期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:228
Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states
Article
Gamba, Irene M.1 
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词: Spectral method;    Boltzmann transport equation;    Conservative/non-conservative deterministic method;    Lagrangian optimization;    FFT;   
DOI  :  10.1016/j.jcp.2008.09.033
来源: Elsevier
PDF
【 摘 要 】

We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere Sd-1. The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously cooling and heated granular fluids, Granular Matter 1(57) (1998); M.H. Ernst, R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails, journal of Statistical Physics 109 (2002) 407-432; SJ. Moon, M.D. Shattuck, J. Swift, Velocity distributions and correlations in homogeneously heated granular media, Physical Review E 64 (2001) 031303; I.M. Gamba, S. Rjasanow, W. Wagner, Direct simulation of the uniformly heated granular Boltzmann equation, Mathematical and Computer Modelling 42 (2005) 683-700] and rigorously proven in Gamba et al. [I.M. Gamba, V. Panferov, C. Villani, On the Boltzmann equation for diffusively excited granular media, Communications in Mathematical Physics 246 (2004) 503-541(39)] and JAN. Bobylev, I.M. Gamba, V. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, Journal of Statistical Physics 116 (2004) 1651-1682]. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2008_09_033.pdf 934KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次