steps. The ACM66 computations |
mained stable for as long as we ran (120 periods) for all three time steps. Due to the dri
the vortex center, the centerline distributions in Fig. 4.1.3 are shown only up to 30 perio
Note that up to that time, the larger time steyt,= 0.04 experienced less drift than the
smaller time steps. The density contoursAdr= 0.04 show smearing and distortion as we
increase the duration of the time integration.

Results with entropy splitting are shown in Figs. 4.1.2 and 4.1.9 for CEN66-ENT, al
Figs. 4.1.4, 4.1.6, and 4.1.10-4.1.12 for ACM66-ENT. The entropy splitting for the no
dissipative computation (CEN66-ENT) allows a much longer time integration than that
CENG6 before it diverged, but even for the smallest time stdps-.01, the solution for
CENG66-ENT deteriorated after 30 periods. Since ACM66-ENT allows a stable computat
with less dissipation, the entropy splitting £ 0.01 andAt =0.02, 0.01) eliminated the
distortion and smearing found in the ACM66 computations. The center of the vortex s
drifted as we increased the time of the computation, but for the smallest timaste).01,
there was only a very small drift to the right, even at 130 periods. Otherwise the vor!
remained undistorted. Figures 4.1.5 and 4.1.6 show the centerline density distribution
10-130 periods with a 10-period increment. One can see the drifting effect as a functiol
the At. Aside from the drifting, the vortex is still quite accurate. This is evident from th
density contours Figs. 4.1.11 and 4.1.12.

We would like to point out that the vertical drifting of the vortex away from the centerlin
y =0 and horizontal drifting (or rather shifting) are quite common for all schemes beyo
30 periods. Depending on the scheme, the amount of numerical dissipation and the time
drifting can occur as early as 5 periods. We believe that the vertical drifting is due larg
to the spatial numerical dissipation of the scheme. This is evident from th&nement
study. See Figs. 4.1.10 and 4.1.12. The horizontal drifting is due largely to the phase e
of the time integrator. This is evident from the time step refinement study on ACM66-EN
usingx =0.01. See Figs. 4.1.5,4.1.6,4.1.11, and 4.1.12.

(c) Effect of the adjustable ACM parameter Although we experimented with various
values ofx (0.01 < ¢ < 0.07) to find the optimum value, we show some results only fo
the case giving the best solution, namely ACM66-ENT. For the larger timeAtep0.04,
Fig. 4.1.4 shows a negligible effect up to 30 periods when increasing the vatutrarh
0.01 (Fig. 4.1.4c) t0 0.04 (Fig. 4.1.4d). The computatioa 0.04 andAt = 0.04 remained
stable, although with some distortion and smearing, as shown by the density contour
Fig. 4.1.10. Actually, this case gives slightly better results than the one ksin@01
and the same time step size (not shown). The computation is not stakle<fd.01 and
At > 0.01 for the ACM66-ENT scheme.

(d) Effect of entropy splitting. The cases discussed above clearly show the advantag
of using entropy splitting. For the cases without dissipation, CEN66-ENT, the splittir
allowed the computation to proceed for a much longer time before it became unstable.
real advantage came when used in conjunction with the upwind filter, ACM66-ENT, whe
excellent solutions with just a very small amount of drift were obtained after long tirr
integrations of 130 periods.
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(e) Effect of the time stepIn general, decreasing the time st&pgave a better solution.
For the base scheme CENG66, the improvement in decreasing the time step from 0.04 to
was negligible. However, with entropy splitting, decreasing the time step had a signific
effect, as seen from the results for CEN66-ENT in Figs. 4.1.2 and 4.1.9 and Figs. 4.1.1
Yeeet al.[19]. The improvement with decreasing time step was not as marked when"
ACM filter was applied. (Figure 4.1.3 showing the density distributions for ACM66 actual
appears to show an improvement wititreasingtime step. This is misleading, since the
slight upward drift of the vortex center produced a shift in the centerline distributions for t
smaller time steps. The density contours illustrate similar vortex preservation capability (
shown).) The improvement in decreasing the time step fr@@a ® Q01 is clearly shown in
the density distribution and density contours for ACM66-ENT of Figs. 4.1.5,4.1.6, 4.1.1
and 4.1.12. The significant downward drift fart = 0.02 has been totally eliminated for
At =0.01. The drift to the right has also been virtually eliminated. A quantitative evaluatic
of the solution forAt =0.01 can be obtained from the centerline distribution for ACM66-
ENT in Fig. 4.1.6. Even at 130 periods, the profile is undistorted, with a shift due to t
small drift to the right.

() Effect of symmetric vs upwind ACMWe confine the comparison to the best solution
namely ACM66-ENT forAt =0.01. The centerline distributions up to period 30 for the
symmetric ACM case, ACMGBB-ENT in Fig. 4.1.7, are as good as for the upwind case
ACMG66-ENT in Fig. 4.1.4a. The symmetric TVD dissipation of Yee [22, limiter 2.7b] wa
used. Note that the value efin the former case has been decreased.@® A more
meaningful comparison can be made by examining the density contours up to 110 per
for the two cases in Fig. 4.1.12 and Fig. 4.1.16 of ¥al. [19]. The symmetric ACM
solution undergoes some distortion and upward drift as the period is increased. Actu
ACMG66S-ENT with « =0.005 andAt =0.01 produced better results than ACM66-ENT
with « =0.04 andAt =0.01 ork =0.01 andAt = 0.04. The drifting behavior also occurs
with ACM66-ENT if « > 0.04 or fork = 0.01 andAt = 0.04. If we had used a larger value
of « = 0.01 for the symmetric case, the solution would have become very inaccurate. On
other hand, a smaller value of= .001 produced an unstable solution due to insufficien
dissipation. It appears that the use of symmetric ACM filter in conjunction with entroj
splitting is also computationally attractive. In all of the computations using ACM, tr
solution is quite sensitive to the value ofand the time step size, although the upwind
ACM appears to be a bit less sensitive.

(g) Effect of the splitting parametegt. All of the calculations shown for the entropy
splitting have been for a value ¢f = 1 (@« = —1.8). This produces an equal amount of
conservative and non-conservative splitting. We have also run some cages @b (« =
—1.6). This gives a splitting that is one-third conservative and two-thirds non-conservati
The results are slightly worse than for {fhie= 1 case. Increasing the conservative proportior
beyond 80% will defeat the purpose of using the splitting for this particular example sir
the gain in stability is diminished by the expense of the added CPU computation requi
by the splitting.

In summary, the use of entropy splitting in conjunction with an upwind TVD ACN
filter has preserved a horizontally convecting vortex with great accuracy after long ti
integration of 130 periods. The splitting helps minimize the use of numerical dissipatic
To the authors’ knowledge, highly accurate finite discretization computations previou
reported in the literature were only carried out up to 10 periods of integration.
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4.2. Vortex Pairing in a Time-Developing Mixing Layer

This test case involved vortex growth and pairing in a temporal mixing layer at a co
vective Mach number equal to 0.8. At this Mach number there are shock waves (shockl
that form around the vortices and the problem is to compute accurately the vortex evolu
while avoiding oscillations around the shocks. Previous calculations of the problem car
found in [13, 41-45]. Figure 4.2.1 shows a schematic of the physical problem. Here we
up a base flow as in Sandham and Yee [45]

u = 0.5tanh2y), (4.2.2)

with velocities normalized by the velocity jump — u, across the shear layer and distances
normalized by the vorticity thickness,

Ui —Uu
 (du/dY)max

Subscripts 1 and 2 refer to the uppgr£ 0) and lowery < 0) streams of fluid, respectively.
The normalized temperature and hence local sound speed squared is determined fro
assumption of constant stagnation enthalpy

4.2.2)

w

-1
c=c+r 5 (uZ —u?). (4.2.3)

Equal pressure through the mixing layer is assumed. Therefore, for this configuratior
u, = —u; both fluid streams have the same density and temperature for+oo . The
Reynolds number defined by the velocity jump, vorticity thickness, and kinematic viscos
at the freestream temperature is set equal to 1000. The Prandtl number is S&, tih®
ratio of specific heats is taken as= 1.4, and Sutherland’s law with reference temperature
Tr = 300 K is used for the viscosity variation with temperature. The reference soul
speed squareds, is taken as the average @fover the two free streams.

Disturbances are added to the velocity components in the form of simple waves. For
normal component of velocity we have the perturbation

2
v =" acos2rkx/Ly + ¢x) exp(—y*/b), (4.2.4)
k=1

whereLy = 30 is the box length in th&-direction andb = 10 is they-modulation. In
our test case we simulate pairing in the center of the computational box, by choosing
initially most unstable wavk = 2 to have amplitude, = 0.05 and phas¢, = —x/2, and
the subharmonic wave= 1 witha; = 0.01 andp; = —n/2. Theu-velocity perturbations
are found by assuming that the total perturbation is divergence free. Even though tf
fluctuations correspond only approximately to eigenfunctions of the linear stability proble
for a compressible mixing layer, they serve the purpose of initiating the instability of tt
mixing layer and have the advantage as a test case in that they can be easily coded.

Numerically the grid is equally spaced and periodic in th@irection and stretched in
the y-direction, using the mapping

_ ﬂ sinh(byn)

= 3 Sy (4.2.5)
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L.

FIG. 4.2.1. Schematic of the vortex pairing in a time-developing mixing layer.

where we take the box size in tigedirectionLy = 100, and the stretching factby = 3.4.
The mapped coordinatgis equally spaced and runs frosl to +1. The boundaries at
+L /2 are taken to be slip walls. For example, at the lower boundary

P1 = P2, (4.2.6a)
(pu)1 = (pU)2, (4.2.6b)
(pv)1 =0, (4.2.6C)

(©)1 = [4(e); — (8)3]/3, (4.2.6d)

where subscripts here refer to the grid point arislthe total energy.
We compute this test case on a 20101 grid. A grid refinement study was performed
in [13]. Figure 4.2.2, a reference solution taken from &eel.[13] using ACM44, shows a

(]

T at t=40 T at t=80 T at t=120 T at t=160
— T T T — T T T 7 T

40 40 40 40

—40 -40

P S S R PR S YA L
0 20 o} 20 o 20 (¢} 20

201x201 Crid 201x201 Grid 201x201 Grid 201x201 Grid

FIG. 4.2.2. \Vortex pairing: Four stages in the vortex pairing, at tinies40, 80, 120, 160, showing the
normalized temperature contours for a 20201 grid withx = 0.7 for the nonlinear fields and=0.35 for the
linear fields using ACM44.
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snapshot of the temperature contours-a#40, 80, 120, and 160 using ACM44, illustrating
the roll-up of the primary vortices followed by vortex merging. Shock waves and shes
form around the vortices with a peak Mach number ahead of the vortex of approximat
1.55 att = 120. The grid is 20k 201.

For this vortex pairing in a time-developing mixing layer, we study only the effect c
the choice of the arbitrary splitting paramej(i.e., the proportion of conservative and
non-conservative parts of the splitting) in obtaining the same shock location as the
split approach with scheme ACM66-ENT usig = 0.1. In all of the computations for
the vortex pairing case, limiter (2.25h), afie- 0.25 (2.26a) of [13] are used ard=0.7
(2.4.2) is used for the nonlinear fields for the ACM methods. An intermediate BC update
imposed in order to have a one-to-one comparison with thee¥ak[13] results.

We considerr = —100, —10, -5, -3, -2, —-1.8 (8=1), —1.6,0.1,1 (B=—-6), 2, 5,

10, 100 with8 = (« + y)/(1 — y). The scheme diverges far= 0.1. This corresponds to
136.36% of the conservative proportion ar6.36% the non-conservative proportion.

By monitoring the left.-shock location, studies indicate that éor- |5|, the same shock
location and shock strength of theshock are obtained as in the un-split approach. Wit
the exception of a small increase in spurious noise in the vicinity of the shock (not show
it is surprising to see that a slightly over 100% conservative propoiwion Q) and the cor-
responding negative non-conservative proportion would give the correct shock strength
location. Away from the.-shock area, the solution is less sensitive to the choiae-of/5].

For the physical choice af < —y, we obtain the opposite effect as compared to that o
a > 0, interms of spurious noise. As— 1 — 2y, the entropy splitting has a spurious noise
reduction capability when compared with the un-split approach. For example, the sh
strength and location that are a bit away from thghock are almost the same for= —3
(B=4) as fora = -5 (8 =9), except thatr = —3 has a bigger smoothing effect on the
spurious noise generated by the scheme (especially when a more compressive flux limi
employed). In addition, for-5 < @ < —y, a bigger negative in that range results in more
shift of the A-shock location away from the un-split approach location. For example, f
o = —3, there is a shift of approximately-11 1/2 grid points. The shock strength reduction
at ther-shock location is very small. A reduction it might improve the accuracy of the
shift in the shock location, based on the vortex convection case. Here, we only compare
results with the un-split approach using the same time step and BCs as reported in |
Figure 4.2.3 illustrates the normalized temperatute-a1 60 usingx = —5 anda = —3 on
a101x 101 grid. Except for a slight noise reduction in the vicinity of the shockgtae—5
solution is almost identical to the un-split computation. To illustrate the noise reducti
capability of the splitting, Fig. 4.2.4 shows a comparison of the split and un-split forn
with the ACM filter turned off for the linearly degenerate fields ¢ andv, v characteristic
fields) usingx = —3 (8 = 4). One can see the noise reduction effect of the entropy splittir
on the scheme which, at the same time, maintains the accuracy of the shock and shears
from theA-shock location as in the un-split approach. Since the entropy splitting requir
the same amount of filter as the un-split approach for this type of rapidly developing sho
turbulence interactions, its stabilizing effect is only on the spurious noise reduction, and
benefit is not as pronounced as for the smooth flow case. Followup studies by Sandhan
Yee [16], Hadjadgt al.[17] and Yeeet al.[46] reveal that for turbulent flows involving long
time integrations that contain weak or no shock waves, the entropy splitting can minim
the use of numerical dissipation due to its unique nonlinear stability property.
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(a) T ot t=160, Un—split (b) T ot t=160, a=-5 c) T ot t=160, x==3
T T T e e

-
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FIG. 4.2.3. Vortex pairing: Comparison of normalized temperature contoursfer—5 and—3 with the

un-split approach at time= 160 on a 10X% 101 grid withx = 0.7 for the nonlinear fields and= 0.35 for the
linear fields using ACM66.

(a) T ot t=160, Un-split b) T at t=160, a==3
T T

101x101 Grid 101x10t Grid

FIG. 4.2.4. Vortex pairing: Comparison of normalized temperature contourstfer—3 with the un-split
approach at timé= 160 on a 10X 101 grid with« = 0.7 for the nonlinear fields and= 0 for the linear fields
using ACM66.
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FIG. 4.3.1. Schematic of the shock impingement on a spatially developing mixing layer.

4.3. Shock Wave Impingement on a Spatially Evolving Mixing Layer

The third test case has been developed to test the behavior of the schemes for s
waves interacting with shear layers where the vortices arising from shear layer instabi
are forced to pass through a shock wave. Figure 4.3.1 shows the schematic of the phy
problem. An oblique shock is made to impact on a spatially developing mixing layer
an initial convective Mach number of 0.6. The shear layer vortices pass through the sh
system and later through another shock, imposed by reflection from a (slip) wall at the loy
boundary. The problem has been arranged with the Mach number at the outflow boun
everywhere supersonic so that no explicit outflow boundary conditions are required. T
allows us to focus on properties of the numerical schemes rather than on the bount
treatment.

Figure 4.3.2, a reference solution taken from ¥tel. [13] using ACM44, shows the
nature of the flow on a 644 161 grid illustrating the pressure, density, and temperatur

(a) o at =120 (min=_0.314432 max=_2.83920), 641x161

’mﬁ@
.

‘é?,

b = in= . )
E = - :
i = : 7
E ; —
E 2
E o 2
i OISOTE e ok
E e @@ (®
—10E-
° _p
-20E A A A AL o
0 100 150 200
(c) T ot t=120 (min= 0.196550 max=_ 1.16033), 641x161

FIG. 4.3.2. Shock-shear-layer interaction: The reference solution=ai20 using ACM44. Contours are
shown of (a) density, (b) pressure, and (c) normalized temperature for a 881 grid withx = 0.35 for the
nonlinear fields and = 0.175 for the linear fields.
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fields using the ACM44 method and the same limiter as the pairing case with35 for
nonlinear characteristic fields ard= 0.175 for linear characteristic fields. The time step is
At =0.12. The entropy satisfying paramesesf Harten and Hyman [40] is set toZb. An
oblique shock originates from the top left hand corner and this impacts on the shear lay:
aroundx = 90. The shear layer is deflected by the interaction. Afterwards we have a she
wave below the shear layer and an expansion fan above it. The shock wave reflects
the lower solid wall and passes back through the shear layer. The lower wall uses a
condition so no viscous boundary layer forms and we focus on the shock-wave interac
with the unstable shear layer.
The inflow is specified again with a hyperbolic tangent profile, this time as

u =25+ 0.5tanh2y), (4.3.1)

giving a mixing layer with upper velocity; = 3, lower velocityu, = 2, and hence a velocity
ratio of 1.5. Equal pressures and stagnation enthalpies are assumed for the two stre
with convective Mach number, defined by

u; — Uz

= , 4.3.2
CL+C ( )

equal to 06 ¢; andc; are the freestream sound speeds. The reference density is takel
the average of the two free streams and a reference pressureag,)(u; — uy)?/2. This
allows one to compute the inflow parameters as given in the first two columns of Table
Inflow sound speed squared is found from the relation for constant stagnation enth:
(4.2.3). The in Table Il is the flow inclination angle with respect to tkalirection.

The upper boundary condition given in column 3 of Table Il is taken from the flow prope
ties behind an oblique shock with angie= 12°. The table also gives the properties behinc
the expansion fan (column 4) and after the oblique shock on the lower stream of fluid (colu
5) computed by standard gasdynamics methodsgvitt88.118 . In practice, the conditions
in regions 4 and 5 do not correspond exactly to the simulations due to the finite thickn
of the shear layer. The Mach number of the lower stream after this shock is approxima
Ms = 1.6335 and remains supersonic through all the successive shocks and expansion
up to the outflow boundary. The resulting shock waves are not strong, but tests showed

TABLE I
Flow Properties for the Shock-Wave/Shear-Layer Test Case
in Various Regions of the Flow

Property M @ (©) 4) ®)
u-velocity 3.0000 2.0000 2.9709 2.9792 1.9001
v-velocity 0.0000 0.0000 —-0.1367 —0.1996 —0.1273
0 (degrees) 0.0000 0.0000 2.6343 3.8330 3.8330
Densityp 1.6374 0.3626 2.1101 1.8823 0.4173
Pressurep 0.3327 0.3327 0.4754 0.4051 0.4051
Sound speed 0.5333 1.1333 0.5616 0.5489 1.1658
Mach numbetM| 5.6250 1.7647 5.2956 5.4396 1.6335

Note.(1) Upper stream inflow, (2) lower stream inflow, (3) upper stream after oblique
shock, (4) upper stream after expansion fan, (5) lower stream after shock wave.
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they could not be computed without using shock-capturing technigues. The lower bounc
was specified with the same slip condition used for the pairing case (Eq. (4.2.6)).

The Prandtl number and ratio of specific heats were taken to be the same as for the vc
pairing test case. The Reynolds number was chosen to be 500. Fluctuations are add
the inflow as

2
v =) accos2rkt/T + ¢x) exp(—y?/b), (4.3.3)
k=1

with period T = A /u¢, wavelengthh = 30, convective velocity, = 2.68 (defined byu. =
(UG + UxCy)/(c1 + C2)) andb =10. Fork = 1 we takea; = 0.05 andg =0, and fork =2
we takea, = 0.05 andp = /2. No perturbations are added to teomponent of velocity.

The grid is taken to be uniform ir and stretched iry according to Eq. (4.2.5) with
by = 1. This stretching is much milder than for the pairing problem, as we have to reso
the shear layer even when it deflects away frpm 0. The box lengths were taken to be
Lx =200 andLy = 40.

The reference solution indicates that vortex cores are located by low pressure regions
the stagnation zones between vortices by high pressure regions. The shock waves are
to be deformed by the passage of the vortices. Another interesting observation is the
the core of the vortex at = 148 has been split into two by its passage through the reflecte
shock wave. In spite of the relatively high amplitude chosen for the subharmonic infle
perturbation, there is no pairing of vortices within the computational box. We do, howev
begin to see eddy shock waves around the vortices near the end of the computational
where the local convective Mach number has increased to aro6@dihe oscillations seen
near the upper boundary far> 120 occur where the small Mach waves from the initial
perturbations arrive at the upper boundary. The use of characteristic boundary condit
should remove this problem. Practically, the amplitude of oscillations is not sufficient
cause numerical instability or affect the remainder of the flow.

For this shock wave impingement on a spatially evolving mixing layer, again, we stu
only the effect of the choice of the arbitrary splitting paramgterobtaining the same shock
location as the un-split approach. The study is limited to ACM66-ENT and ACM66 usir
the fifth limiter of Eq. (2.25h) of [13], and the same&alue and time step siz&( = 0.12) as
the reference solution. Intermediate BC updates are imposed in order to have a one-to
comparison with the Yeet al.[13] result. We considex = —100, —10, -5, —3, —2, —1.8
(B=1),-16,0.1,¥8=-6),2,3,4,5, 10, 20, 100. Studies indicate thatfes —2,—1.8,
-1.6,0.1, 1, 2, 3, 4, 5 the solution diverges. The rest obtlvalues forje| > 10 produce
almostidentical results as the un-split case. This example poses a more stringentrequire
on thea range than the vortex pairing case. Figure 4.3.3 compares the un-split press
contours with the split case fer=410 att =120 on a 32X 81 grid with At =0.12.
The value ofx = +10 (8 = —285) corresponds to a 108% conservative proportion and a
small negative non-conservative proportion. the —10 (8 = 21.5) corresponds to a less
than 100% conservative proportion. Note thatd¢he —10 solution produces spurious noise
reduction, while thex = +10 solution actually induces more spurious noise than the ur
split approach. This opposite effect of the spurious noise phenomena-férande < —y
is shared with the vortex pairing example. Again, for turbulent flows involving long tim
integrations that contain weak or no shock waves, entropy splitting can minimize the 1
of numerical dissipation due to its unique nonlinear stability property [16, 17, 46].



ENTROPY SPLITTING AND DISSIPATION 77
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FIG. 4.3.3. Shock-shear-layer interaction: Comparison of the pressure contoursfer10 with the un-split
approach using ACM66 at=120 on a 32X 81 grid withx = 0.35 for the nonlinear fields and=0.175 for the
linear fields.

4.4. Computational Costs

For the compressible mixing layer computations using the fourth-order Runge—Kt
method, the central base schemes with the ACM filter are only around 25% more expen
than the same base schemes without ACM filter. This has been achieved by only requi
one application of the ACM filter per full time step for the convection terms. For LMM tim¢
discretizations, the central base scheme with the ACM filter is only 10% more expens
than standard second-order TVD schemes. The entropy splitting is approximately 2
more expensive than the un-split conservative form for the 2-D mixing layer computatic
in conjunction with the fourth-order Runge—Kutta method. The extra CPU time is mair
due to the fact that, for each direction, four entropy splittings are required. If two to thr
time level LMM types of time discretizations are used, less CPU time can be realized.

SUMMARY

Our study shows that the entropy splitting can be formally extended to a thermally pertf
gas, with the internal energy being an arbitrary function of temperature. For nonequilibri
flows which consist of a mixture of different species, each obeying a thermally perfect ¢
law, extension of the splitting is problematic. While we were able to prove the symme
and homogeneity properties, the degree of homogeneity can only be obtained by sol
a system of nonlinear equations. In addition, to obtain the Jacobian of the transforma
required inverting a non-sparse linear system. It would therefore be difficult to establish
positive definite condition. Consequently, the extension of the method to nonequilibrit
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flows is not practically feasible. If the homogeneity condition is not required, then one c
use symmetry variables based on the physical entropy, as was shown by éllzhlf87].

In this case, the resulting PDEs are in pure non-conservative form and entropy splitt
is no longer possible. For magnetohydrodynamics, the magnetic field has to be adde
a “conservative” variable. But the square of the magnetic field is one of the terms in 1
definition of the total energy. Thus, from dimensional arguments it is clear that one can
obtain the homogeneity condition. A similar situation exists for the artificial compressibili
method of treating incompressible flow.

Using the same high order central schemes, numerical experiments with a 2-D vol
convection Euler computation consisting of periodic BCs indicate that entropy splittir
is more stable than the un-split (purely conservative) approach. With an appropriate ti
step, numerical dissipation is not required for up to 30 spatial periods with nearly perf
vortex preservation as opposed to only 5 periods for its un-split cousin. For even longer t
integration, although numerical dissipation is needed to stabilize the schemes, the am
required is much less than for its un-split cousin. A nearly perfect vortex preservation of
to 130 periods was achieved.

For the mixing layer study, in order to obtain the samshock strength and shock
location as the un-split approach using the same scheme, the range of the arbitrary spli
parametep has to be confined to the use of at least 90% of the conservative proportior
the flux derivative. For problems withoitshocks, a wider range ¢f can be used. Only
a slight advantage of the entropy splitting over the un-split approach was observed for
type of flow physics. The advantage is in terms of noise reduction and improved nonlin
stability. There is no reduction in the use of the ACM filter. This might largely be due 1
the rapidly developing flow and the high percentage of conservative proportion requir
Perhaps replacing the ACM sensor by the wavelet sensor [15] in conjunction with model
grid adaptation could help improve the situation. Unlike the vortex convection with perioc
BCsin all spatial directions, these two more complicated cases consist of rapidly develoy
flows. Not all of the physical BCs are periodic. In addition, the BCs consist of spatially
temporally sinusoidal disturbances. Thus, the performance of the schemes for the mi;
layer cases is partially clouded by the spatially and temporally dependent physical BCs
required special treatment in conjunction with the Runge—Kautta time integrator, and a
by the fact that we did not impose the more stable and appropriate boundary differe
operator. The use of the symmetric form of Harten [10] for the viscous term might |
a source of improvement. In addition, a time step reduction will also benefit the use
entropy splitting as indicated in the vortex convection study. Without additional study, t
benefit of using the entropy splitting is inconclusive for compressible turbulence mixil
applications. Since the entropy splitting requires the same amount of filter as the un-s
approach for rapidly developing shock-turbulence interactions, its stabilizing effect is r
as pronounced as for the smooth flow case. However, for turbulent flows involving lo
time integrations that contain weak or no shock waves, the entropy splitting could h
minimize the use of numerical dissipation due to its unique nonlinear stability proper
More rigorous implementation of the BCs and extensive study are needed. See [15-17
for followup studies.

Overall, the three numerical examples indicate a positive benefit of the entropy sf
ting. The splitting can stabilize spurious noise generated by the non-dissipative or |
dissipative spatial discretizations which are a major cause of nonlinear instability. Mod
high-resolution numerical dissipation has been the major player in improving nonline
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instabilities for short or moderate time integrations (unsteady). Most often, added nun
ical dissipation is necessary for longer time integration at the expense of excess smee
of the flow physics without resorting to finer grids and extremely small time steps. T
use of the entropy splitting form of the flux derivative in conjunction with high-resolutio
filters can minimize the use of numerical dissipation. We believe that the use of the entr
splitting is not limited to spatial central schemes (compact or non-compact), but to spec
and spectral-like spatial schemes as well. This and the blending of ACM or wavelet filt
with other filters on the possible suppression of spurious high frequency oscillations
discussed in Subsection 2.6 are the subjects of our near future research.
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