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A rigorous stability estimate for arbitrary order of accuracy of spatial central dif-
ference schemes for initial boundary value problems of nonlinear symmetrizable
systems of hyperbolic conservation laws was established recently by Olsson and
Oliger (1994, “Energy and Maximum Norm Estimates for Nonlinear Conservation
Laws,” RIACS Report, NASA Ames Research Center) and Olsson (1995,Math.
Comput.64, 212) and was applied to the two-dimensional compressible Euler equa-
tions for a perfect gas by Gerritsen and Olsson (1996,J. Comput. Phys.129, 245) and
Gerritsen (1996, “Designing an Efficient Solution Strategy for Fluid Flows, Ph.D.
Thesis, Stanford). The basic building block in developing the stability estimate is a
generalized energy approach based on a special splitting of the flux derivative via
a convex entropy function and certain homogeneous properties. Due to some of the
unique properties of the compressible Euler equations for a perfect gas, the split-
ting resulted in the sum of a conservative portion and a non-conservative portion of
the flux derivative, hereafter referred to as the “entropy splitting.” There are several
potentially desirable attributes and side benefits of the entropy splitting for the com-
pressible Euler equations that were not fully explored in Gerritsen and Olsson. This
paper has several objectives. The first is to investigate the choice of the arbitrary
parameter that determines the amount of splitting and its dependence on the type of
physics of current interest to computational fluid dynamics. The second is to investi-
gate in what manner the splitting affects the nonlinear stability of the central schemes
for long time integrations of unsteady flows such as in nonlinear aeroacoustics and
turbulence dynamics. If numerical dissipation indeed is needed to stabilize the cen-
tral scheme, can the splitting help minimize the numerical dissipation compared to
its un-split cousin? Extensive numerical study on the vortex preservation capability
of the splitting in conjunction with central schemes for long time integrations will be
presented. The third is to study the effect of the non-conservative proportion of split-
ting in obtaining the correct shock location for high speed complex shock-turbulence
interactions. The fourth is to determine if this method can be extended to other phys-
ical equations of state and other evolutionary equation sets. If numerical dissipation

1 Longer version of this paper was published as a NASA Technical Memorandum 208793, August 1999, NASA
Ames Research Center; presented at the 8th International Symposium on CFD, September 5–10, 1999, Bremen,
Germany.
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is needed, the Yee, Sandham, and Djomehri (1999,J. Comput. Phys.150, 199) nu-
merical dissipation is employed. The Yeeet al.schemes fit in the Olsson and Oliger
framework.

Key Words:entropy variables; symmetrizable nonlinear conservation laws; ther-
mally perfect gas; low dissipation; high order methods; compact schemes; high order
central differencings; shock-capturing methods; nonlinear filters; conservative dif-
ferencing; TVD schemes; positive schemes; ENO schemes.

I. INTRODUCTION

The construction of efficient high order low dissipation numerical methods for nonlinear
conservation laws has been the subject of much research recently. For smooth flows, it is
well known that the standard high order non-dissipative central schemes generate spuri-
ous noise leading to nonlinear instability, especially for long time integration applications
such as in aeroacoustics, rotorcraft dynamics, and turbulence physics. On the other hand,
central schemes in conjunction with linear numerical dissipations are too diffusive for the
physical problems in question. At the same time the majority of the available high order
high-resolution shock-capturing schemes are too CPU intensive for practical computations.
In spite of their high-resolution capability for rapidly evolving flows and short term time
integrations, for long time integrations these schemes often exhibit undesirable amplitude
errors for aeroacoustics and turbulence computations. Current focus has been mainly on al-
gorithmic issues in constructing highly accurate methods away from boundaries. Rigorous
stability estimates for accurate and appropriate numerical boundary conditions associated
with fourth- or higher-order methods are equally important and have been the major stum-
bling block in the theoretical development of these schemes for nonlinear systems. Most
of the existing theory for nonlinear conservation laws and their finite discretizations is
concerned with the initial value problem (IVP). Standard practice in computational fluid
dynamics (CFD) involving boundary conditions relies on guidelines from theory for lin-
ear stability analysis of initial boundary value problems (IBVPs) or IVP theories with the
boundary conditions ignored. These linearized stability guidelines are only necessary but
not sufficient for nonlinear stability. Spatial nonlinear stability of IBVPs goes hand-in-hand
with the appropriate amount of nonlinear numerical dissipation required to stabilize the
spatial scheme. The delicate balance of the numerical dissipation for stability without the
expense of excessive smearing of the flow physics after long time integrations poses a severe
challenge for unsteady flow simulations of this type. Actually, there are two possible sources
of stabilizing mechanisms, namely, (a) from the governing equation level and (b) from the
numerical scheme level. Employing a nonlinear stable form of the governing equations
(more conditioned form of the PDE) in conjunction with the appropriate nonlinear stable
scheme for IBVPs is one way of minimizing the use of numerical dissipation.

Until recently it was not known how to derive the proper numerical boundary condi-
tions for a rigorous stability estimate for conventionalspatial high order central difference
schemes for nonlinear hyperbolic IBVPs. Advances by Kreiss and Scherer [1], Strand [2],
and Olsson [3] led to the construction of high order boundary difference operators that
enabled the design of stable high order central schemes for linear hyperbolic systems. The
major tool used to overcome the stumbling block is a generalized energy method. The
basic building block in establishing a stable energy estimate for high order spatial central
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schemes for nonlinear hyperbolic conservation laws consists of two parts. The first is a
special transformation of the conservation laws to an appropriate form for the application
of the continuous energy estimate for a stable IBVP of the governing equations. The second
is a compatible numerical boundary difference operator for the application of the discrete
analogue of the continuous energy estimate for a stable IBVP of the discretized counterparts.

From the governing equation level.The energy method for deriving stability estimates
for hyperbolic IBVPs was first applied to the nonlinear scalar case by Gustafsson and Olsson
[4]. It was then generalized and extended to nonlinear systems of symmetrizable hyperbolic
conservation laws by Olsson and Oliger [5] and Olsson [6, 7], and it was applied to the
two-dimensional (2-D) compressible Euler equations for a perfect gas by Gerritsen [8] and
Gerritsen and Olsson [9]. The transformation that is used relies on the symmetrizability of
the systems of nonlinear hyperbolic conservation laws, the possession of a convex entropy
function, and a suitable splitting of the flux derivative vector with certain homogeneous
properties. Olsson and Oliger [5] utilized the result of Harten [10] on symmetric forms
for systems of conservation laws as the backbone. Convexity of the flux functions is not
required.

From the numerical scheme level.The aforementioned building blocks in turn allow
one to use a modified form of the energy estimate (or generalized energy estimate) in
deriving a compatible set of numerical boundary conditions that are stable for the higher-
order central differencing schemes. The compatible boundary difference operator has to
satisfy the discrete analogue of the integration-by-parts procedure used in the continuous
energy estimate (Strand [2]).

Olsson proved that conservation is possible for second-order central schemes. To obtain
a rigorous estimate for higher-order central schemes, one must apply the scheme to the split
form of the flux derivative, written in non-conservative form, in terms of the transformed
variables. The resulting splitting is hereafter referred to as the entropy splitting of the
flux derivative orentropy splittingfor ease of reference. Here, the entropy splitting should
not be confused with the traditional flux vector splittings such as the Steger and Warming
splitting [11] or other variants. The traditional flux vector splitting splits theflux functioninto
different parts and most often into upwind and downwind portions. However, the entropy
splitting splits theflux derivativeusing the properties of the chosen entropy function and
the symmetrizability of the conservation laws without reference to any upwinding.

Compressible Navier–Stokes equations.Harten showed that the viscous terms of the
compressible Navier–Stokes equations can also be symmetrized. In this case, only symmetry
is needed in the derivation of the energy estimate. Due to the parabolic nature of the boundary
conditions, the homogeneity properties are not required for the Navier–Stokes equations.
For the numerical study involving the compressible Navier–Stokes equations in the present
study, we apply the entropy splitting to the inviscid fluxes and the symmetric form of the
viscous terms is not used. This is an attempt to examine if entropy splitting of the inviscid
flux derivatives alone will provide side benefits over the un-split approach.

Active research in the use of the symmetric form of the governing equations was car-
ried out by Hugheset al. [12] and related recent work. Hugheset al. utilized only the
symmetric idea and employed the physical entropy as one of the entropy variables. Their
resulting inviscid flux vector and transformed state vector are not homogeneous in the
entropy variables. Unlike the entropy splitting, their transformed equations are in purely
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non-conservative form. They have enjoyed improved results over the standard conservation
law formulation. Their approach, however, does not allow a rigorous stability estimate for
IBVPs for nonlinear hyperbolic conservation laws. In addition, due to their use of the purely
non-conservative form, it is not certain that a correct shock speed can be obtained in general.

Entropy splitting and weak solutions.The entropy splitting is not limited to smooth
solutions. Olsson and Oliger also extended their result to weak solutions (problems con-
taining discontinuities) that are obtained as pointwise limits of vanishing viscosity solutions.
The entropy equality condition for the smooth solution case now becomes an entropy in-
equality condition. In addition, appropriate numerical dissipation is needed in conjunction
with central schemes to pick out the physically relevant solutions if weak solutions are
present. Gustafsson and Olsson proposed a scalar filter as numerical dissipation. Gerritsen
and Olsson proposed the use of a slightly different nonlinear scalar filter in conjunction
with wavelets as a shock detection and grid adaptation. The recently developed high order
low-dissipative shock-capturing schemes using characteristic filters of Yeeet al. [13] fit in
the entropy splitting framework. Instead of applying a scalar filter, they supply nonlinear
filters based on, locally, the different wave characteristics of the convective flux. For com-
plex shock waves, shear and turbulence interactions, one has better control of the amount of
dissipation associated with each wave. For efficiency, Yeeet al.proposed a combination of
narrow grid stencil higher-order compact or non-compact centered non-dissipative classical
spatial differencing schemes and low order total variation diminishing (TVD), essentially
non-oscillatory (ENO) or weighted ENO (WENO) dissipations as nonlinear characteristic
filters with an artificial compression method (ACM) sensor. The ACM sensor is the same as
that of Harten [14] but utilized in a slightly different context. As an alternative to the ACM
sensor, Sjogreen and Yee [15] utilized non-orthogonal wavelet basis functions as multi-
resolution sensors to dynamically determine the amount of nonlinear numerical dissipation
to be added at each grid point. The resulting sensor function is also readily applicable for
grid adaptation purposes. The multi-resolution wavelet sensor, to some extent, is similar to
the one of Gerritsen and Olsson, but is utilized in a different context.

Unlike the hybrid schemes, the higher-order non-dissipative scheme is always activated.
The final grid stencil of these schemes is five in each spatial direction if second-order TVD
schemes are used as filters and seven if second-order ENO schemes are used as filters
for a fourth-order base scheme. There is only a 10% increase in operations count over
standard second-order TVD schemes for 2-D direct numerical simulations (DNS). Studies
showed that higher accuracy was achieved with fewer grid points when compared with
that of standard higher-order TVD, positive, ENO or WENO schemes. See Yeeet al. [13],
Sandham and Yee [16], Sjogreen and Yee [15], Hadjadjet al.[17], or references cited therein.
Extension of these schemes to curvilinear time varying grids with freestream preservation
higher-order metric evaluations is reported in Vinokur and Yee [18]. Table I shows the flow
chart of the Yeeet al. [13] schemes.

Objectives. Motivated by the aforementioned development of entropy splitting, Yee
et al. [13] proposed, as a followup work, to apply their schemes to the entropy splitting
form of the inviscid flux derivatives. This paper is a sequel to [13]. Besides investigating
some of the fundamental issues described below, studies will be conducted to determine to
what extent the entropy splitting form of the flux derivative can help in minimizing numerical
dissipation, or equivalently, in improving nonlinear stability in conjunction with the Yeeet al.
[13] schemes. Our main goal is to explore the possible side benefits of the entropy splitting
withoutconsidering the accompanying stable numerical boundary difference operator as a
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TABLE I

Flow Chart of the Efficient Low Dissipative High Order Schemes

complete package for stability requirements. This is accomplished by choosing numerical
examples with periodic boundary conditions, or computational domains whose boundaries
are far enough away so as not to affect the mainstream flow activities, and/or by using lower
order non-characteristic boundary schemes.

The related fundamental issues to be addressed are that there are several potentially
desirable attributes of the entropy splitting for the compressible Euler equations that were
not fully explored in Gerritsen and Olsson. First, in regions of smooth flows, additional
numerical dissipation might not be required by the entropy splitting in conjunction with
non-dissipative spatial central difference schemes. Second, the splitting appears to improve
nonlinear stability over the un-split approach employing the same non-dissipative higher-
order central schemes even for periodic boundary conditions. Third, the non-conservative
portion of the flux derivative seems to have a small effect in obtaining correct shock speeds on
the physical problems that Gerritsen and Olsson considered. Fourth, the entropy splitting in
conjunction with higher-order central differencing could be a good candidate for nonlinear
aeroacoustics, rotorcraft dynamics, and turbulence computations where simplicity, high
accuracy, and low numerical dissipation are essential. But most of all, the splitting could
possibly be extended to other physical equations of state and other evolutionary equation
sets.

Aside from stability considerations, as explained in Harten [10], another potentially
desirable attribute in the use of the symmetric form of the governing equations is for
the computation of the steady-state solution of the conservation laws. In solving the steady
nonlinear conservation laws, the symmetry of the matrix coefficients could possibly enhance
the structure of iterative matrices in direct Newton-iteration methods. For time-marching to
steady states or time accurate subiteration procedures using implicit methods, the symmetric
form in conjunction with the entropy splitting might result in an improved convergence rate
over the un-split approach. This will be a subject of future research.
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Outline. Section II reviews the entropy splitting and the numerical schemes for the 2-D
compressible Euler equations for a perfect gas. The choice of the entropy splitting parameter
is discussed in Subsection 2.2. Section III describes the extension of the entropy splitting to
other physical equations of states and evolutionary equation sets. Section IV illustrates the
performance of the entropy splitting for a variety of unsteady flows and compares the results
with those obtained using the un-split conservative approach. The study concentrates only
on perfect gases.

In this paper, unless indicated, Euler or Navier–Stokes equations pertain to compressible
fluids. High order central difference schemes refer to fourth or higher-order spatial cen-
tral difference schemes (compact or non-compact methods) without numerical dissipation
added. Compatible time discretizations (in terms of stability and accuracy) should be used,
but these are not the subject of this paper. The terms “split” and “un-split” mean the applica-
tion of the same discretization to the “entropy splitting of the inviscid flux derivative” and the
standard “inviscid flux derivative in terms of the conservative variables without splitting.”

II. ENTROPY SPLITTING FOR A PERFECT GAS

This section reviews the basic building blocks for the entropy splitting for the 2-D com-
pressible Euler equations for a perfect gas in Cartesian coordinates. Formulas for the corre-
sponding 3-D case can be found in Appendix B of Yeeet al.[19] and in curvilinear moving
grids in Section III and in Vinokur and Yee [18]. The mathematical theory is quite involved.
Interested readers are referred to references cited. The Yeeet al. [13] numerical methods
used in conjunction with the entropy splitting are also summarized.

2.1. Summary of Entropy Splitting for a Perfect Gas

In vector notation the 2-D compressible time-dependent Euler equations in conservation
form for an equilibrium real gas can be written, in Cartesian coordinates, as

Ut + Fx + Gy = 0, (2.1.1a)

whereUt = ∂U
∂t , Fx = ∂F

∂x , andGy = ∂G
∂y and theU , F , G, are vectors given by

U =


ρ

ρu
ρv

e

 ; F =


ρu

ρu2+ p
ρuv

eu+ pu

 ; G =


ρv

ρuv

ρv2+ p
ev + pv

 . (2.1.1b)

The dependent variableU is the vector of conservative variables, and(ρ, u, v, p)T is the
vector of primitive variables. Hereρ is the density,u andv are the velocity components,ρu
andρv are thex- andy-components of the momentum per unit volume,p is the pressure,
e= ρ[ε + (u2 + v2)/2] is the total energy per unit volume, andε is the specific internal
energy.

For a thermally perfect gas, the equation of state is

p = ρRT, (2.1.2)
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whereR is the specific gas constant, andT is the temperature withε= ε(T). For constant
specific heats (calorically perfect gas)

ε = cvT, (2.1.3)

wherecv is the specific heat at constant volume.
The eigenvalues associated with the flux Jacobian matrices ofF andG are(u, u, u± c)

and(v, v, v±c), wherec is the sound speed. The twou, u andv, v characteristics are linearly
degenerate. Hereafter, we refer to the fields associated with theu±candv±ccharacteristics
as thenonlinear fieldsand the fields associated with theu, u andv, v characteristics as the
linear fields.

Gerritsen and Olsson extended the summation-by-parts idea of Strand, and the entropy
splitting of Olsson and Olsson and Oliger to the 2-D Euler equations for an ideal gas
in conjunction with high order central schemes. The first step in deriving the entropy
splitting for the compressible Euler equations for a perfect gas is to introduce a symmetry
transformation from the vector of conservative variablesU to a new vector of symmetry
variablesW, referred to as the “entropy variables.” The transformation is chosen so that
FW = ∂F

∂W andGW= ∂G
∂W are symmetric, andUW= ∂U

∂W is symmetric and positive definite.
A family of symmetry transformations, based on a scalar convex functionη, referred to as
an “entropy function,” derived for the Euler equations for a perfect gas by Harten [10], was
employed by Gerritsen and Olsson. It has the form

η = ρξ(S̄). (2.1.4)

The functionξ(S̄) is an arbitrary but differentiable function of a dimensionless physical
entropy

S̄= log(pρ−γ ), (2.1.5)

whereS̄ has been non-dimensionalized bycv. The entropy variablesW are then given by
W= ∂η

∂U . The entropy functionη is not to be confused with the “physical entropy”S̄or the
entropy variables vectorW. The next step is to restrict the transformations to those that
allow a special splitting of the flux derivatives. This requires that the entropy variableW
is chosen such thatF(U (W)), G(U (W)), andU (W) are homogeneous functions ofW of
degreeβ; i.e., there is a constantβ such that for allτ

U (τW) = τβU (W), (2.1.6)

F(τW) = τβ F(W). (2.1.7)

The homogeneity property implies that

FWW = βF(U (W)) (2.1.8)

UWW = βU. (2.1.9)

Then the splitting ofFx results in

Fx = 1

β + 1
(FWW)x +

1

β + 1
FWWx = β

β + 1
Fx + 1

β + 1
FWWx, β 6= −1. (2.1.10)
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A similar splitting can be written forGy andUt . Under these conditions one can rigor-
ously establish a bound on the rate of growth of the energy norm in terms of the absolute
eigenvalues corresponding to the incoming characteristic variables at the boundary of the
domain.

For a perfect gas, the required entropy function is obtained by lettingξ(S̄)= KeS̄/(α+γ ),
whereK andα are constants. The correspondingW can be written as

W = [w1 w2 w3 w4]T = p∗

p

[
e+ α−1

γ−1 p −ρu −ρv ρ
]T

(2.1.11a)

and the upper triangular part of the symmetric matrixUW is

UW = 1

p∗


aρ aρu aρv a

2ρ(u2+ v2)− 1
γ−1 p

aρu2− p aρuv u
[

a
2ρ(u2+ v2)− bp

]
aρv2− p v

[
a
2ρ(u2+ v2)− bp

]
− b

γ−1
p2

ρ
− bp(u2+ v2)+ a

4ρ(u2+ v2)2

 .

(2.1.11b)

The constantsa andb area= (1−α−γ )/α andb= γ /(γ −1). Here,p∗ andp are related
through

p∗ = χe
S̄

(α+γ ) = χ(pρ−γ )
1

(α+γ ) , (2.1.11c)

with χ = − K
β

< 0. In the authors’ opinion, the simplest choice is to setK =β. The param-
eterβ is given by

β = α + γ

1− γ
. (2.1.11d)

Using (2.1.1b), (2.1.2), (2.1.3), (2.1.11a), and (2.1.11d), we can show (see Subsection 3.1)
that U , F , and G are homogeneous functions ofW of degreeβ. The positive definite
condition onUW (see Subsection 3.1) restrictsα to the two rangesα > 0 orα < −γ .

The flux vectors, expressed in theW variables, are given by

F(U (W)) = p

p∗
[−w2

w2
2

w4
+ p∗ w2w3

w4
−w2

w4

(
w1+ γ−α

γ−1 p∗
)]T

, (2.1.11e)

G(U (W)) = p

p∗
[−w3

w2w3
w4

w2
3

w4
+ p∗ −w3

w4

(
w1+ γ−α

γ−1 p∗
)]T

. (2.1.11f)

The upper triangular parts of the symmetric matricesF(U (W))W and G(U (W))W,
expressed in theU variables, are given by

FW = 1

p∗



aρu aρu2− p aρuv u
[

a
2ρ(u2+ v2)− bp

]
u(aρu2− 3p) v(aρu2− p) −b p2

ρ
+ ĉ pu2+ a

2ρ(u2+ v2)u2

− 1
2 p(u2+ v2)

u(aρv2− p) uv
[
ĉ p+ a

2ρ(u2+ v2)
]

u
[
bĉ p2

ρ
+ ĉ p(u2+ v2)

+ a
4ρ(u2+ v2)2

]


,

(2.1.11g)
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GW = 1

p∗



aρv aρuv aρv2− p v
[

a
2ρ(u2+ v2)− bp

]
v(aρu2− p) u(aρv2− p) uv

[
ĉ p+ a

2ρ(u2+ v2)
]

v(aρv2− 3p) −b p2

ρ
+ ĉ pv2− 1

2 p(u2+ v2)

+ a
2ρ(u2+ v2)v2

v
[
bĉ p2

ρ
+ ĉ p(u2+ v2)

+ a
4ρ(u2+ v2)2

]


,

(2.1.11h)

whereĉ = (1− 2γ )/(γ − 1).

2.2. Choice of the Entropy Splitting Parameter

From the structure of (2.1.10), the entropy splitting divides the flux derivative into a
conservative and a non-conservative part. The ratio between the conservative and non-
conservative parts depends on the choice of the parameterβ. Both Harten [10] and Gerritsen
and Olsson introduced the parameterα. In the authors’ opinion, the introduction ofα is not
necessary. However, to adhere to the discussion when referencing their work, we retain the
use ofα in the perfect gas case. The convexity condition on the entropy functionη restricts
the valueα to two possible ranges; namely,α > 0 or α < −γ (or equivalently,β <

γ

1− γ

or β > 0). Although Gerritsen and Olsson considered theα < −γ range which Harten
overlooked, they setα= 1−2γ (β = 1) in conjunction with high order central differencing
schemes in all of their numerical examples. This choice ofα corresponds to the splitting
of the flux derivative into equal conservative and non-conservative proportions. They did
not give any guidelines or examples of the effect of the choice ofα on the quality of the
numerical solutions for different flow physics. In addition, all of their examples deal with at
most simple shock waves, if present. Wavelets are used as shock detectors and to guide the
grid adaptation. Due to the type of problem they addressed and the dense clustering of the
grid points near the shocks using very small time steps, it is not certain that correct shock
speeds were really obtained with a reasonably practical time step and grid distribution. It is
the purpose of this section to discuss the choice of theα parameter value. We discussα > 0
andα < −γ separately.

Theα > 0 (or β <
γ

1− γ
) Case. This is the only case that Harten considered. This corre-

sponds to a negativeβ which results in a conservative proportionf rc= β

1+β
> 1 and a non-

conservative proportionf rnc= 1
1+β

< 0. As α → 0+, f rc → γ− and f rnc → (1− γ )+.
Here, the superscripts+ and− indicate the values approach the limit from above and below,
respectively. Thus, it appears thatα > 0 is “nonstandard” or “nonphysical” in the sense that
a larger than 100% of the conservative proportion and a negative non-conservative pro-
portion is used. Asα → 0+, the proportion becomes extremely unphysical. Asα → ∞,
f rc → 1+ and f rnc → 0−. Therefore asα → ∞, the proportion becomes more
physical.

Theα < −γ (or β > 0) Case. The α < −γ case corresponds to a positiveβ and
consequently,f rc < 1 andf rnc < 1. We have the following five situations.

(i) As α→−γ , β → 0+, f rc→ 0+, andf rnc→ 1−.
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(ii) For α= 1− 2γ , β = 1, f rc= 1/2, andf rnc= 1/2.
(iii) For 1− 2γ < α < −γ , f rc < 1/2 andf rnc > 1/2.
(iv) For α < 1− 2γ , f rc > 1/2 andf rnc < 1/2.
(v) As α→−∞, f rc→ 1− andf rnc→ 0+.

Section IV gives a parameter study ofα for three different types of flow physics.

2.3. Numerical Methods

The spatial discretizations for weak solutions proposed in [13] consist of two parts,
namely, a base scheme and a filter. When numerical dissipations or filters are not used,
the scheme consists of only the base scheme. This section discusses the base scheme and
Subsection 2.4 discusses the form of the filter (numerical dissipation) for complex shock
waves, shear and turbulence interactions. Subsection 2.6 discusses the blending of the Yee
et al.[13] filters with other filters for the suppression of spurious high frequency oscillations.

2.3.1. Spatial base schemes for the convection terms.DenoteFj,k as the discrete ap-
proximation of the convection fluxF at( j 1x, k1y), where1x and1y are the grid spacing
in thex- andy-directions andj andk are the corresponding spatial indices. Possible non-
dissipative high order base schemes forFx (similarly for Gy) can be of the following two
types.

Central differencings(fourth and sixth order).

Fx ≈ 1

121x
(Fj+2,k − 8Fj+1,k + 8Fj−1,k − Fj−2,k), (2.3.1)

Fx ≈ 1

601x
(Fj+3,k − 9Fj+2,k + 45Fj+1,k − 45Fj−1,k + 9Fj−2,k − Fj−3,k). (2.3.2)

Compact central differencings(fourth and sixth order).

Fx ≈ 1

1x

(
A−1

x Bx F
)

j,k
, (2.3.3a)

where for a fourth-order approximation

(Ax F) j,k = 1

6
(Fj+1,k + 4Fj,k + Fj−1,k), (2.3.3b)

(Bx F) j,k = 1

2
(Fj+1,k − Fj−1,k), (2.3.3c)

and for a sixth-order approximation

(Ax F) j,k = 1

5
(Fj+1,k + 3Fj,k + Fj−1,k), (2.3.3d)

(Bx F) j,k = 1

60
(Fj+2,k + 28Fj+1,k − 28Fj−1,k − Fj−2,k). (2.3.3e)

2.3.2. Spatial schemes for viscous terms.For simplicity letVxx be a viscous term in one
dimension. The possible high order base schemes forVxx can be
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Central differencings(fourth and sixth order).

Vxx ≈ 1

121x2
(Vj+2− 16Vj+1+ 30Vj − 16Vj−1+ Vj−2), (2.3.4)

Vxx ≈ 1

1801x2
(2Vj+3− 27Vj+2+ 270Vj+1− 490Vj + 270Vj−1− 27Vj−2+ 2Vj−3).

(2.3.5)

Compact central differencings(fourth and sixth order).

Vxx ≈ 1

1x2

(
C−1

x DxV
)

j
, (2.3.6a)

where for a fourth-order approximation

(CxV) j = 1

12
(Vj+1+ 10Vj + Vj−1), (2.3.6b)

(DxV) j = Vj+1− 2Vj + Vj−1, (2.3.6c)

and for a sixth-order approximation

(CxV) j = Vj+1+ a0Vj + Vj−1, (2.3.6d)

(DxV) j = b0(Vj+1− 2Vj + Vj−1)+ c0

4
(Vj+2− 2Vj + Vj−2), (2.3.6e)

a0 = 5.5, (2.3.6f)

b0 = 4(a0− 1)/3, (2.3.6g)

c0 = (10− a0)/3. (2.3.6h)

2.4. Filters

In this section we first review the procedure for applying the characteristic filter to multi-
stage Runge–Kutta type and linear multistep method (LMM) types of time discretizations
[13]. Examples of explicit LMMs are forward Euler and Adams–Bashforth. Examples of
implicit LMMs are backward Euler, trapezoidal rule, and three-point backward differenti-
ation. The one-leg formulation of the LMMs of Dahlquist [20] is also applicable. We then
discuss forms of the characteristic filter.

2.4.1. Procedure to apply the filter step.If a multistage time discretization such as
the Runge–Kutta method is desired, the spatial differencing base scheme discussed in the
previous section is applied at every stage of the Runge–Kutta method. If viscous terms are
present, we use the same order and type of base scheme for the viscous terms as for the
convection terms.

There are two methods for applying the characteristic filter. Method 1 is to apply the
filter at every stage of the Runge–Kutta step. Method 2 is to apply the filter at the end of
the full Runge–Kutta step. For inviscid and strong shock interactions, method 1 might be
more stable.

If one desires a time discretization that belongs to the class of LMMs, then the filter can
be applied as a numerical dissipation vector in conjunction with the base scheme. The filter
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in this case is evaluated atUn for explicit LMMs. For implicit LMMs additional similar
filters evaluated at then+1 time level are involved. Alternatively, method 2 can be applied
to LMMs as well. In this case, we apply the filter after the completion of the implicit time
step. One can minimize flux evaluations by using the one-leg formulation of the LMMs of
Dahlquist. The least dissipative (in time) second-order, two-time level one-leg method is
the mid-point implicit method. Note that the noniterative linearized form of the midpoint
implicit formula reduces to the regular noniterative linearized trapezoidal formula.

For time marching to steady states using implicit LMMs, certain flow physics only require
an explicit dissipation term. Also, the implicit operator can be different from the explicit
operator. See [21–26] for some efficient conservative linearized implicit forms.

2.4.2. Nonlinear characteristic filters.There are many possible candidates for the filter
operator in conjunction with high order base schemes. Here, we propose using filter oper-
ators that have similar width of grid stencils as the base scheme for efficiency and ease of
numerical boundary treatment. Higher than third-order filter operators are of course appli-
cable, but they are more CPU intensive and require special treatment near boundary points
for stability and accuracy. The filter operator usually consists of the product of a sensor
and nonlinear dissipations. Two possible sensor are considered: the ACM sensor [13] or
the wavelet sensor (Sjogreen and Yee [15]). See Table I for the roadmap. Here we briefly
review the ACM sensor and interested readers are referred to [15] for the wavelet sensor.

We use nonlinear dissipation terms in conjunction with the Harten ACM sensor applied
to each characteristic wave as the filter vector. In essence, the nonlinear dissipation terms
act as second- or third-order ACM-like operators unlike Harten’s first-order ACM (Harten
[14]). The sensor is used to signal the amount of nonlinear dissipation to be added to the
high order non-dissipative scheme, one wave at a time. Thus, the current approach is also
different in spirit to the original Harten [27] second-order TVD scheme which uses ACM
to sharpen the contact discontinuities. Let the filter vector in thex-direction be of the form

F̃∗j+ 1
2 ,k=

1

2
Rj+ 1

2
8∗j+ 1

2
. (2.4.1)

F̃∗j+1/2,k is the modified form of the nonlinear dissipation portion of the standard numerical
flux. For characteristic based methods, the quantityRj+1/2 is the right eigenvector matrix of
∂F
∂U using, for example, Roe’s approximate average state. Note that the eigenvectorRj+1/2

should not be confused with theR in (2.1.2). We cast thẽG∗j,k+1/2 in the same manner. The
elements of8∗j+1/2 denoted by(φl

j+1/2)
∗ are(

φl
j+ 1

2

)∗
= κθ l

j+ 1
2
φl

j+ 1
2
. (2.4.2)

The φl
j+1/2 in (2.4.2) are the elements of8 j+1/2—the dissipative vector of the high-

resolution schemes resulting from using a TVD, ENO, or WENO scheme. Hereafter, we
refer to (2.4.2) as the ACM filter.

Formulae forφl
j+1/2 are well known and can be found in the literature. In most of the

numerical computations in Section IV, we use the Harten and Yee [25, 26] second-order up-
wind TVD numerical dissipation. Computations using the symmetric TVD dissipation (Yee
[22]) will also be presented. See [13] for details and for a discussion of other possible filters.

The functionκθ l
j+1/2 is the key mechanism for achieving high accuracy of the fine scale

flow structure as well as shock waves in a stable manner. In other words, the elements of
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8∗j+1/2 are the same as the nonlinear dissipation term of the TVD, ENO, or WENO scheme
with the exception of premultiplying byκθ l

j+1/2. The parameterκ is problem dependent.
For smooth flows,κ is used to improve nonlinear stability and can be very small. Different
physical problems require a different value ofκ because of the large variation in flow
properties. Theκ value may vary from one characteristic wave to another, and from one
region of the flow field to another region with different flow structure. The range ofκ for
our present numerical experiments is 0.0≤ κ ≤ 0.7. The functionθ l

j+1/2 is the Harten ACM
sensor. For a general 2m+ 1 points base scheme, Harten recommended

θ l
j+ 1

2
= max

(
θ̂ l

j−m+1, . . . , θ̂
l
j+m

)
, (2.4.3)

θ̂ l
j =

∣∣∣∣∣
∣∣αl

j+ 1
2

∣∣− ∣∣αl
j− 1

2

∣∣∣∣αl
j+ 1

2

∣∣+ ∣∣αl
j− 1

2

∣∣
∣∣∣∣∣

p

. (2.4.4)

Theαl
j+1/2 are elements ofR−1

j+1/2(U j+1,k −U j,k).
Instead of varyingκ for the particular flow problem, one can varyp. For largerp, less

numerical dissipation is added. Note that by varyingp ≥ 1 in (2.4.4), one can essentially
increase the order of accuracy of the dissipation term. The order of the dissipation depends
on the value ofp (Bjorn Sjogreen, private communication, 1998). One can switch from
p = 1 near shock locations top > 1 at smooth regions. For all of the numerical examples,
we usep= 1 and

θ l
j+ 1

2
= max

(
θ̂ l

j , θ̂
l
j+1

)
. (2.4.5)

The shock-turbulence interaction problems appear to favor this form ofθ l
j+1/2. To avoid the

tuning of the arbitrary parameterκ and/orp, one can replaceκθ l
j+1/2 by a wavelet sensor

ωl
j+1/2 (Sjogreen and Yee [15]) which has been shown to give comparable accuracy for the

numerical examples in Yee et al. [13].

2.5. Computer Implementation

To avoid some conditional statements in the actual computer code and to promote vec-
torization, several of the functions inside the filter with the potential of dividing by zero are
modified. See [13] for details. In particular, the sensor (2.4.4), withp= 1, is replaced by

θ l
j =

∣∣∣∣αl
j+1/2

∣∣− ∣∣αl
j−1/2

∣∣∣∣∣∣αl
j+1/2

∣∣+ ∣∣αl
j−1/2

∣∣+ ε
. (2.4.6)

In all of the computations, we takeε= 10−7. (Actually, ε should have the same dimension
asαl

j+1/2).

2.6. Blending ACM or Wavelet Filters with Other Filters

The ACM filter (2.4.2) or wavelet filters might not be sufficient for (a) time-marching to
steady state and (b) spurious high frequency oscillations due to insufficient grid resolution
and nonlinear instability away from discontinuities, especially for turbulent and large-eddy
simulations. This section discusses the blending of other filters with ACM or wavelet filters.
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(a) Time-marching to steady state.For time-marching to steady state one usually needs
to add fourth-order linear dissipation to a second-order spatial differencing scheme (Beam
and Warming [28]). For the present schemes using characteristic filters, in addition to
our filters, one might need to add a sixth-order linear dissipation to a fourth-order spatial
base scheme and an eighth-order linear dissipation to a sixth-order spatial base scheme in
regions away from shocks for stability and convergence. LetLd be such an additional filter
operator. Take the case of a Runge–Kutta time discretization. There are again two ways of
incorporating theLd operator. One way is to incorporate theLd operator at every stage of
the Runge–Kutta method. Another way is to include theLd operator after the completion of
the Runge–Kutta full step. The best way of applying theLd operator is most likely problem
dependent and time integrator dependent. For LMM type of time integrators,Ld is used in
conjunction with our filter step as an additional dissipation.

To minimize the amount of dissipation due toLd in the vicinity of shock waves, there
should be a parameterκd (different fromκ in (2.4.2)) to reduce the amount in the vicinity of
shock waves. TheLd operator can be applied to the conservative, primitive, or characteristic
variables. The simplest form is to applyLd to the conservative variables. Alternatively, since
all of the work in computing the average states and the characteristic variables is done for the
shock-capturing filter operator, one can apply theLd operator to the characteristic variables.
In this case, parameterκd can be a vector so that it is more in tune with our characteristic
filters using the approximate Riemann solver. For example, one can setκ = 0 for the linearly
degenerate fields and blend a small amount ofκd to remove spurious noise generated by
the lack of ACM or wavelet filters. This blending of the ACM or wavelet filter with the
Ld operator can be applied to time-accurate computations as well. When using the wavelet
sensor, one can set(κd)

l
j+1/2 = 1− ωl

j+1/2.

(b) Suppression of spurious high frequency oscillations.The ACM filters might not be
able to remove spurious high frequency oscillations effectively unless sufficient grid points
are used. For the suppression of unphysical high frequency oscillations due to insufficient
grid resolution and nonlinear instability away from discontinuities, higher-order spectral-
like filters [29–33] might be needed at the locations where the value of the ACM sensor is
very small or zero. If spectral-like filters are needed, a proper blending of ACM or wavelet
filters with spectral-like filters can be applied. In this case, we can use the same procedures
as the time-marching to the steady state except theLd operator should be replaced with the
spectral-like filters (for compact central schemes).

III. EXTENSION TO OTHER EQUATIONS OF STATE AND EQUATION SETS

In this section we discuss the extension of entropy splitting to more general cases. The
method originally was developed for the 2-D Euler equations in Cartesian coordinates for
a perfect gas. We show here how it can be extended to flow of a gas that is only thermally
perfect. For maximum generality, the analysis is presented for arbitrary three-dimensional,
time varying grids. A detailed formulation in conjunction with freestream preservation
higher-order metric evaluations for the Yeeet al.schemes [13] can be found in Vinokur and
Yee [18]. For compactness, we employ the vector approach of Vinokur [34]. Here the word
vector refers to a physical vector such as velocity or momentum, as distinguished from
an algebraicvector representing a set of variables. For completeness, the Roe Riemann
solver for a thermally perfect gas is included. This is motivated by the fact that if the
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characteristic type of nonlinear dissipation or filter is desired, Roe’s Riemann solver is
normally employed. It is noted that both Steger–Warming flux-vector splitting and Roe’s
approximate Riemann solver have an exact extension for this case. For the readers unfamiliar
with the vector approach of Vinokur, the results for the 2-D and 3-D Euler equations in
Cartesian coordinates are given in Appendixes A and B of Yeeet al. [19]. The caloric
equation for an ideal diatomic gas is given in Appendix C of [19]. We also examine the
possible extensions to a nonequilibrium mixture of species, magnetohydrodynamics, and
the artificial compressibility method for incompressible flow.

3.1. Entropy Splitting for a Thermally Perfect Gas

In this subsection we derive entropy splitting for a gas that is only thermally perfect, with
the internal energy being an arbitrary function of temperature. This law is valid for a dilute
gas consisting of a single chemical species and is also a very good approximation for air
below the temperature when oxygen starts to dissociate (approximately 2000◦ K).

The following development describes the derivation leading to a final form of the entropy
splitting of the flux derivative for a thermally perfect gas. It has the same form as the perfect
gas case, but, the corresponding ranges of theβ parameter are different, andW,UW, andFW

have different expressions. In fact, the derivation of entropy splitting for a perfect gas has to
be modified. Certain parameters that are constant for a perfect gas are no longer constant for
a thermally perfect gas. In particular, Harten and Gerritsen normalized their entropyS by
cv, which is now a variable for a thermally perfect gas. We therefore normalize ourSby the
gas constantR. This results in differences in our results from theirs involving the quantity
γ −1. The positive definite condition (or equivalently, the convexity condition) onUW again
restrictsβ to be in two possible ranges. As mentioned previously, Harten [10] overlooked
one of the more physical ranges, and needlessly introduced a parameterα in his solution.
Such a parameter has no analogue for the more general thermally perfect gas case, and only
serves to complicate the derivation. Harten also introduced an arbitrary constantK , which
he then set equal to a particular value in order to simplify the final expressions. We choose
a particular value from the beginning and avoided introducing an unneeded constant.

We repeat the equation of state for a thermally perfect gas (2.1.2)

p = ρRT, (3.1.1)

wherep, ρ, T , andR are the pressure, density, temperature, and gas constant, respectively.
The entropySand internal energyε are then related toρ andT through the first and second
laws of thermodynamics by

dŜ= dε

T̂
− dρ

ρ
, (3.1.2)

where we have introduced the normalized variables

Ŝ= S

R
and T̂ = RT. (3.1.3)

Equation (3.1.1) can then be rewritten as

p = ρT̂ . (3.1.4)
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While Ŝ is dimensionless,̂T has the same dimension asε. It follows from (3.1.2) that
ε= ε(T̂) only. All real gases satisfy the conditionsε̇ > 0 andε̈ > 0, whereε̇= dε/dT̂ .

Equation (3.1.2) can be integrated to obtain

ρ f = e−Ŝ, (3.1.5)

where

f (T̂) = exp

(
−
∫

ε̇

T̂
dT

)
. (3.1.6)

The arbitrary constant in the integral of (3.1.6) can be absorbed in the definition ofŜ.
Since conservation laws are expressed in terms of of conserved quantities per unit volume,

it is convenient to introduce the internal energy per unit volume ˜ε= ρε. If u is the fluid
velocity vector, then the set of conservative variablesU can be represented by thevector

U = [ρ m e]T , (3.1.7)

wherem= ρu is the momentum vector per unit volume, ande= ε̃ + 1
2ρu · u is the total

energy per unit volume. Note the algebraicvector Uhas three elements, of which the second
element is the physical vectorm. The temperaturêT(U ) is obtained by solving the equation

ε(T̂) = e

ρ
− 1

2

m ·m
ρ2

. (3.1.8)

Equation (3.1.8) has a unique solution sinceε̇ > 0. Let n be the unit normal vector in a
positive direction to a cell surface in a finite-volume grid, or a coordinate surface in a finite-
difference grid. Ifvn is the normal component of the velocity of a time-varying surface, and
un= u · n, one can define the normal relative velocity componentu′ = un − vn. The set of
inviscid normal flux componentsFn is given by thevector

Fn = [ρu′ mu′ + pn eu′ + pun]T . (3.1.9)

Following Harten [10], we obtain the transformed variableW from

W = ∂η

∂U
, (3.1.10)

where the functionη(U ) is given by

η = ρξ(Ŝ). (3.1.11)

Here again the second element of the algebraicvector Fn is a physical vector quantity.ξ(Ŝ)

is an arbitrary function of̂S, andŜcan be expressed as a function ofU using (3.1.5), (3.1.6),
and (3.1.8). Using (3.1.2) and (3.1.8), we can express the differential of (3.1.11) as

dη = ξ̇

p
{[e− 2ε̃ − p(1+ β)] dρ −m · dm+ ρ de}, (3.1.12)
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whereξ̇ = dξ/dŜand

β = −ξ

ξ̇
. (3.1.13)

Note thatβ is in general a function of̂S. We can rewrite (3.1.12) in the form of a matrix
multiplication as

dη = ξ̇

p
[e− 2ε̃ − p(1+ β) −m ρ]

dρ

dm
de

 , (3.1.14)

where the vector dot product is implied in multiplying the second element of the rowvector
by the second element of the columnvector. In the rest of the paper, we will use the
convention that in forming the product of two matrix elements, a dot product is implied if
each element is either a physical vector or a tensor. From (3.1.10) we can expressdη as
dη=WTdU. We thus obtain

W = [w̄ w ¯̄w]T = ξ̇

p
[e− 2ε̃ − p(1+ β) −m ρ]T . (3.1.15)

In order to investigate the homogeneity condition, it is useful to introduce the function

µ(W) = w̄

¯̄w
− w · w

2( ¯̄w)
2 = −ε(T̂)− T̂(1+ β). (3.1.16)

Note thatµ involves only thermodynamic variables and is also a homogeneous function of
W of degree 0. Sinceε is in general a nonlinear function ofT̂ , the homogeneity condition
can only be satisfied if̂T is a homogeneous function ofW of degree 0. In view of (3.1.5)
and (3.1.16) this can only be accomplished if

β(Ŝ) = constant. (3.1.17)

We can now solve forξ(Ŝ) from (3.1.13). The sign oḟξ determines the positive definite
condition onUW; the scale oḟξ does not affect any numerical calculations. Anticipating the
positive definite condition which will be derived below, we find that the simplest solution
of (3.1.13) is

ξ = βe−Ŝ/β, (3.1.18)

which then gives

ξ̇ = −e−Ŝ/β . (3.1.19a)

Substituting (3.1.5), this can be expressed as

ξ̇ = −(ρ f )1/β . (3.1.19b)
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The expression forρ(W) obtained using (3.1.4), (3.1.7), (3.1.15), and (3.1.19b) is

ρ = T̂β

f (T̂)
(− ¯̄w)β. (3.1.20)

Thereforeρ is a homogeneous function ofW of degreeβ. From (3.1.15) and the definition
of m it follows that u, un, andu′ are all homogeneous functions ofW of degree 0. We
conclude from definitions (3.1.7) and (3.1.9) that thevectorsUandFn are both homogeneous
functions ofW of degreeβ.

While we cannot obtain an explicit formula forU (W), we can derive an explicit expression
for the symmetric matrixUW as functions ofU . The upper triangular part can be written
as

UW = 1

ξ̇


aρ aρu ae+ bp

aρuu− pI u [ae+ (b− 1)p]

ae2

ρ
+ p

(
2be
ρ
− u · u)+ bp2

ρ
(1+ β)

, (3.1.21a)

where

a(T̂, β) = 1

ε̇ + 1+ β
− 1, (3.1.21b)

b(T̂, β) = (1+ β)a+ β = −ε̇

ε̇ + 1+ β
, (3.1.21c)

andI is the identity tensor.
Let A ≡ UW andu = qe, wheree is a unit vector in the direction ofu andq is the

magnitude ofu. The positive definite condition forA is determined by the quadratic form
XT AX, where thevector Xhas the general formX= [x1 x2e x3]T , and the dot product
is implied in a product involving the unit vectore. Sincee · ee· e = e · I · e= e · e= 1,
the quadratic form can be written in terms of ordinary scalar quantities asX′T A′X′, where
X′ = [x1 x2 x3]T , and the upper triangular part ofA′ becomes

A′ = 1

ξ̇


aρ aρq ae+ bp

aρq2− p q[ae+ (b− 1)p]

ae2

ρ
+ p

(
2be
ρ
− q2

)+ bp2

ρ
(1+ β)

. (3.1.22a)

Therefore the positive definite condition forUW is obtained by calculating the signs of
the leading principal minors of (3.1.22a). Since the elementary operation of subtracting a
multiple of one row from another leaves a determinant unchanged, we can reduce (3.1.22a)
by a series of elementary operations to the matrix

1

ξ̇

aρ aρq ae+ bp
0 −p −pq

0 0 − bp2β

ρa

 (3.1.22b)

This matrix is positive definite if the leading principal minors are positive. Sincep> 0 and
ρ > 0, we obtain the conditions

a/ξ̇ > 0, (3.1.23a)
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−a/ξ̇2 > 0, (3.1.23b)

and

bβ/ξ̇3 > 0. (3.1.23c)

From (3.1.23a) and (3.1.23b) it follows thatξ̇ < 0, a condition already satisfied by (3.1.19a).
It then follows from (3.1.23c) thatbβ < 0, which can be reduced to

1

β
>
−1

1+ ε̇
. (3.1.24)

Condition (3.1.24) is satisfied ifβ > 0 orβ < −(1+ ε̇). It is easy to show that a value of
β in these two ranges satisfiesa < 0, as required by (3.1.23a). Since ¨ε > 0, the maximum
value ofε̇ occurs atT̂max. Therefore, forβ < 0,

β < −[1+ ε̇(T̂max)]. (3.1.25)

A sufficiency condition, independent of the flow problem, is obtained by replacingε̇(T̂max)

by ε̇(∞).
We can also derive an explicit expression for the symmetric flux Jacobian with respect

to the transformed variables,(Fn)W, as functions ofU . The upper triangular part can be
written as

(Fn)W = 1

ξ̇


u′aρ u′aρu− pn u′(ae+ bp)− un p

u′(aρuu− pI)− p(un+ nu) a23

a33

 , (3.1.26a)

where

a23 = {u′[ae+ (b− 1)p] − un p}u− p

ρ
(e+ p)n, (3.1.26b)

and

a33 = u′
[

ae2

ρ
+ p

(
2be

ρ
− u · u

)
+ bp2

ρ
(1+ β)

]
− 2un

p

ρ
(e+ p). (3.1.26c)

3.2. Roe Riemann Solver for a Thermally Perfect Gas

The extension of Roe’s approximate Riemann solver to a thermally perfect gas has been
given by Abgrall [35] and also Spekreijse and Hagmeijer [36]. (They actually considered the
more general case of a mixture of thermally perfect gases, valid for nonequilibrium flow.)
We present the results here for arbitrary three-dimensional grids, using our compact vector
notation. The Riemann solver is based on properties of the ordinary flux Jacobian matrix
A= ∂Fn/∂U . From (3.1.7) and (3.1.9) it follows that we need the pressure differential

dp= χ dρ + κ dε̃, (3.2.1)
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where

κ(T̂) = 1

ε̇
and χ(T̂) = T̂ − κε. (3.2.2)

The matrixA can then be written as

A =
 −vn n 0

K1n− unu un− κnu+ u′I κn
(K1− H)un Hn− κunu u′ + κun

, (3.2.3)

whereK1= 1
2κu · u+χ , H = h+ 1

2u · u is the total enthalpy per unit mass, andh= ε+ T̂
is the specific enthalpy. The three distinct eigenvalues ofA are

λ1 = u′, λ2 = u′ + c, and λ3 = u′ − c, (3.2.4)

where the speed of soundc is given by

c2 = χ + κh. (3.2.5)

The multiple eigenvalueλ1 is associated with those conservative variables whose flux is
purely convective. These areρ and the tangential component ofm. In order to construct the
corresponding linearly independent eigenvectors associated with the multiple eigenvalue,
we span the plane normal ton by an arbitrary set of two basis vectorsbi and the set of
reciprocal basis vectorsb j , satisfyingbi · b j = δ

j
i , whereδ j

i is the Kronecker delta. It follows
thatbi · n= b j · n= 0. The right eigenvector matrixR can then be written as

R=
1 0 1 1

u cbi u+ cn u− cn
K2 cbi · u H + cun H − cun

 , (3.2.6)

whereK2= 1
2u · u− χ/κ.

Among the various approximate Riemann solvers, the most common one uses the Roe
average because of its simplicity and its ability to satisfy the jump conditions across discon-
tinuities exactly. In those solvers based on local linearization, the flux at a point separating
two statesU LandU R is based on the eigenvalues and eigenvectors of some averageĀ. The
optimum choice forĀ is one satisfying

1Fn = Ā1U, (3.2.7)

where1(·)= (·)R − (·)L . This choice ofĀ captures discontinuities exactly. One way of
obtainingĀ is to seek an average statēU , which is a function ofU L andU R, such that

Ā = A(Ū ). (3.2.8)

Such a state is known as a Roe-averaged state. One can easily show that

ū = αuL + (1− α)uR (3.2.9)
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and

H̄ = αH L + (1− α)H R, (3.2.10)

where

α = 1

1+
√

ρR/ρL
. (3.2.11)

From the definition ofH one then obtains

h̄ = H̄ − 1

2
ū · ū. (3.2.12)

The discrete form of (3.2.1) yields the relation

χ̄ 1ρ + κ̄ 1ε̃ = 1p. (3.2.13)

The Roe-averaged sound speed is given by (3.2.5) as

c̄2 = χ̄ + κ̄ h̄. (3.2.14)

Equation (3.2.13) provides only one relation to determine ¯χ and κ̄. Sinceχ and κ are
functions ofT̂ only, the simplest assumption is that ¯χ andκ̄ depend only on̂T R andT̂ L .
Eliminating p, using (3.1.4), we rewrite (3.2.13) as

χ̄(ρR− ρL)+ κ̄(ρRεR− ρLεL) = ρRT̂ R− ρL T̂ L . (3.2.15)

Equating the coefficients ofρR andρL on the two sides of (3.2.15) we obtain the relations

κ̄ = 1T̂

1ε
(3.1.16a)

and

χ̄ = εRT̂ L − εL T̂ R

1ε
. (3.1.16b)

Equations (3.2.16a), (3.2.16b) are replaced by (3.2.2) when1ε→ 0. An important quantity
in the approximate Riemann solver is the columnvector R−11U . Its components are the
jumps in the characteristic variables. It is given by

R−11U =


1ρ −1p/c̄2

ρ̄b j ·1u/c̄
1
2(1p/c̄2+ ρ̄n ·1u/c̄)

1
2(1p/c̄2− ρ̄n ·1u/c̄)

 (3.2.17)

where

ρ̄ =
√

ρRρL . (3.2.18)
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3.3. Entropy Splitting for Other Equation Sets

In this subsection we examine the possibility of applying entropy splitting to other equa-
tion sets. We first consider nonequilibrium flow, consisting of a mixture of different species,
each obeying a thermally perfect gas law. The motivation is again the fact that this case can
also be treated exactly with Steger–Warming flux-vector splitting and Roe’s approximate
Riemann solver. We next consider the equations of magnetohydrodynamics, since there is
much current interest in their solution. Finally, we investigate the artificial compressibility
method applied to the solution of the incompressible equations.

3.3.1. Nonequilibrium flow. In nonequilibrium flow, we consider a mixture of species,
each obeying a thermally perfect gas law. The conservation law now takes the form

Ut +∇ · F = S, (3.3.1)

whereS is avectorconsisting of source terms for each species. The equation of state for
speciesi is

pi = ρ i Ri T, (3.3.2)

wherepi , ρ i , andRi are the pressure, density, and gas constant for speciesi , respectively,
andT is the temperature of the mixture, assumed to be in thermal equilibrium. If there are
ns species in the mixture, the indexi takes on values from 1 tons. The entropySi and
internal energyε i are then related toρ i andT by

dŜi = dε i

Ri T
− dρ i

ρ i
, (3.3.3)

where we have introduced the normalized variable

Ŝi = Si

Ri
. (3.3.4)

Note that we have not introduced a normalizedT̂ , since theRi are different for each species.
It again follows from (3.3.3) thatε i = ε i (T) only. All real species satisfy the conditions
ε̇ i > 0 andε̈ i > 0, whereε̇ i = dε i /dT. Equation (3.3.3) can be integrated to obtain

ρ i f i = e−Ŝi
, (3.3.5)

where

f i (T) = exp

(
−
∫

ε̇ i

Ri T
dT

)
. (3.3.6)

The arbitrary constant in the integral of (3.3.6) can be absorbed in the definition ofŜi .
We can now define the density of the mixture,ρ, as

ρ =
∑

i

ρ i , (3.3.7)
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the pressurep as

p =
∑

i

pi = ρRT, (3.3.8)

where

ρR=
∑

i

ρ i Ri , (3.3.9)

and the entropy per unit volume,ρS, as

ρS=
∑

i

ρ i Si . (3.3.10a)

Using (3.3.4), the last equation can be written as

ρRŜ=
∑

i

ρ i Ri Ŝi , (3.3.10b)

where

Ŝ= S

R
. (3.3.11)

Note that sinceR is no longer a constant,̂S is not proportional toS. Finally, we define the
internal energy of the mixture per unit volume as

ε̃ = ρε =
∑

i

ρ i ε i . (3.3.12)

The set of conservative variablesU can be represented by thevector

U = [R m e]T , (3.3.13a)

where thevectorR is defined as

R = (ρ1 ρ2 . . . ρns). (3.3.13b)

The temperatureT(U ) is obtained by solving implicitly the equation∑
i

ρ i ε i (T) = e−1

2

m ·m
ρ

, (3.3.14)

whereρ is given by (3.3.7). Equation (3.3.14) has a unique solution sinceρ i > 0 andε̇ i > 0.
The set of inviscid normal flux componentsFn is given by thevector

Fn = [Ru′ mu′ + pn eu′ + pun]T . (3.3.15)

The procedure to obtain the transformed variableW follows that of Subsection 3.1.
Equations (3.1.10)–(3.1.13), and (3.1.17)–(3.1.19a) in that subsection are still valid. With
the aid of (3.3.3), (3.3.7), (3.3.9), (3.3.10b), and (3.3.14) we obtain

W = [W w ¯̄w]T , (3.3.16a)
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where

W = (w1 w2 · · · wns), (3.3.16b)

wi = ξ̇

RT

[
−Ri T(1+ Ŝ− Ŝi )− βRT− ε i + 1

2

m ·m
ρ2

]
, i = 1, . . . , ns, (3.3.16c)

w = − ξ̇m
ρRT

, (3.3.16d)

and

¯̄w = ξ̇

RT
. (3.3.16e)

It is again useful to define a set of functions ofW that are homogeneous of degree 0,
involving only thermodynamic variables, as

µi (W) = wi

¯̄w
− w · w

2( ¯̄w)2
= −Ri T(1+ Ŝ− Ŝi )− βRT− ε i , i = 1, . . . , ns. (3.3.17)

Equations (3.3.16e) and (3.1.19a) can be combined to yield

(− ¯̄w)β(RT)β = e−Ŝ. (3.3.18)

In order to prove homogeneity, we let

ρ i = ai (− ¯̄w)β. (3.3.19)

Substituting (3.3.5), (3.3.18), and (3.3.19) into (3.3.17), we obtain

µi + ε i

Ri T
+ βR

Ri
+ 1− β ln(RT)+ ln(ai f i ) = 0. (3.3.20)

Combining (3.3.4), (3.3.9), and (3.3.10b) to eliminateρ i , yields

R=
∑

i ai Ri∑
i ai

. (3.3.21)

Substituting (3.3.5), (3.3.18), and (3.3.19) into (3.3.10b), we obtain

β ln(RT) =
∑

i ai Ri ln(ai f i )∑
i ai Ri

. (3.3.22)

Equation (3.3.20), (3.3.21), and (3.3.22) comprise a set of coupled nonlinear equations for
R, T , andai as functions ofµi . Since theµi are homogeneous functions ofW of degree 0,
it follows that R, T , andai are all homogeneous functions ofW of degree 0. It is then easy
to show thatU andFn are homogeneous functions ofW of degreeβ.

In order to obtain an expression forUW, we can combine the differentials of (3.3.5),
(3.3.17), and (3.3.18) to expressdρ i as a linear combination ofdwi , dw, d ¯̄w, d R, anddT.
From the differentials of (3.3.4), (3.3.5), (3.3.10b), and (3.3.18) we find thatdT equals a
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linear combination ofd ¯̄w, d R, andall the dρ i . By eliminatingdρ from the differentials
of (3.3.4) and (3.3.5) we see thatd R is also equal to a linear combination ofall the
dρ i . Therefore, obtainingUW requires inverting a dense linear system. It would thus be
difficult to establish the positive definite condition. Therefore the extension of the method
to nonequilibrium flow is not practically feasible. If the homogeneity condition is not
required, then one can use symmetry variables based on the physical entropy, as was shown
by Chalotet al. [37].

3.3.2. Magnetohydrodynamics.The set of conservative variablesU for magnetohydro-
dynamics is represented by thevector

U = [ρ m e B]T , (3.3.23a)

whereB is the magnetic field vector, and

e= ρε(T)+ 1

2

m ·m
ρ
+ 1

2
B · B. (3.3.23b)

The set of inviscid normal flux componentsFn is given by thevector

Fn =


ρu′

ρu′u+ n
(

p+ 1
2B · B)− BnB

eu′ + (p+ 1
2B · B) un − Bn(u · B)

unB− Bnu

 , (3.3.24)

whereBn = B · n.
Equation (3.3.23a) shows thatB is an element ofU , while (3.3.23b) shows that12B ·B is

a term ine, which is also an element ofU . It follows that bothB andecannot have the same
degree of homogeneity, and thereforeU cannot be a homogeneous function. This result is
not surprising, since the magnetic field vector is not a true conservative variable and is not
expected to behave the same way as the physical conservative variables.

3.3.3. Artificial compressibility method for incompressible flow.For the artificial com-
pressibility method for incompressible flows, the set of conservative variablesU for this
case is given by

U = [ p u]T , (3.3.25)

while the set of inviscid normal flux componentsFn is given by

Fn = [σu′ u′u+ pn]T , (3.3.26)

whereσ is the artificial compressibility. Since the second element ofU is u, while one of
the terms in the second element ofFn is uu · n it follows thatU and Fn cannot have the
same degree of homogeneity. This is also not surprising, sincep is not a true conservative
variable. In the compressible case, the velocity has homogeneity of degree 0, and it is the
density that is homogeneous of degreeβ. When the density is no longer a variable, the
homogeneity property disappears.
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IV. NUMERICAL EXAMPLES

The numerical experiments will be limited to a perfect gas. Three test cases are considered.
The first is inviscid and the last two are compressible mixing layer computations. These test
cases were also considered in [13]. The three test cases are: (1) a horizontally convecting
vortex, (2) a vortex pairing in a time-developing mixing layer with shock waves formed
around the vortices, and (3) a shock wave impinging on a spatially evolving mixing layer
where the evolving vortices must pass through a shock wave, which in turn is deformed by
the vortex passage. For the two mixing layer computations, the study will be limited to the
choice of theβ that determines the amount of splitting in obtaining the same shock location
as the un-split approach. For the Navier–Stokes computations involving entropy splitting,
the splitting is applied to the inviscid flux terms, and the symmetric form of the viscous flux
is not used (see Section I).

In all of the computations the classical fourth-order Runge–Kutta time discretization
is employed. For the purposes of this paper we concentrate on the non-compact central
schemes (2.3.1) and (2.3.2) with the same order of accuracy and type of base scheme for the
convection and viscous terms (if viscosities are present). Compact schemes (2.3.3) are also
applicable, but require nearly twice the CPU time that the non-compact central schemes
require for 2-D compressible mixing layer computations and will not be addressed in this
paper.

If numerical dissipation is added, the filters (2.4.2), (2.4.5), and (2.4.6) are used at the
end of the full Runge–Kutta time step. Roe’s average states [38] are used in (2.4.1). For
most of the computations, the Harten and Yee (see [21–26]) second-order upwind TVD
dissipation forφl

j+1/2 in (2.4.2) is used. These will be notated as ACM with the fol-
lowing numbers indicating the order of the base scheme for the convection and viscous
terms. For example, ACM44 means the use of fourth-order central as the base scheme
for both the convection and viscous terms. In order not to introduce additional notation,
inviscid flow simulations are designated by the same notation, with the viscous terms not
activated. Computations using symmetric TVD dissipation (Yee [22, limiter (2.7b)]) are
indicated by adding the letterS, as in ACM44S. Computations using entropy splitting
are indicated by adding the letters ENT at the end as in ACM44-ENT. To examine the
performance of the entropy splitting schemes where shock waves are absent, the computa-
tions also employ only the non-dissipative central base schemes (without the ACM filters)
designated as CEN22, CEN44, and CEN66 for second, fourth, and sixth order, respecti-
vely.

The inviscid case uses a uniform Cartesian grid. The two compressible mixing layer test
cases use a uniform Cartesian grid in thex-direction and a mildly stretched Cartesian grid
in the y-direction. In order to assess the true performance of the algorithm, no attempt is
made to enhance the resolution using appropriate adaptive grid procedures. The code used
for the Yeeet al. [13] study is employed for the present study. For non-periodic boundary
conditions (BCs), the code reduces to lower order central base schemes near the boundary
points. For the current study, we employ the same numerical BCs treatment in order to
have a one-to-one comparison with the results obtained in [13]. Appropriate stable bound-
ary difference operators developed by Strand should be used but are not yet implemented
for the present study. The global accuracy of the scheme related to intermediate BC treat-
ment for the multi-stage Runge–Kutta method (Carpenteret al. [39]) is not addressed
here. Except for the vortex convection problem, all computations impose intermediate BC
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updates. Special treatment of the temporally (Carpenteret al.) and spatially dependent
physical BCs related to the Runge–Kutta method is not considered for the two compress-
ible mixing layer cases and such treatment is beyond the scope of this paper. Nonreflecting
BCs or characteristic inflow and outflow boundary treatments are also not implemented.
As indicated in the objective section, we explore the possible side benefits of the entropy
splitting without considering the accompanying stable numerical boundary difference oper-
ator as a complete package for stability requirements. The three numerical examples were
chosen to consist of periodic BCs, or computational domains whose boundaries are far
enough away so as to not affect the mainstream flow activities. For the non-periodic cases,
lower order non-characteristic boundary schemes are used. Evaluation of the performance
of these schemes for the two compressible mixing layer test cases should take the above
assumption into consideration.

4.1. Isentropic Vortex Evolution

The first test case is the evolution of a 2-D inviscid isentropic vortex in a freestream with
periodic BCs in both spatial directions. The freestream flow velocity,u∞ andv∞, pressure,
p∞, and density,ρ∞ are(u∞, v∞) = (1, 0) andp∞= ρ∞= 1. An isentropic vortex with no
perturbation in entropy (δS= 0) is added to the freestream flow field as initial conditions.
The perturbation values are given by

(δu, δv) = β̂

2π
e

1−r 2

2 (−ȳ, x̄), (4.1.1)

δT = − (γ − 1)β̂2

8γπ2
e1−r 2

, (4.1.2)

whereβ̂ is the vortex strength andγ = 1.4. Note that the vortex strengtĥβ should not be
confused with theβ in Subsection 2.1.2. HereT = p

ρ
, T∞ = 1.0,(x̄, ȳ)= (x−xv0, y− yv0),

wherexv0 andyv0 are the initial coordinates of the center of the vortex, andr 2= x̄2 + ȳ2.
The entire flow field is required to be isentropic. Thus, for a perfect gas,p/ργ = 1.

From the relations,u= u∞+δu, v = v∞+δv, T = T∞+δT , and the isentropic relation,
the resulting initial state for the conservative variables is given by

ρ = T
1

γ−1 = (T∞ + δT)
1

γ−1 =
[
1− (γ − 1)β̂2

8γπ
e1−r 2

] 1
γ−1

(4.1.3)

ρu = ρ(u∞ + δu) = ρ

[
1− β̂

2π
e

1−r 2

2 ȳ

]
(4.1.4)

ρv = ρ(v∞ + δv) = ρ
β̂

2π
e

1−r 2

2 x̄ (4.1.5)

p = ργ (4.1.6)

e= p

γ − 1
+ 1

2
ρ(u2+ v2). (4.1.7)

Note that there are misprints for the corresponding Eqs. (4.1.4) and (4.1.5) in [13] (Eqs. (3.4)
and (3.5) in [13]).
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The exact solution with given initial states is just a passive convection of the vortex with
the freestream velocity and thus provides a good measure of the accuracy of the schemes
for smooth solutions of the nonlinear Euler equations. The vortex strengthβ̂ = 5 is fixed
for all runs. Letk be the order of the central scheme; then the initial vortex covers a domain
0 ≤ x ≤ 10+ 0.125k and−5 ≤ y ≤ 5 and its center is placed at(xv0, yv0)= (5, 0). A
uniform grid spacing of1x= 0.125 and1y= 10/(79+ k) is used. Although the actual grid
size is 80× 79, regardless of the order of the scheme, the grid size including ghost cells to
accommodate the periodic BCs is(80+ k)× (79+ k). The reason for using an odd number
of grid points in they-direction is due to the compressible mixing layer structure of the code
to accommodate fluctuations added to the inflow. The vortex is convected to the right by the
mean flow velocity. Since there are no shock waves or steep gradient regions for this flow,
the filter is used only to stabilize the nonlinear governing equations. For this reason, the
filter coefficientκ (2.4.2), if needed, should be kept very small. We use 0.001≤ κ ≤ 0.07
for the computations. Due to the isentropic flow property, one can setp∗ (2.1.11c) to be a
constant.p∗ = 1 is used for this test case.

Density profiles at the centerline,y = 0, cutting through the center of the initial vortex
are used for comparing the various schemes. Due to the time and spatial discretization
numerical errors, the vortex, after long time integrations, can drift away from the centerline.
The amount of drift depends on the scheme, grid size, and the time step. If the computed
vortex drifts away from the centerline but still preserves the vortex shape and strength, the
centerline,y= 0, density profiles do not convey the full information and can be misleading.
We complement the comparison with snap shots of density contours at different times up to
110 spatial periods. Here, one period is defined as the length of the periodic computational
domain. The time required for one spatial period ist = 10. In all of the computationsδ= 0.1,
whereδ is defined by (2.26a) of [13]. The limiter used is that given by Eqs. (2.25f) of [13].
Here,δ is the entropy satisfying parameter of Harten and Hyman [40] for TVD schemes. As
recommended by Carpenteret al., no intermediate BC update is imposed to improve the time
accuracy of the multistage Runge–Kutta methods. The computations using intermediate BC
updates do not have a drastic effect, but tend to diverge a little earlier than the case where
there are no intermediate BC updates.

We present results for sixth-order schemes. (Comparisons with second- and fourth-order
results are made in the following discussions.) Centerline distributions for CEN66, CEN66-
ENT, ACM66, ACM66-ENT, and ACM66S-ENT are shown in Figs. 4.1.1–4.1.7. Snapshots
of selected density contours for these schemes are shown in Figs. 4.1.8–4.1.12. The per-
formance of the central schemes (with or without ACM) using entropy splitting and their
un-split cousins is evaluated based primarily on vortex preservation capability after long
time integrations of up to 130 periods (t = 1300). The discussion of numerical results is
divided into the following:

(a) Effect of the order of accuracy of the base scheme (1t = 0.04). We ran some com-
putations with second- and fourth-order accurate base schemes for1t = 0.04 (not shown)
and compared them with the sixth-order results. CEN22 diverged after 3.5 periods, CEN44
diverged after 6.8 periods, and CEN66 diverged after 5.17 periods. With no dissipation, the
more accurate CEN66 computations had nonlinear instability which caused it to diverge
slightly earlier than the CEN44 case. Even so, the CEN66 density distribution was very
accurate up to 5 periods, as seen from Fig. 4.1.1c. It did show oscillations at period 5,
indicating incipient instability at period 5.17.



ENTROPY SPLITTING AND DISSIPATION 61

FIG. 4.1.1. Convecting vortex: Comparison of CEN66 with the exact solution (solid line), illustrated by
density profiles at the centerliney = 0, at t = 10, 20, 30, 40, 50 (curves 2–6) for1t = 0.01, 0.02, 0.04, on a
80× 79 grid.

FIG. 4.1.2. Convecting vortex: Comparison of CEN66-ENT with the exact solution (solid line), illustrated by
density profiles at the centerliney= 0, att = 100, 200, 300, 400, 500 (curves 2–6) for1t = 0.01, att = 100, 200,
300 (curves 2–4) for1t = 0.02, and att = 30, 50, 100, 150, 160 (curves 2–6) for1t = 0.04 on a 80× 79 grid.
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FIG. 4.1.3. Convecting vortex: Comparison of ACM66 with the exact solution (solid line), illustrated by
density profiles at the centerliney= 0, att = 100, 200, 300 (curves 2–4) for1t = 0.01, 0.02, 0.04,κ = 0.06 on a
80× 79 grid.

FIG. 4.1.4. Convecting vortex: Comparison of ACM66-ENT with the exact solution (solid line), illustrated by
density profiles at the centerliney= 0, att = 100, 200, 300 (curves 2–4) for1t = 0.01, 0.02, 0.04 andκ = 0.01,
and for1t = 0.04 andκ = 0.04 on a 80× 79 grid.
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FIG. 4.1.5. Convecting vortex: Comparison of ACM66-ENT with the exact solution (left-most solid line),
illustrated by density profiles at the centerliney= 0, att = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1100, 1200 for1t = 0.02 andκ = 0.01 on a 80× 79 grid. The left-most solid curve is the exact solution and the
rest of the curves shifted to the right are the corresponding time sequences in an increasing order.

FIG. 4.1.6. Convecting vortex: Comparison of ACM66-ENT with the exact solution (left-most solid line),
illustrated by density profiles at the centerliney= 0, att = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1100, 1200, 1300 for1t = 0.01 andκ = 0.01 on a 80× 79 grid. The left-most solid curve is the exact solution
and the rest of the curves shifted to the right are the corresponding time sequences in an increasing order.

FIG. 4.1.7. Convecting vortex: Comparison of ACM66S-ENT with the exact solution (solid line), illustrated
by density profiles at the centerliney= 0, at t = 100, 200, 300 (curves 2–4) for1t = 0.01 andκ = 0.005 on a
80× 79 grid.
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FIG. 4.1.8. Convecting vortex: Comparison of CEN66 with the exact solution (I.C.), illustrated by density
contours att = 20, 30, 40, 50, 55 for1t = 0.01 on a 80× 79 grid.

FIG. 4.1.9. Convecting vortex: Comparison of CEN66-ENT with the exact solution (I.C.), illustrated by
density contours att = 100, 200, 300, 400, 500 for1t = 0.01 on a 80× 79 grid.
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FIG. 4.1.10. Convecting vortex: Comparison of ACM66-ENT with the exact solution (I.C.), illustrated by
density contours att = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 for1t = 0.04 andκ = 0.04 on a
80× 79 grid.

With the entropy splitting, the CEN22-ENT case diverged at 4.4 periods, the CEN44-ENT
at 13 periods, and the CEN66-ENT at 17 periods for1t = 0.04. The latter distribution is
shown in Fig. 4.1.2c. Note that the entropy splitting allowed the calculation to proceed many
periods further before it diverged, but, more significantly, the stability was improved as the
order of accuracy was increased. This demonstrates the stabilizing effect of the entropy
splitting. For a smaller1t = 0.01, the CEN66-ENT is stable up to 53 periods. See the later
discussions.

The addition of dissipation improved the performance markedly. Using the same1t =
0.04, the ACM22 case withκ = 0.07 diverged after 10 periods, the ACM44 withκ = 0.06
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FIG. 4.1.11. Convecting vortex: Comparison of ACM66-ENT with the exact solution (I.C.), illustrated by
density contours att = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 for1t = 0.02 andκ = 0.01 on a
80× 79 grid.

became very distorted after 40 periods (withκ = 0.04 diverged after 32 periods), and the
ACM66 with κ = 0.06 remained stable for as long as we ran. (We stopped computing after
120 periods.) The density contours for this last case are shown in Fig. 4.1.12 of Yeeet al.
[19]. Note that the vortex center starts to drift vertically and horizontally, and undergoes
gradual smearing and distortion starting at period 40 (see later discussion). The centerline
distribution in Fig. 4.1.3c is therefore shown only up to period 30. The agreement with the
exact solution is excellent.
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FIG. 4.1.12. Convecting vortex: Comparison of ACM66-ENT with the exact solution (I.C.), illustrated by
density contours att = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 for1t = 0.01 andκ = 0.01 on a
80× 79 grid.

The addition of the entropy splitting yields further improvement. The ACM22-ENT
with κ = 0.07 remained stable, but the solution became very distorted at 30 periods. The
ACM44-ENT withκ = 0.04 similarly became severely distorted and drifted vertically and
horizontally beyond 40 periods. The ACM66-ENT solution withκ = 0.04 remained very
good up to period 120 (Fig. 4.1.10), although it started to drift to the right and upward even
at period 30. This drift is evident from the centerline distributions in Fig. 4.1.4d.
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(b) Effect of ACM dissipation.We first will compare sixth-order computational results
without dissipation (CEN66) with those due to added second-order upwind dissipation
(ACM66). Results without entropy splitting for1t = 0.04, 0.02, and 0.01 are shown in
Figs. 4.1.1 and 4.1.8 for CEN66, and Figs. 4.1.3 for ACM66. The CEN66 computations
diverged shortly after five periods for all three time steps. The ACM66 computations re-
mained stable for as long as we ran (120 periods) for all three time steps. Due to the drift of
the vortex center, the centerline distributions in Fig. 4.1.3 are shown only up to 30 periods.
Note that up to that time, the larger time step,1t = 0.04 experienced less drift than the
smaller time steps. The density contours for1t = 0.04 show smearing and distortion as we
increase the duration of the time integration.

Results with entropy splitting are shown in Figs. 4.1.2 and 4.1.9 for CEN66-ENT, and
Figs. 4.1.4, 4.1.6, and 4.1.10–4.1.12 for ACM66-ENT. The entropy splitting for the non-
dissipative computation (CEN66-ENT) allows a much longer time integration than that of
CEN66 before it diverged, but even for the smallest time step,1t = .01, the solution for
CEN66-ENT deteriorated after 30 periods. Since ACM66-ENT allows a stable computation
with less dissipation, the entropy splitting (κ = 0.01 and1t = 0.02, 0.01) eliminated the
distortion and smearing found in the ACM66 computations. The center of the vortex still
drifted as we increased the time of the computation, but for the smallest time step,1t = 0.01,
there was only a very small drift to the right, even at 130 periods. Otherwise the vortex
remained undistorted. Figures 4.1.5 and 4.1.6 show the centerline density distribution for
10–130 periods with a 10-period increment. One can see the drifting effect as a function of
the1t . Aside from the drifting, the vortex is still quite accurate. This is evident from the
density contours Figs. 4.1.11 and 4.1.12.

We would like to point out that the vertical drifting of the vortex away from the centerline
y= 0 and horizontal drifting (or rather shifting) are quite common for all schemes beyond
30 periods. Depending on the scheme, the amount of numerical dissipation and the time step,
drifting can occur as early as 5 periods. We believe that the vertical drifting is due largely
to the spatial numerical dissipation of the scheme. This is evident from theκ refinement
study. See Figs. 4.1.10 and 4.1.12. The horizontal drifting is due largely to the phase error
of the time integrator. This is evident from the time step refinement study on ACM66-ENT
usingκ = 0.01. See Figs. 4.1.5, 4.1.6, 4.1.11, and 4.1.12.

(c) Effect of the adjustable ACM parameterκ. Although we experimented with various
values ofκ (0.01≤ κ ≤ 0.07) to find the optimum value, we show some results only for
the case giving the best solution, namely ACM66-ENT. For the larger time step,1t = 0.04,
Fig. 4.1.4 shows a negligible effect up to 30 periods when increasing the value ofκ from
0.01 (Fig. 4.1.4c) to 0.04 (Fig. 4.1.4d). The computationκ = 0.04 and1t = 0.04 remained
stable, although with some distortion and smearing, as shown by the density contours in
Fig. 4.1.10. Actually, this case gives slightly better results than the one usingκ = 0.01
and the same time step size (not shown). The computation is not stable forκ < 0.01 and
1t ≥ 0.01 for the ACM66-ENT scheme.

(d) Effect of entropy splitting. The cases discussed above clearly show the advantages
of using entropy splitting. For the cases without dissipation, CEN66-ENT, the splitting
allowed the computation to proceed for a much longer time before it became unstable. The
real advantage came when used in conjunction with the upwind filter, ACM66-ENT, where
excellent solutions with just a very small amount of drift were obtained after long time
integrations of 130 periods.
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(e) Effect of the time step.In general, decreasing the time step1t gave a better solution.
For the base scheme CEN66, the improvement in decreasing the time step from 0.04 to 0.01
was negligible. However, with entropy splitting, decreasing the time step had a significant
effect, as seen from the results for CEN66-ENT in Figs. 4.1.2 and 4.1.9 and Figs. 4.1.10 of
Yeeet al. [19]. The improvement with decreasing time step was not as marked when the
ACM filter was applied. (Figure 4.1.3 showing the density distributions for ACM66 actually
appears to show an improvement withincreasingtime step. This is misleading, since the
slight upward drift of the vortex center produced a shift in the centerline distributions for the
smaller time steps. The density contours illustrate similar vortex preservation capability (not
shown).) The improvement in decreasing the time step from 0.02 to 0.01 is clearly shown in
the density distribution and density contours for ACM66-ENT of Figs. 4.1.5, 4.1.6, 4.1.11,
and 4.1.12. The significant downward drift for1t = 0.02 has been totally eliminated for
1t = 0.01. The drift to the right has also been virtually eliminated. A quantitative evaluation
of the solution for1t = 0.01 can be obtained from the centerline distribution for ACM66-
ENT in Fig. 4.1.6. Even at 130 periods, the profile is undistorted, with a shift due to the
small drift to the right.

(f) Effect of symmetric vs upwind ACM.We confine the comparison to the best solution,
namely ACM66-ENT for1t = 0.01. The centerline distributions up to period 30 for the
symmetric ACM case, ACM66S-ENT in Fig. 4.1.7, are as good as for the upwind case,
ACM66-ENT in Fig. 4.1.4a. The symmetric TVD dissipation of Yee [22, limiter 2.7b] was
used. Note that the value ofκ in the former case has been decreased to 0.005. A more
meaningful comparison can be made by examining the density contours up to 110 periods
for the two cases in Fig. 4.1.12 and Fig. 4.1.16 of Yeeet al. [19]. The symmetric ACM
solution undergoes some distortion and upward drift as the period is increased. Actually
ACM66S-ENT with κ = 0.005 and1t = 0.01 produced better results than ACM66-ENT
with κ = 0.04 and1t = 0.01 orκ = 0.01 and1t = 0.04. The drifting behavior also occurs
with ACM66-ENT if κ ≥ 0.04 or forκ = 0.01 and1t = 0.04. If we had used a larger value
of κ = 0.01 for the symmetric case, the solution would have become very inaccurate. On the
other hand, a smaller value ofκ = .001 produced an unstable solution due to insufficient
dissipation. It appears that the use of symmetric ACM filter in conjunction with entropy
splitting is also computationally attractive. In all of the computations using ACM, the
solution is quite sensitive to the value ofκ and the time step size, although the upwind
ACM appears to be a bit less sensitive.

(g) Effect of the splitting parameterβ. All of the calculations shown for the entropy
splitting have been for a value ofβ = 1 (α = −1.8). This produces an equal amount of
conservative and non-conservative splitting. We have also run some cases forβ = 0.5 (α =
−1.6). This gives a splitting that is one-third conservative and two-thirds non-conservative.
The results are slightly worse than for theβ = 1 case. Increasing the conservative proportion
beyond 80% will defeat the purpose of using the splitting for this particular example since
the gain in stability is diminished by the expense of the added CPU computation required
by the splitting.

In summary, the use of entropy splitting in conjunction with an upwind TVD ACM
filter has preserved a horizontally convecting vortex with great accuracy after long time
integration of 130 periods. The splitting helps minimize the use of numerical dissipation.
To the authors’ knowledge, highly accurate finite discretization computations previously
reported in the literature were only carried out up to 10 periods of integration.
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4.2. Vortex Pairing in a Time-Developing Mixing Layer

This test case involved vortex growth and pairing in a temporal mixing layer at a con-
vective Mach number equal to 0.8. At this Mach number there are shock waves (shocklets)
that form around the vortices and the problem is to compute accurately the vortex evolution
while avoiding oscillations around the shocks. Previous calculations of the problem can be
found in [13, 41–45]. Figure 4.2.1 shows a schematic of the physical problem. Here we set
up a base flow as in Sandham and Yee [45]

u = 0.5 tanh(2y), (4.2.1)

with velocities normalized by the velocity jumpu1−u2 across the shear layer and distances
normalized by the vorticity thickness,

δω = u1− u2

(du/dy)max
. (4.2.2)

Subscripts 1 and 2 refer to the upper (y > 0) and lower (y < 0) streams of fluid, respectively.
The normalized temperature and hence local sound speed squared is determined from an
assumption of constant stagnation enthalpy

c2 = c2
1 +

γ − 1

2

(
u2

1− u2
)
. (4.2.3)

Equal pressure through the mixing layer is assumed. Therefore, for this configuration of
u2=−u1 both fluid streams have the same density and temperature fory → ±∞ . The
Reynolds number defined by the velocity jump, vorticity thickness, and kinematic viscosity
at the freestream temperature is set equal to 1000. The Prandtl number is set to 0.72, the
ratio of specific heats is taken asγ = 1.4, and Sutherland’s law with reference temperature
TR = 300◦ K is used for the viscosity variation with temperature. The reference sound
speed squared,c2

R, is taken as the average ofc2 over the two free streams.
Disturbances are added to the velocity components in the form of simple waves. For the

normal component of velocity we have the perturbation

v′ =
2∑

k=1

ak cos(2πkx/Lx + φk) exp(−y2/b), (4.2.4)

whereLx = 30 is the box length in thex-direction andb = 10 is they-modulation. In
our test case we simulate pairing in the center of the computational box, by choosing the
initially most unstable wavek = 2 to have amplitudea2 = 0.05 and phaseφ2 = −π/2, and
the subharmonic wavek = 1 with a1 = 0.01 andφ1 = −π/2. Theu-velocity perturbations
are found by assuming that the total perturbation is divergence free. Even though these
fluctuations correspond only approximately to eigenfunctions of the linear stability problem
for a compressible mixing layer, they serve the purpose of initiating the instability of the
mixing layer and have the advantage as a test case in that they can be easily coded.

Numerically the grid is equally spaced and periodic in thex-direction and stretched in
the y-direction, using the mapping

y = L y

2

sinh(byη)

sinh(by)
, (4.2.5)
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FIG. 4.2.1. Schematic of the vortex pairing in a time-developing mixing layer.

where we take the box size in they-directionL y = 100, and the stretching factorby = 3.4.
The mapped coordinateη is equally spaced and runs from−1 to+1. The boundaries at
±L y/2 are taken to be slip walls. For example, at the lower boundary

ρ1 = ρ2, (4.2.6a)

(ρu)1 = (ρu)2, (4.2.6b)

(ρv)1 = 0, (4.2.6c)

(e)1 = [4(e)2− (e)3]/3, (4.2.6d)

where subscripts here refer to the grid point ande is the total energy.
We compute this test case on a 101× 101 grid. A grid refinement study was performed

in [13]. Figure 4.2.2, a reference solution taken from Yeeet al.[13] using ACM44, shows a

FIG. 4.2.2. Vortex pairing: Four stages in the vortex pairing, at timest = 40, 80, 120, 160, showing the
normalized temperature contours for a 201× 201 grid withκ = 0.7 for the nonlinear fields andκ = 0.35 for the
linear fields using ACM44.
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snapshot of the temperature contours att = 40, 80, 120, and 160 using ACM44, illustrating
the roll-up of the primary vortices followed by vortex merging. Shock waves and shears
form around the vortices with a peak Mach number ahead of the vortex of approximately
1.55 att = 120. The grid is 201× 201.

For this vortex pairing in a time-developing mixing layer, we study only the effect of
the choice of the arbitrary splitting parameterβ (i.e., the proportion of conservative and
non-conservative parts of the splitting) in obtaining the same shock location as the un-
split approach with scheme ACM66-ENT using1t = 0.1. In all of the computations for
the vortex pairing case, limiter (2.25h), andδ= 0.25 (2.26a) of [13] are used andκ = 0.7
(2.4.2) is used for the nonlinear fields for the ACM methods. An intermediate BC update is
imposed in order to have a one-to-one comparison with the Yeeet al. [13] results.

We considerα=−100,−10,−5,−3,−2,−1.8 (β = 1), −1.6, 0.1, 1 (β =−6), 2, 5,
10, 100 withβ = (α + γ )/(1− γ ). The scheme diverges forα = 0.1. This corresponds to
136.36% of the conservative proportion and−36.36% the non-conservative proportion.

By monitoring the leftλ-shock location, studies indicate that forα > |5|, the same shock
location and shock strength of theλ-shock are obtained as in the un-split approach. With
the exception of a small increase in spurious noise in the vicinity of the shock (not shown),
it is surprising to see that a slightly over 100% conservative proportion (α > 0) and the cor-
responding negative non-conservative proportion would give the correct shock strength and
location. Away from theλ-shock area, the solution is less sensitive to the choice ofα > |5|.

For the physical choice ofα <−γ , we obtain the opposite effect as compared to that of
α > 0, in terms of spurious noise. Asα→ 1− 2γ , the entropy splitting has a spurious noise
reduction capability when compared with the un-split approach. For example, the shock
strength and location that are a bit away from theλ-shock are almost the same forα=−3
(β = 4) as forα=−5 (β = 9), except thatα=−3 has a bigger smoothing effect on the
spurious noise generated by the scheme (especially when a more compressive flux limiter is
employed). In addition, for−5< α <−γ , a bigger negativeα in that range results in more
shift of theλ-shock location away from the un-split approach location. For example, for
α=−3, there is a shift of approximately 1− 1 1/2 grid points. The shock strength reduction
at theλ-shock location is very small. A reduction in1t might improve the accuracy of the
shift in the shock location, based on the vortex convection case. Here, we only compare the
results with the un-split approach using the same time step and BCs as reported in [13].
Figure 4.2.3 illustrates the normalized temperature att = 160 usingα=−5 andα=−3 on
a 101× 101 grid. Except for a slight noise reduction in the vicinity of the shock, theα=−5
solution is almost identical to the un-split computation. To illustrate the noise reduction
capability of the splitting, Fig. 4.2.4 shows a comparison of the split and un-split forms
with the ACM filter turned off for the linearly degenerate fields (u, u andv, v characteristic
fields) usingα=−3 (β = 4). One can see the noise reduction effect of the entropy splitting
on the scheme which, at the same time, maintains the accuracy of the shock and shears away
from theλ-shock location as in the un-split approach. Since the entropy splitting requires
the same amount of filter as the un-split approach for this type of rapidly developing shock-
turbulence interactions, its stabilizing effect is only on the spurious noise reduction, and the
benefit is not as pronounced as for the smooth flow case. Followup studies by Sandham and
Yee [16], Hadjadjet al.[17] and Yeeet al.[46] reveal that for turbulent flows involving long
time integrations that contain weak or no shock waves, the entropy splitting can minimize
the use of numerical dissipation due to its unique nonlinear stability property.
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FIG. 4.2.3. Vortex pairing: Comparison of normalized temperature contours forα=−5 and−3 with the
un-split approach at timet = 160 on a 101× 101 grid withκ = 0.7 for the nonlinear fields andκ = 0.35 for the
linear fields using ACM66.

FIG. 4.2.4. Vortex pairing: Comparison of normalized temperature contours forα=−3 with the un-split
approach at timet = 160 on a 101× 101 grid withκ = 0.7 for the nonlinear fields andκ = 0 for the linear fields
using ACM66.



74 YEE, VINOKUR, AND DJOMEHRI

FIG. 4.3.1. Schematic of the shock impingement on a spatially developing mixing layer.

4.3. Shock Wave Impingement on a Spatially Evolving Mixing Layer

The third test case has been developed to test the behavior of the schemes for shock
waves interacting with shear layers where the vortices arising from shear layer instability
are forced to pass through a shock wave. Figure 4.3.1 shows the schematic of the physical
problem. An oblique shock is made to impact on a spatially developing mixing layer at
an initial convective Mach number of 0.6. The shear layer vortices pass through the shock
system and later through another shock, imposed by reflection from a (slip) wall at the lower
boundary. The problem has been arranged with the Mach number at the outflow boundary
everywhere supersonic so that no explicit outflow boundary conditions are required. This
allows us to focus on properties of the numerical schemes rather than on the boundary
treatment.

Figure 4.3.2, a reference solution taken from Yeeet al. [13] using ACM44, shows the
nature of the flow on a 641× 161 grid illustrating the pressure, density, and temperature

FIG. 4.3.2. Shock-shear-layer interaction: The reference solution att = 120 using ACM44. Contours are
shown of (a) density, (b) pressure, and (c) normalized temperature for a 641× 161 grid withκ = 0.35 for the
nonlinear fields andκ = 0.175 for the linear fields.



ENTROPY SPLITTING AND DISSIPATION 75

fields using the ACM44 method and the same limiter as the pairing case withκ = 0.35 for
nonlinear characteristic fields andκ = 0.175 for linear characteristic fields. The time step is
1t = 0.12. The entropy satisfying parameterδ of Harten and Hyman [40] is set to 0.25. An
oblique shock originates from the top left hand corner and this impacts on the shear layer at
aroundx= 90. The shear layer is deflected by the interaction. Afterwards we have a shock
wave below the shear layer and an expansion fan above it. The shock wave reflects from
the lower solid wall and passes back through the shear layer. The lower wall uses a slip
condition so no viscous boundary layer forms and we focus on the shock-wave interaction
with the unstable shear layer.

The inflow is specified again with a hyperbolic tangent profile, this time as

u = 2.5+ 0.5 tanh(2y), (4.3.1)

giving a mixing layer with upper velocityu1= 3, lower velocityu2= 2, and hence a velocity
ratio of 1.5. Equal pressures and stagnation enthalpies are assumed for the two streams,
with convective Mach number, defined by

Mc = u1− u2

c1+ c2
, (4.3.2)

equal to 0.6 c1 andc2 are the freestream sound speeds. The reference density is taken as
the average of the two free streams and a reference pressure as(ρ1+ ρ2)(u1−u2)

2/2. This
allows one to compute the inflow parameters as given in the first two columns of Table II.
Inflow sound speed squared is found from the relation for constant stagnation enthalpy
(4.2.3). Theθ in Table II is the flow inclination angle with respect to thex-direction.

The upper boundary condition given in column 3 of Table II is taken from the flow proper-
ties behind an oblique shock with angleβ̃ = 12◦. The table also gives the properties behind
the expansion fan (column 4) and after the oblique shock on the lower stream of fluid (column
5) computed by standard gasdynamics methods withβ̃ = 38.118◦. In practice, the conditions
in regions 4 and 5 do not correspond exactly to the simulations due to the finite thickness
of the shear layer. The Mach number of the lower stream after this shock is approximately
M5= 1.6335 and remains supersonic through all the successive shocks and expansion fans
up to the outflow boundary. The resulting shock waves are not strong, but tests showed that

TABLE II

Flow Properties for the Shock-Wave/Shear-Layer Test Case

in Various Regions of the Flow

Property (1) (2) (3) (4) (5)

u-velocity 3.0000 2.0000 2.9709 2.9792 1.9001
v-velocity 0.0000 0.0000 −0.1367 −0.1996 −0.1273
θ (degrees) 0.0000 0.0000 2.6343 3.8330 3.8330
Densityρ 1.6374 0.3626 2.1101 1.8823 0.4173
Pressureρ 0.3327 0.3327 0.4754 0.4051 0.4051
Sound speedc 0.5333 1.1333 0.5616 0.5489 1.1658
Mach number|M | 5.6250 1.7647 5.2956 5.4396 1.6335

Note.(1) Upper stream inflow, (2) lower stream inflow, (3) upper stream after oblique
shock, (4) upper stream after expansion fan, (5) lower stream after shock wave.
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they could not be computed without using shock-capturing techniques. The lower boundary
was specified with the same slip condition used for the pairing case (Eq. (4.2.6)).

The Prandtl number and ratio of specific heats were taken to be the same as for the vortex
pairing test case. The Reynolds number was chosen to be 500. Fluctuations are added to
the inflow as

v′ =
2∑

k=1

ak cos(2πkt/T + φk) exp(−y2/b), (4.3.3)

with periodT = λ/uc, wavelengthλ= 30, convective velocityuc= 2.68 (defined byuc=
(u1c2+ u2c1)/(c1+ c2)) andb= 10. Fork= 1 we takea1= 0.05 andφ= 0, and fork= 2
we takea2= 0.05 andφ=π/2. No perturbations are added to theu-component of velocity.

The grid is taken to be uniform inx and stretched iny according to Eq. (4.2.5) with
by= 1. This stretching is much milder than for the pairing problem, as we have to resolve
the shear layer even when it deflects away fromy= 0. The box lengths were taken to be
Lx = 200 andL y= 40.

The reference solution indicates that vortex cores are located by low pressure regions and
the stagnation zones between vortices by high pressure regions. The shock waves are seen
to be deformed by the passage of the vortices. Another interesting observation is the way
the core of the vortex atx= 148 has been split into two by its passage through the reflected
shock wave. In spite of the relatively high amplitude chosen for the subharmonic inflow
perturbation, there is no pairing of vortices within the computational box. We do, however,
begin to see eddy shock waves around the vortices near the end of the computational box
where the local convective Mach number has increased to around 0.66. The oscillations seen
near the upper boundary forx > 120 occur where the small Mach waves from the initial
perturbations arrive at the upper boundary. The use of characteristic boundary conditions
should remove this problem. Practically, the amplitude of oscillations is not sufficient to
cause numerical instability or affect the remainder of the flow.

For this shock wave impingement on a spatially evolving mixing layer, again, we study
only the effect of the choice of the arbitrary splitting parameterβ in obtaining the same shock
location as the un-split approach. The study is limited to ACM66-ENT and ACM66 using
the fifth limiter of Eq. (2.25h) of [13], and the sameκ value and time step size (1t = 0.12) as
the reference solution. Intermediate BC updates are imposed in order to have a one-to-one
comparison with the Yeeet al.[13] result. We considerα=−100,−10,−5,−3,−2,−1.8
(β = 1),−1.6, 0.1, 1(β =−6), 2, 3, 4, 5, 10, 20, 100. Studies indicate that forα=−2,−1.8,
−1.6, 0.1, 1, 2, 3, 4, 5 the solution diverges. The rest of theα values for|α| ≥ 10 produce
almost identical results as the un-split case. This example poses a more stringent requirement
on theα range than the vortex pairing case. Figure 4.3.3 compares the un-split pressure
contours with the split case forα=±10 at t = 120 on a 321× 81 grid with 1t = 0.12.
The value ofα=+10 (β =−28.5) corresponds to a 103.6% conservative proportion and a
small negative non-conservative proportion. Theα=−10 (β = 21.5) corresponds to a less
than 100% conservative proportion. Note that theα=−10 solution produces spurious noise
reduction, while theα=+10 solution actually induces more spurious noise than the un-
split approach. This opposite effect of the spurious noise phenomena forα > 0 andα <−γ

is shared with the vortex pairing example. Again, for turbulent flows involving long time
integrations that contain weak or no shock waves, entropy splitting can minimize the use
of numerical dissipation due to its unique nonlinear stability property [16, 17, 46].
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FIG. 4.3.3. Shock-shear-layer interaction: Comparison of the pressure contours forα=±10 with the un-split
approach using ACM66 att = 120 on a 321× 81 grid withκ = 0.35 for the nonlinear fields andκ = 0.175 for the
linear fields.

4.4. Computational Costs

For the compressible mixing layer computations using the fourth-order Runge–Kutta
method, the central base schemes with the ACM filter are only around 25% more expensive
than the same base schemes without ACM filter. This has been achieved by only requiring
one application of the ACM filter per full time step for the convection terms. For LMM time
discretizations, the central base scheme with the ACM filter is only 10% more expensive
than standard second-order TVD schemes. The entropy splitting is approximately 20%
more expensive than the un-split conservative form for the 2-D mixing layer computations
in conjunction with the fourth-order Runge–Kutta method. The extra CPU time is mainly
due to the fact that, for each direction, four entropy splittings are required. If two to three
time level LMM types of time discretizations are used, less CPU time can be realized.

SUMMARY

Our study shows that the entropy splitting can be formally extended to a thermally perfect
gas, with the internal energy being an arbitrary function of temperature. For nonequilibrium
flows which consist of a mixture of different species, each obeying a thermally perfect gas
law, extension of the splitting is problematic. While we were able to prove the symmetry
and homogeneity properties, the degree of homogeneity can only be obtained by solving
a system of nonlinear equations. In addition, to obtain the Jacobian of the transformation
required inverting a non-sparse linear system. It would therefore be difficult to establish the
positive definite condition. Consequently, the extension of the method to nonequilibrium
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flows is not practically feasible. If the homogeneity condition is not required, then one can
use symmetry variables based on the physical entropy, as was shown by Chalotet al. [37].
In this case, the resulting PDEs are in pure non-conservative form and entropy splitting
is no longer possible. For magnetohydrodynamics, the magnetic field has to be added as
a “conservative” variable. But the square of the magnetic field is one of the terms in the
definition of the total energy. Thus, from dimensional arguments it is clear that one cannot
obtain the homogeneity condition. A similar situation exists for the artificial compressibility
method of treating incompressible flow.

Using the same high order central schemes, numerical experiments with a 2-D vortex
convection Euler computation consisting of periodic BCs indicate that entropy splitting
is more stable than the un-split (purely conservative) approach. With an appropriate time
step, numerical dissipation is not required for up to 30 spatial periods with nearly perfect
vortex preservation as opposed to only 5 periods for its un-split cousin. For even longer time
integration, although numerical dissipation is needed to stabilize the schemes, the amount
required is much less than for its un-split cousin. A nearly perfect vortex preservation of up
to 130 periods was achieved.

For the mixing layer study, in order to obtain the sameλ-shock strength and shock
location as the un-split approach using the same scheme, the range of the arbitrary splitting
parameterβ has to be confined to the use of at least 90% of the conservative proportion of
the flux derivative. For problems withoutλ-shocks, a wider range ofβ can be used. Only
a slight advantage of the entropy splitting over the un-split approach was observed for this
type of flow physics. The advantage is in terms of noise reduction and improved nonlinear
stability. There is no reduction in the use of the ACM filter. This might largely be due to
the rapidly developing flow and the high percentage of conservative proportion required.
Perhaps replacing the ACM sensor by the wavelet sensor [15] in conjunction with moderate
grid adaptation could help improve the situation. Unlike the vortex convection with periodic
BCs in all spatial directions, these two more complicated cases consist of rapidly developing
flows. Not all of the physical BCs are periodic. In addition, the BCs consist of spatially or
temporally sinusoidal disturbances. Thus, the performance of the schemes for the mixing
layer cases is partially clouded by the spatially and temporally dependent physical BCs that
required special treatment in conjunction with the Runge–Kutta time integrator, and also
by the fact that we did not impose the more stable and appropriate boundary difference
operator. The use of the symmetric form of Harten [10] for the viscous term might be
a source of improvement. In addition, a time step reduction will also benefit the use of
entropy splitting as indicated in the vortex convection study. Without additional study, the
benefit of using the entropy splitting is inconclusive for compressible turbulence mixing
applications. Since the entropy splitting requires the same amount of filter as the un-split
approach for rapidly developing shock-turbulence interactions, its stabilizing effect is not
as pronounced as for the smooth flow case. However, for turbulent flows involving long
time integrations that contain weak or no shock waves, the entropy splitting could help
minimize the use of numerical dissipation due to its unique nonlinear stability property.
More rigorous implementation of the BCs and extensive study are needed. See [15–17, 46]
for followup studies.

Overall, the three numerical examples indicate a positive benefit of the entropy split-
ting. The splitting can stabilize spurious noise generated by the non-dissipative or low
dissipative spatial discretizations which are a major cause of nonlinear instability. Modern
high-resolution numerical dissipation has been the major player in improving nonlinear
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instabilities for short or moderate time integrations (unsteady). Most often, added numer-
ical dissipation is necessary for longer time integration at the expense of excess smearing
of the flow physics without resorting to finer grids and extremely small time steps. The
use of the entropy splitting form of the flux derivative in conjunction with high-resolution
filters can minimize the use of numerical dissipation. We believe that the use of the entropy
splitting is not limited to spatial central schemes (compact or non-compact), but to spectral
and spectral-like spatial schemes as well. This and the blending of ACM or wavelet filters
with other filters on the possible suppression of spurious high frequency oscillations as
discussed in Subsection 2.6 are the subjects of our near future research.
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