期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:228
Analysis of an immersed boundary method for three-dimensional flows in vorticity formulation
Article
Poncet, Philippe1,2 
[1] Toulouse Univ, INSA, GMM, F-31077 Toulouse, France
[2] CNRS, Toulouse Inst Math, Team MIP, F-31077 Toulouse, France
关键词: Immersed boundaries;    Boundary conditions;    Three-dimensional flows;    Complex geometry;    Neumann-to-Dirichlet;    Vorticity;    Vortex methods;    Particle methods;   
DOI  :  10.1016/j.jcp.2009.06.023
来源: Elsevier
PDF
【 摘 要 】

This article presents numerical analysis and practical considerations for three-dimensional flow computation using an implicit immersed boundary method. The Euler equations, or half a step of the Navier-Stokes equations when using fractional step algorithms, are investigated in their vorticity formulation. The context of flow computation around an arbitrarily shaped body is especially investigated. In conventional immersed boundary methods using vorticity, singular vortex are dispatched over the body surface. In the present study, one prefers using sources of potential velocity field, dispatched on the body, whose nature is not vorticity. Such a formulation is compatible to the Euler equations. In practice, these sources of potential flow produce a velocity through this surface, aiming in practice at cancelling a flow-through velocity. This article focuses on the use of the source-to-flow-through linear application, its properties being the key points for fast convergence. Its self-adjointness, or lack thereof, conditioning and preconditioning aspects are investigated. It follows that computing a velocity field with no-flow-through conditions in complex geometry, when using the source-to-flow-through linear application, can be achieved for 4/3 of the computational cost of standard Poisson equation in a Cartesian box. The robustness of immersed boundaries is especially interesting when used together with vortex-in-cell methods, well known for their robustness in time and their ability to compute accurately convective effects. A few examples, based on real-world geometries, illustrate the method capabilities. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2009_06_023.pdf 1735KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次