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We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltz-
mann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision
kernels with conservative or non-conservative binary interactions. The method is based
on symmetries of the Fourier transform of the collision integral, where the complexity in
its computation is reduced to a separate integral over the unit sphere Sd�1. The conserva-
tion of moments is enforced by Lagrangian constraints. The resulting scheme, implemented
in free space, is very versatile and adjusts in a very simple manner to several cases that
involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic
models of slowing down process. Our simulations are benchmarked with available exact
self-similar solutions, exact moment equations and analytical estimates for the homoge-
neous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking
of the simulations involves the selection of a time self-similar rescaling of the numerical
distribution function which is performed using the continuous spectrum of the equation
for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Tos-
cani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation
for granular materials, Journal of Statistical Physics 111 (2003) 403–417] and generalized
to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba,
On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Com-
munication in Mathematical Physics, in press. URL: <http://arxiv.org/abs/math-ph/
0608035>]. The method also produces accurate results in the case of inelastic diffusive
Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where
overpopulated non-Gaussian exponential tails have been conjectured in computations by
stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously cooling
and heated granular fluids, Granular Matter 1(57) (1998); M.H. Ernst, R. Brito, Scaling solu-
tions of inelastic Boltzmann equations with over-populated high energy tails, Journal of
Statistical Physics 109 (2002) 407–432; S.J. Moon, M.D. Shattuck, J. Swift, Velocity distribu-
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1. Introduction

In a microscopic description of a rarefied gas, all particles are assumed to be traveling in a straight line with a fixed veloc-
ity until they enter into a collision. In such dilute flows, binary collisions are often assumed to be the main mechanism of
particle interactions. The statistical effect of such collisions can be modeled by collision terms of the Boltzmann or Enskog
transport equation type, where the kinetic dynamics of the gas are subject to the molecular chaos assumption. The nature of
these interactions could be elastic, inelastic or coalescing and collision rates may either be isotropic or anisotropic depending
on a function of the scattering angle. Usually these interactions are described in terms of inter-particle potentials and their
interaction rate is modeled as a product of power laws for the relative speed and the differential cross (angular) section.
When such rates are independent of the relative speed, the interaction is called of Maxwell type and when the rates depends
on the relative speed they are modeled by a power law with exponents depending on those of the intramolecular potentials
and the space dimension as well rates proportional to positive powers of the relative speed between zero and one are called
variable hard potentials interactions, and when the rate is proportional to the relative speed, it is referred to as hard spheres
(HS). We point out that the current common taxonomy of particle interactions in the computational physics community
denominates variable hard potential interactions by variable hard sphere (VHS) interactions. We shall use this nomenclature
in the present manuscript.

The Boltzmann transport equation (BTE), or simply stated by the Boltzmann equation, is an integro-differential transport
equation that describes the evolution of a single point probability distribution function f ðx;v ; tÞ defined as the probability of
finding a particle at a position x with a velocity (kinetic) v at a time t. The mathematical and computational difficulties asso-
ciated to the Boltzmann equation are due to the non-local – non-linear nature of the integral operator accounting for their
interactions. This integral form, called the collision operator, is usually modeled as a multilinear form in d-dimensional
velocity space and the unit sphere Sd�1, accounting for the velocity interaction law that characterizes the model, as well
as by interaction rates as described above.

From the computational point of view, one of the well-known and well-studied methods developed in order to solve this
equation is an stochastic based method called ‘‘direct simulation Monte-Carlo” (DSMC) developed initially by Bird [2] and
Nanbu [45] and more recently by Rjasanow and Wagner [51,52]. This method is usually employed as an alternative to hydro-
dynamic solvers to model the evolution of moments or hydrodynamic quantities. In particular, this method has been shown
to converge to the solution of the classical Boltzmann equation in the case of monatomic rarefied gases [53]. One of the main
drawbacks of such methods is the inherent statistical fluctuations in the numerical results, which become very expensive or
unreliable in presence of non-stationary flows or non-equilibrium statistical states. Recent efforts on extensive work done
mainly by Rjasanow and Wagner in order to determine from DSMC data the high-velocity tail behavior of the distribution
functions can be found in [52] and references therein. Further, implementations for micro irreversible interactions, such as
inelastic collisions, have been carefully studied in [31,43].

In contrast, a deterministic method computes approximations of the probability distribution function using the Boltz-
mann equation, as well as approximations to the observables like density, momentum, energy, etcetera. There are currently
two deterministic approaches to numerically solve the non-linear Boltzmann equation, one is the well-known discrete veloc-
ity models and the second a spectral based method, both implemented for simulations of elastic interactions i.e. energy con-
servative evolution. Discrete velocity models were developed by Broadwell [19] and mathematically studied by Illner,
Cabannes, Kawashima among many authors [38,39,20]. More recently, these models have been studied for many other appli-
cations on kinetic elastic theory in [7,22,41,55,36]. To the best of our knowledge these approximating techniques have not
been adapted to inelastic collisional problems up to this point.

Spectral based models, which are the ones of our choice in this work, have been developed by Pareschi et al. [28], and later
by Bobylev and Rjasanow [16] and Pareschi and Russo [49]. These methods are supported by the groundbreaking work of
Bobylev [4] using the Fourier transformed Boltzmann equation to analyze its solutions in the case of Maxwell type of inter-
actions. After the introduction of the inelastic Boltzmann equation for Maxwell type interactions and the use of the Fourier
transform for its analysis by Bobylev, Carrillo and one of the authors here [6], the spectral based approach is perhaps becom-
ing the most suitable tool to deal with deterministic computations of kinetic models associated with Boltzmann non-linear
binary collisional integral, both for elastic or inelastic interactions. More recent implementations of spectral methods for the
non-linear Boltzmann equation are due to Bobylev and Rjasanow [18] who developed a method using the fast Fourier trans-
form (FFT) for Maxwell type of interactions and then for hard sphere interactions [17] using generalized Radon and X-ray
transforms via FFT. Simultaneously, Pareschi and Perthame [48] developed similar scheme using FFT for Maxwell type of
interactions. Later, Ibragimov and Rjasanow [37] developed a numerical method to solve the space homogeneous Boltzmann
equation on a uniform spectral grid for a variable hard sphere interactions with elastic collisions. This particular work has
been a great inspiration for our current work and was one of the first initiating steps in the direction of a new numerical
method.

We mention that, most recently, Filbet et al. [25,26] implemented a method to solve the space inhomogeneous Boltzmann
equation using the previously developed spectral methods in [49,48]. They develop deterministic solvers for non-linear
Boltzmann equations have been restricted to elastic interactions. Finally, Mouhot and Pareschi [44] are currently studying
the approximation properties of the schemes. Part of the difficulties in their strategy arises from the constraint that the
numerical solution has to satisfy conservation of the initial mass. To this end, the authors propose the use of a periodic rep-
resentation of the distribution function to avoid aliasing and there is no conservation of momentum and energy. Both meth-
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ods [26,25,44], which are developed in 2 and 3 dimensions, do not guarantee the positivity of the solution due to the fact that
the truncation of the velocity domain combined with the Fourier method makes the distribution function negative at times.
This last is a shortcoming of the spectral approach that also is present in our proposed technique. However, we are able to
handle conservation in a very natural way by means of Lagrange multipliers. We also want to credit an unpublished calcu-
lation of Panferov and Rjasanow [47] who wrote a method to calculate the particle distribution function for inelastic colli-
sions in the case of hard spheres, but there were no numerical results to corroborate the efficiency of the proposed method.
Our proposed approach is slightly different that theirs and it takes a less number of operations to compute the collision
integral.

Our current approach, based on a modified version from the one in [16,37], works for elastic or inelastic collisions and
energy dissipative non-linear Boltzmann type models for variable hard spheres. We do not use periodic representations
for the distribution function. The only restriction of the current method is that requires the distribution function to be Fou-
rier transformable at any time step. The necessary conservation properties associated to this distribution function are en-
forced through a Lagrange multiplier constrained optimization problem with the conservation quantities set as the
constraints. these corrections, that make the distribution function conservative, are very small but necessary for the accurate
evolution of the computed probability distribution function according to the approximated Boltzmann equation.

In addition, the Lagrange optimization problem gives the freedom of not conserving the energy, independently of the col-
lision mechanism, as long as momentum is conserved. Such technique plays a major role as it gives an option for computing
energy dissipative solutions by just eliminating one constraint in the corresponding optimization problem. The current
method can be easily implemented in any dimension.

A novel aspect of the approach presented here lays on a new method that uses the Fourier transform as a tool to simplify
the computation of the collision operator that works for both elastic and inelastic collisions, which is based on an integral
representation of the Fourier Transform of the collision kernel as used in [16]. If N is the number of discretizations in one
direction of the velocity domain in d-dimensions, the total number of operations required to compute the collision integral
is of the order of N2d log ðNÞ þ OðN2dÞ. And this number of operations remains the same for elastic or inelastic, isotropic or
anisotropic VHS type of interactions. However, when the differential cross section is independent of the scattering angle,
the integral representation kernel is further reduced by an exact closed integrated form that is used to save in computational
number of operations to OðNd log ðNÞÞ. This reduction is possible when computing hard spheres in 3-dimensions or Maxwell
type models in 2-dimensions. Nevertheless, the method can be employed without many changes for the other case and be-
comes OðPd�1Nd log ðNÞÞ, where P, the number of each angular discretizations is expected to be much smaller than N used for
energy discretizations. Such reduction in number of operations was also reported in [26] with OðN log ðNÞÞ number of oper-
ations, where the authors are assuming N to be the total number of discretizations in the d-dimensional space (i.e. our Nd and
P of order of unity).

Our numerical study is performed for several examples of well-established behavior associated to solutions of energy dis-
sipative space homogeneous collisional models under heating sources that secure existence of stationary states with positive
and finite energy. We shall consider heating sources corresponding to randomly heated inelastic particles in a heat bath, with
and without friction; elastic or inelastic collisional forms with anti-divergence terms due to dynamically (self-similar) en-
ergy scaled solutions [30,15] and a particularly interesting example of inelastic collisions added to a slow down linear pro-
cess that can be derived as a weakly coupled heavy and light binary mixture. For this particular case, when Maxwell type
interactions are considered, it is shown that [13,14,12], on one hand dynamically energy scaled solutions exist, and, for a
particular choice of parameters, they have a close, explicit formula in Fourier space, and their corresponding anti Fourier
transform in probability space exhibits a singularity at the origin and power law high energy tails, while remaining integra-
ble with finite energy. In addition, they are stable within a large class of initial states. We used this particular example to
benchmark our computations by spectral methods by comparing the dynamically scaled computed solutions to the explicit
one self-similar one.

Convergence and error results of the spectral Lagrangian method, locally in time, are currently being developed by the
authors [32], and it is expected that the proposed spectral approximation of the free space problem will have optimal algo-
rithm complexity using the non-equispaced FFT as obtained by Greengard and Lin [35] for spectral approximation of the free
space heat kernel, or self-similar solution of the heat equation. We point out that in our approach the approximation is done
by non-equispaced time steps using the spectral properties of the solution of the problem. This is possible since the self-sim-
ilar variable is proportional to the quotient of the spectral over time variables, as in the case of the linear heat equation.

Finally, we point out that implementations of the space inhomogeneous cases for spacial boundary value problems are
also being considered and will be reported in forthcoming work by the authors [33]. The spectral-Lagrangian scheme meth-
odology proposed here can be extended to cases of Pareto tails, opinion dynamics and N player games, where the evolution
and asymptotic behavior of probabilities are also well studied in Fourier space [50,12].

The paper is organized as follows: In the next section, we present some preliminaries and description of the various
approximated models associated with the elastic or inelastic Boltzmann equation. In Section 3, the actual numerical method
is discussed with a small discussion on its discretization. We consider in Section 4 the special case of the spatially homoge-
neous collisional model for a slow down process derived from a weakly coupled binary problem with isotropic elastic Max-
well type interactions, where the derivation of explicit solutions for the case of a cold thermostat problem is revisited and
shown to have power-like tails. Section 5 deals with the numerical results and examples. Finally, in Section 6, we discuss and
propose directions of future work along with a summary of the proposed numerical method.



I.M. Gamba, S.H. Tharkabhushanam / Journal of Computational Physics 228 (2009) 2012–2036 2015
2. Preliminaries

The initial value problem associated to the space homogeneous Boltzmann transport equation (BTE) modeling the statis-
tical (kinetic) evolution of a single point probability distribution function f ðv ; tÞ for variable hard sphere (VHS) interactions is
given by
o

ot
f ðv ; tÞ ¼ Qðf ; f Þðv; tÞ;

f ðv; 0Þ ¼ f0ðvÞ:
ð2:1Þ
In all cases the initial probability distribution f0ðvÞ is assumed to be integrable. However, the problem may or may not have
finite initial energy E0 ¼

R
Rd f0ðvÞjv j2 dv .

The collision or interaction operator Qðf ; f Þ is a bi-linear integral form that can be defined in weak or strong form. The
classical Boltzmann formulation is given in strong form is classically given in three space dimensions for hard spheres by
Qðf ; f Þðv ; tÞ ¼
Z

w2R3 ;g2S2

1
0e0J

f ð0v ; tÞf ð0w; tÞ � f ðv; tÞf ðw; tÞ
� �

ju � gjdgdw; ð2:2Þ
where the integration over the sphere is done with respect to g, the direction that contains the two centers at the time of the
interaction, also referred as the impact direction. We denote by 0v and 0w the pre-collisional velocities corresponding to v and
w. In the case of micro-reversible (elastic) collisions one can replace 0v and 0w with v 0 and w0, respectively in the integral part
of (2.1). The exchange of velocities law is given by
u ¼ v �w relative velocity;

v 0 ¼ v � 1þ e
2
ðu � gÞg; w0 ¼ wþ 1þ e

2
ðu � gÞg:

ð2:3Þ
This collisional law is equivalent to u0 � g ¼ �eu � g and u0 ^ g ¼ u ^ g.
The parameter e ¼ eðju � gjÞ 2 ½0;1� is the restitution coefficient covering the range from sticky to elastic interactions, so

0e ¼ eðj0u � gjÞ, with 0u the pre-collisional relative velocity. The Jacobian J ¼ oðv 0 ;w0 Þ
oðv ;wÞ

��� ��� of post-collisional velocities with respect to

pre-collisional velocities depends also on the local energy dissipation [21]. In particular, 0J ¼ oð0v ;0wÞ
oðv ;wÞ

��� ���. In addition, it can be

seen in general that it is a function of the quotient of relative velocities and the restitution coefficient as well. For example,
and in the particular case of hard spheres interactions
JðeðzÞÞ ¼ eðzÞ þ zeðzÞ ¼ ðzeðzÞÞz with z ¼ ju � gj:
When e ¼ 1 then the collision law is equivalent to specular reflection with respect to the plane containing g, orthogonal to
the corresponding tangent plane to the sphere of influence. The direction g is also called the impact direction. We note that
J ¼ 1 when e ¼ 1, that is, for elastic hard sphere interactions.

The corresponding weak formulation of the collisional form becomes more transparent and crucial in order to write the
inelastic equation in higher dimensions or for more general collision kernels. Such formulation, originally due to Maxwell for
the space homogeneous form, and is often call the Maxwell form of the Boltzmann equation. The integration is parametrized
in terms of the center of mass and relative velocity, and the on the n� 1 dimensional spherical integration is done with re-
spect to the unit direction r given by the elastic post collisional relative velocity, that is
Z

v2Rd
Qðf ; f Þðv; tÞ/ðvÞdv ¼

Z
v ;w2R2d ;r2Sd�1

f ðv ; tÞf ðw; tÞ½/ðv 0Þ � /ðvÞ�Bðjuj;lÞdrdwdv ; ð2:4Þ
where the corresponding velocity interaction law is now given by
v 0 ¼ v þ b
2
ðjujr� uÞ; w0 ¼ w� b

2
ðjujr� uÞ;

u0 ¼ ð1� bÞuþ bjujr ðinelastic relative velocityÞ;

l ¼ cosðhÞ ¼ u � r
juj ðcosine of the elastic scattering angleÞ;

Bðjuj;lÞ ¼ jujkbðcos hÞ with 0 6 k 6 1;

xd�2

Z p

0
bðcos hÞ sind�2 hdh < K ðGrad cut-off assumptionÞ;

b ¼ 1þ e
2

ðenergy dissipation parameterÞ:

ð2:5Þ
We assume the differential cross section function b u�r
juj

� �
is integrable with respect to the post-collisional specular reflection

direction r in the d� 1-dimensional sphere, referred to as the Grad cut-off assumption, and that bðcos hÞ is renormalized such
that
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Z
Sd�1

b
u � r
juj

� �
dr ¼ xd�2

Z p

0
bðcos hÞ sind�2 hdh ¼ xd�2

Z 1

�1
bðlÞð1� l2Þðd�3Þ=2 dl ¼ 1; ð2:6Þ
where the constant xd�2 is the measure of the d� 2-dimensional sphere.
The parameter k regulates the collision frequency as a function of the relative speed juj. It accounts for inter-particle

potentials defining the collisional kernel and they are referred to as variable hard spheres (VHS) model whenever
0 < k < 1, Maxwell molecules type interactions (MM) for k ¼ 0 and hard spheres (HS) for k ¼ 1.

In the case of elastic hard spheres (b ¼ 1; k ¼ 1) in 3 dimensions, collision kernel Bðjuj;lÞ ¼ a2=4, where a is the particle
diameter. For Maxwell type elastic interactions ðb ¼ 1; k ¼ 0Þ;Bðjuj;lÞ ¼ 1

4p bðhÞ. For inelastic interactions, even in the case of
hard spheres, the angular part of the collision kernel depends on b (see [15]).

For the classical case of elastic collisions, it has been established that the Cauchy problem for the space homogeneous
Boltzmann equation has a unique solution in the class of integrable functions with finite energy (i.e. C1ðL1

2ðRdÞÞ), it is regular
if initially so, and f ð:; tÞ converges in L1

2ðRdÞ to the Maxwellian distribution Mq;V ;EðvÞ associated to the dþ 2 moments of the
initial state f ðv ;0Þ ¼ f0ðvÞ 2 L1

2ðRdÞ. In addition, if the initial state has Maxwellian decay, this property is preserved with the
Maxwellian decay globally bounded in time [29], and if any derivative of the initial state has a Maxwellian decay, this behav-
ior will be preserved as well (see [1]).

In all problems under consideration, collisions either conserve density, momentum and energy (elastic), or just density
and momentum (inelastic) or density (elastic–linear Boltzmann operator), depending on the number of collision invariants
of the operator Qðf ; f Þðt;vÞ. In the case of the classical Boltzmann equation for rarefied elastic, monatomic gases, the collision
invariants are exactly dþ 2, that is, according to the Boltzmann theorem, the number of polynomials in velocity space v that
generate /ðvÞ ¼ Aþ B � v þ Cjv j2, with C 6 0. In particular, one obtains the following conserved quantities
density qðtÞ ¼
Z

v2Rd
f ðv ; tÞdv;

momentum mðtÞ ¼
Z

v2Rd
vf ðv ; tÞdv ;

kinetic energy EðtÞ ¼ 1
2qðtÞ

Z
v2Rd
jvj2f ðv ; tÞdv :

ð2:7Þ
Of significant interest from the statistical view point are the evolutions of moments or observables, at all orders. They are
defined by the dynamics of the corresponding time evolution equation for the velocity averages, given by
o

ot
MjðtÞ ¼

o

ot

Z
v2Rd

f ðv ; tÞv j dv ¼
Z

v2Rd
Qðf ; f Þðv ; tÞv j dv ; ð2:8Þ
where v j ¼ standard symmetric tensor product of v with itself, j times. Thus, according to (2.7), for the classical elastic
Boltzmann equation, the first dþ 2 moments are conserved, meaning, MjðtÞ ¼ M0;j ¼

R
v2Rd f0ðvÞv jdv for j ¼ 0;1; and

EðtÞ ¼ trðM2ÞðtÞ ¼ E0 ¼
R

v2Rd f0ðvÞjvj2dv . This can be easily computed from a symmetrized weak formulation (2.4) with test
functions which are constant, linear and quadratic of their variable magnitude (these are the so called collision invariants).

Higher order moments or observables of interest are
Momentum Flow M2ðtÞ ¼
Z

Rd
vvT f ðv ; tÞdv ;

Energy Flow rðtÞ ¼ 1
2qðtÞ

Z
Rd

vjv j2f ðv; tÞdv;

Bulk Velocity VðtÞ ¼ mðtÞ
qðtÞ ;

Internal Energy EðtÞ ¼ 1
2q
ðtrðM2Þ � qjV j2Þ;

Temperature TðtÞ ¼ 2EðtÞ
kd

; with k the oltzmann constant:

ð2:9Þ
In particular, for the case of Maxwell molecules ðk ¼ 0Þ, it is possible to write recursion formulas for higher order moments of
all orders ([5] for the elastic case, and [6] in the inelastic case) which, in the case of isotropic solutions depending only on
jv j2=2, take the form
mnðtÞ ¼
Z

Rd
jv j2nf ðv ; tÞdv ¼ e�kntmnð0Þ þ

Xn�1

k¼1

1
2ðnþ 1Þ

2nþ 2
2kþ 1

� �
Bbðk; n� kÞ

Z t

0
mkðsÞmn�kðsÞe�knðt�sÞ ds; ð2:10Þ
with
kn ¼ 1� 1
nþ 1

b2n þ
Xn

k¼0

ð1� bÞ2k

" #
;

Bbðk;n� kÞ ¼ b2k
Z 1

0
skð1� bð2� bÞsÞn�k ds;
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for n P 1;0 6 b 6 1, where k0 ¼ 0;m0ðtÞ ¼ 1, and mnð0Þ ¼
R

Rd jvj2nf0ðvÞdv . These recursion formulas are also obtained using
the weak formulation (2.4) with polynomial, in the square of the magnitude, test functions.

2.1. Boltzmann collisional models with heating sources

A collisional model associated to the space homogeneous Boltzmann transport Eq. (2.1) with Grad cutoff assumption
(2.5), can be modified in order to accommodate for an energy or ‘heat source’ like term Gðf ðt;vÞÞ, where G is a differential
or integral operator. In these cases, it is possible to obtain stationary states with finite energy as for the case of inelastic inter-
actions. In such a general framework, the corresponding initial value problem model is
o

ot
f ðv ; tÞ ¼ fðtÞQðf ; f Þðv ; tÞ þ Gðf ðt;vÞÞ;

f ðv; 0Þ ¼ f0ðvÞ;
ð2:11Þ
where the collision operator Qðf ; f Þðv ; tÞ is as in (2.4) and (2.5) and Gðf ðt;vÞÞ models a ‘heating source’ due to different phe-
nomena to be specified below. The term fðtÞmay represent a mean field approximation that allows for proper time rescaling.
See [6,15] for several examples for these type of models and additional references.

Following the analytical work initiated in [15,14] on non-equilibrium stationary states (NESS), we study several compu-
tational simulations of non-conservative models for either elastic or inelastic collisions associated to (2.11). In all cases we
have addressed, the model have admissible stationary states with finite energy but they may not be Maxwellian distribu-
tions. Among several models with non-Maxwellian equilibrium state with finite energy, we study a computational output
for three of the possible cases. The first one is a pure diffusion thermal bath due to a randomly heated background
[54,46,30], where
G1ðf Þ ¼ lDf ; ð2:12Þ
where l > 0 is a constant. The second example relates to self-similar solutions of Eq. (2.11) for Gðf Þ ¼ 0 [42,23,24], but
dynamically rescaled by
f ðv ; tÞ ¼ 1
vd

0ðtÞ
~f ð~vðv; tÞ;~tðtÞÞ; ~v ¼ v

v0ðtÞ
; ð2:13Þ
where
v0ðtÞ ¼ ðaþ gtÞ�1
; ~tðtÞ ¼ 1

g
ln 1þ g

a
t

� �
; a;g > 0: ð2:14Þ
Then, the equation for ~f ð~v ;~tÞ coincides (after omitting the tildes) with Eq. (2.11), for
G2ðf Þ ¼ �gdiv ðvf Þ; g > 0: ð2:15Þ
Of particular interest is the case for dynamically time-thermal speed self-similar rescaling corresponding to Maxwell type of
interactions. Since the second moment of the collisional integral is a linear function of the energy, the energy evolves expo-
nentially with a rate proportional to the energy production rate, that is
d
dt
EðtÞ ¼ k0EðtÞ; or equivalently EðtÞ ¼ Eð0Þek0t; ð2:16Þ
with k0 being the energy production rate. Therefore, the corresponding rescaled variables on Eqs. (2.13), (2.11) and (2.15) for
the study of long time behavior of rescaled solutions are
f ðv ; tÞ ¼ E�d
2ðtÞ~f v

E1
2ðtÞ

 !
¼ ðEð0Þek0tÞ�

d
2~f vðEð0Þek0tÞ�

1
2

� �
; ð2:17Þ
and ~f satisfies the self-similar Eq. (2.11) and
G20 ðf Þ ¼ �k0xfx; ð2:18Þ
where x ¼ vE�1
2ðtÞ is the self-similar variable.

It has been shown that these dynamically scaled self-similar states are stable under very specific scaling for a large class
of initial states [12], and we will use this analysis in order to adapt our scheme to compute the approximation to these self-
similar states.

The last source type we consider is given by a model, related to a weakly coupled mixture modeling a slowdown or cool-
ing process [14] for elastic Maxwell type of interactions of particles with mass m in the presence of a thermostat given by the
Maxwellian distribution\
MT ðvÞ ¼
m

ð2pT Þd=2 e
�mjvj2

2T ;
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with a constant reference background or thermostat temperature T (i.e. the average of
R

MT dv ¼ 1. and
R
jv j2MT dv ¼ T ).

We define
QLðf Þðv; tÞ¼
:
Z

w2Rd ;r2Sd�1
BLðjuj;lÞf ð0v ; tÞMT ð0wÞ � f ðv ; tÞMT ðwÞ�drdw: ð2:19Þ
Then, the corresponding initial value problem associated to f ðv ; tÞ is given by
o

ot
f ðv; tÞ ¼ Qðf ; f Þðv; tÞ þHQLðf Þðv; tÞ

f ðv; 0Þ ¼ f0ðvÞ:
ð2:20Þ
where Qðf ; f Þ as defined in (2.4) and (2.5), is the classical collision integral for elastic interactions (i.e. b ¼ 1) in weak form, so
it conserves density, momentum and energy. The second integral term in (2.20) is a linear collision integral which conserves
just the density (but not momentum or energy). The particle interaction law is given by
u ¼ v �w the relative velocity;

v 0 ¼ v þ m
mþ 1

ðjujr� uÞ; w0 ¼ w� 1
mþ 1

ðjujr� uÞ:
ð2:21Þ
The coupling constant H depends on the initial density, the coupling constants and on m. The collision kernel BL of the linear
part may not be the same as the one for the non-linear part of the collision integral, however we assume that the Grad cut-off
assumption (2.6) is satisfied and that, in order to secure mass preservation, the corresponding differential cross section func-
tions bN and bL, the non-linear and linear collision kernels respectively, satisfy the renormalized condition
Z

Sd�1
bN

u � r
juj

� �
þHbL

u � r
juj

� �
dr ¼ 1þH: ð2:22Þ
This last model describes the evolution of binary interactions of two sets of particles, heavy and light, in a weakly coupled
limit, where the heavy particles have reached equilibrium. The heavy particle set constitutes the background or thermostat
for the lighter set of particles. It is the light particle distribution that is modeled by (2.20), so Qðf ; f Þ corresponds to all col-
lisions that light particles have with each other, and the second linear integral term corresponds to collisions between light
and heavy particles, where the heavy particles are at equilibrium with a distribution given by the classical Maxwellian
MT ðvÞ. Even though the local interactions are reversible (elastic), it does not conserve the total energy. In this binary 3-
dimensional, mixture scenario, collisions are assumed to be isotropic, elastic and the interactions kernels of Maxwell type.

When considering the case of Maxwell type of interactions in three dimensions i.e. Bðjuj;lÞ ¼ bðhÞ with a cooling back-
ground process corresponding to a time temperature transformation, T ¼ T ðtÞ such that T ðtÞ ! 0 as t ! 0, the models have
self-similar asymptotics [14,12] for a large class of initial states. Such long time asymptotics corresponding to dynamically
scaled solutions of (2.20), in the form of (2.18), yields interesting behavior in f ðv ; tÞ for large time, converging to states with
power like decay tails in v. In particular, such a solution f ðv ; tÞ of (2.20) will lose moments as time grows, even if the initial
state has all moments bounded. (see [14,12] for the analytical proofs).

In the case of equal mass (i.e. m ¼ 1), the model is of particular interest for the development of numerical schemes and
benchmarking of simulations. In such a case, there exists a special set of explicit self-similar solutions, in spectral space,
which are attractors for a large class of initial states (see Section 4 for details).

2.2. Collision integral representation

One of the pivotal points in the derivation of the spectral numerical method for the computation of the non-linear Boltz-
mann equation lays in the representation of the collision integral in Fourier space by means of its weak form (2.4) and (2.5).
In particular, taking wðvÞ ¼ e�if�v=ð

ffiffiffiffiffiffiffi
2p
p

Þd, where f is the Fourier variable, we get the Fourier transform of the collision integral
as
bQ ðfÞ ¼ 1

ð
ffiffiffiffiffiffiffi
2p
p

Þd
Z

v2Rd
Qðf ; f Þe�if�v dv ¼

Z
ðw;vÞ2Rd�Rd ;r2Sd�1

f ðvÞf ðwÞBðjuj;lÞ
ð
ffiffiffiffiffiffiffi
2p
p

Þd
½e�if�v 0 � e�if�v �drdwdv : ð2:23Þ
We use the notation b� ¼ Fð�Þ – the Fourier transform and F�1 for the classical inverse Fourier transform. Plugging in the def-
initions of collision kernel Bðjuj;lÞ ¼ bk;bðrÞjujk (which in the case of isotropic collisions would just be the variable hard
sphere collision kernel) and of post-collisional velocity v 0
bQ ðfÞ ¼ 1

ð
ffiffiffiffiffiffiffi
2p
p

Þd
Z

u2Rd
Gk;bðu; fÞ

Z
v2Rd

f ðvÞf ðv � uÞe�if�v dv du ¼
Z

u2Rd
Gk;bðu; fÞF ½f ðvÞf ðv � uÞ�du; ð2:24Þ
where
Gk;bðu; fÞ ¼
Z

r2Sd�1
bk;bðrÞjujk e�ib2f�ðjujr�uÞÞ � 1

h i
dr ¼ jujk eib2f�u

Z
r2Sd�1

bk;bðrÞe�ib2jujf�r dr�x2

� �
: ð2:25Þ
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Note that (2.25) is valid for both isotropic and anisotropic interactions. For the former type, a simplification ensues due to the
fact the bk;bðrÞ is independent of r 2 Sd�1:
Gk;bðu; fÞ ¼ bk;bxd�2jujk eib2f:u sin c
bjujjfj

2

� �
� 1

� �
: ð2:26Þ
Thus, in the case of isotropic interaction the angular integration is given by the closed form above. In the case of anisotropic
collisions, the dependence of bk;bðrÞ is calculated into a separate integral over the unit sphere Sd�1 as given in (2.25). The
above expression can be transformed for elastic collisions b ¼ 1 into a form suggested by Rjasanow and Ibragimov in their
paper [37]. The corresponding expression for anisotropic collisions is given by (2.25).

Further simplification of (2.24) is possible by observing that the Fourier transform inside the integral can be written in
terms of the Fourier transform of f ðvÞ since it can also be written as a convolution of the Fourier transforms. Let
fuðvÞ ¼ f ðv � uÞ
bQ ðfÞ ¼ Z
u2Rd

Gk;bðu; fÞFðffuÞðfÞdu ¼
Z

u2Rd
Gk;bðu; fÞ

1

ð
ffiffiffiffiffiffiffi
2p
p

Þd
ðf̂ � bfuÞðfÞdu

¼
Z

u2Rd
Gk;bðu; fÞ

1

ð
ffiffiffiffiffiffiffi
2p
p

Þd
Z

n2Rd
f̂ ðf� nÞbfuðnÞdndu ¼

Z
u2Rd

Gk;bðu; fÞ
1

ð
ffiffiffiffiffiffiffi
2p
p

Þd
Z

n2Rd
f̂ ðf� nÞf̂ ðnÞe�in�u dndu

¼ 1

ð
ffiffiffiffiffiffiffi
2p
p

Þd
Z

n2Rd
f̂ ðf� nÞf̂ ðnÞbGk;bðn; fÞdn; ð2:27Þ
where bGk;bðn; fÞ ¼
R

u2Rd Gk;bðu; fÞe�in�u du. In particular, bQ ðfÞ is a weighted convolution in Fourier space.

Let u ¼ re; e 2 Sd�1; r 2 R. For d ¼ 3, it follows:
bGk;bðn; fÞ ¼
Z

r

Z
e

r2Gðre; fÞe�irn�e dedr ¼ 16p2Ck

Z
r

rkþ2 sin c
rbjfj

2

� �
sin c r n� b

2
f

���� ����� �
� sin cðrjnjÞ

� �
dr: ð2:28Þ
Since the domain of computation is restricted to Xv ¼ ½�L; LÞ3;u 2 ½�2L;2LÞ3 then r 2 ½0;2
ffiffiffi
3
p

L�, and the right hand side of
(2.28) is the finite integral
16p2Ck

Z 2
ffiffi
3
p

L

0
rkþ2½sin c

rbjfj
2

� �
sin c r n� b

2
f

���� ����� �
� sin cðrjnjÞ�dr: ð2:29Þ
A point worth noting here is that the above formulation (2.27) results in OðN2dÞ number of operations, where N is the number
of discretizations in each velocity direction. Also, exploiting the symmetric nature in particular cases of the collision kernel
one can reduce the number of operations to OðNd log NÞ in velocity space (or NlogN if N counts the total number of Fourier
nodes in d dimensional velocity space).
3. Numerical method

3.1. Discretization of the collision integral

Coming to the discretization of the velocity space, it is assumed that the two interacting velocities and the corresponding
relative velocity
v;w;u 2 ½�L; LÞd and f 2 ½�Lf; LfÞd; ð3:1Þ
where the velocity domain L is chosen such that u ¼ v �w 2 ½�L; LÞd through an assumption that suppðf Þ 2 ½�L; LÞd. For a suf-
ficiently large L, the computed distribution will not lose mass, since the initial momentum is conserved (there is no convec-
tion in space homogeneous problems), and is renormalized to zero mean velocity. We assume a uniform grid in the velocity
and Fourier spaces with hv and hf as the respective grid element sizes. hv and hf are chosen such that hvhf ¼ 2p

N , where
N = number of discretizations of v and f in each direction as a requirement for using a standard FFT package.

3.2. Time discretization

In the process of getting a dimensionless formulation, we recall the basic rescaling for the Boltzmann equation. First we
defined the mean free path as the product of the average speed by the mean free time (the average time between collisions
which depends on the collision frequency). The mean free path is the average distance traveled between collisions, and it is
very relevant for space dependent solutions.

In the case of space homogeneous simulations, we use a second-order Runge–Kutta scheme or a Euler forward step meth-
od for approximation to the time derivative of f, where the value of dimensionless time step dt is chosen of the order 0.1
times mean free time

With time discretizations taken as tn ¼ ndt, the discrete version of the Runge–Kutta scheme we use is given by
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f 0ðv jÞ ¼ f0ðv jÞ;

~f ðv jÞ ¼ f tn ðv jÞ þ dt
2

Q k;b½f tnðv jÞ; f tnðv jÞ�;

f tnþ1 ðv jÞ ¼ f tn ðv jÞ þ dtQ k;b½~f ðv jÞ;~f ðv jÞ�;

ð3:2Þ
and the corresponding Forward Euler scheme with smaller time step is given by
~f ðv jÞ ¼ f tnðv jÞ þ dtQðf tn
; f tn Þ: ð3:3Þ
3.3. Conservation properties – Lagrange multipliers

Since the calculation of Q k;bðf ; f ÞðvÞ involves computing Fourier transforms with respect to v, we extensively use a fast
Fourier transform method. Note that the total number of operations in computing the collision integral reduces to the order
of 3N2d logðNÞ þ OðN2dÞ for (2.24) and OðN2dÞ for (2.27). Observe that, choosing 1=2 6 b 6 1, the proposed scheme works for
both elastic and inelastic collisions. As a note, the method proposed in the current work can also be extended to lower
dimensions in velocity space.

The accuracy of the proposed method relies heavily on the size of the grid and the number of points taken in each veloc-
ity/Fourier space directions, where it be seen that the computed Q k;b½f ; f �ðvÞ does not conserve the quantities it is supposed
to, when tested with the collision invariants. That is q;m; e must be conserved in time for elastic collisions, but just q for
linear Boltzmann integral, and q;m for inelastic collisions. Even though the difference between the computed (discretized)
collision integral and the continuous one may not be large, it is nevertheless essential that this issue be addressed and
solved.

To this end, we propose a simple constrained Lagrange multiplier method is employed where the constraints are the re-
quired conservation properties on the moments for the solution.

Let M ¼ Nd, the total number of discretizations of the velocity space. Assume that the classical Boltzmann collision oper-
ator is being computed. So q;m ¼ ðm1;m2;m3Þ and e are conserved. Let xj be the integration weights where j ¼ 1;2; . . . ;M.
Let
~f ¼ ~f 1
~f 2 :: ~f M

� �T
be the distribution vector at the computed time step and
f ¼ f1 f2 :: fMð ÞT
be the constructed corrected distribution vector with the required moments conserved. Let
Cðdþ2Þ�M ¼
xj

v ixj

jv jj2xj

0B@
1CA;
and
aðdþ2Þ�1 ¼ q m1 m2 m3 eð ÞT
be the vector of conserved quantities. The corresponding conservation scheme can be written as the following constrained
optimization problem:
Given ~f 2 RM ;C 2 Rdþ2�M ; and a 2 Rdþ2;

find f 2 RM such that

minimizes k~f � fk2
2; subject to the constrain Cf ¼ a:

ð3:4Þ
To solve this constrain minimization problem, we employ the Lagrange multiplier method. Let k 2 Rdþ2 be the Lagrange mul-
tiplier vector. Then the corresponding scalar objective function to be optimized is given by
Lðf ; kÞ ¼
XM

j¼1

j~f j � fjj2 þ kTðCf � aÞ: ð3:5Þ
Eq. (3.5) can actually be solved explicitly for the corrected distribution value and the resulting equation of correction can be
implemented numerically in the code. Taking the derivative of Lðf ; kÞ with respect to fj; j ¼ 1; . . . ;M and ki; i ¼ 1; . . . ; dþ 2 i.e.
gradients of L
oL
ofj
¼ 0; j ¼ 1; . . . ;M ) f ¼ ~f þ 1

2
CTk;



I.M. Gamba, S.H. Tharkabhushanam / Journal of Computational Physics 228 (2009) 2012–2036 2021
and
oL
ok1
¼ 0; i ¼ 1; . . . ; dþ 2) Cf ¼ a; ð3:6Þ
retrieves the constraints. Solving for k
CCTk ¼ 2ða� C~f Þ: ð3:7Þ
Recall that CCT is symmetric and positive definite, since C is the integration matrix, then the inverse of CCT exists. In partic-
ular the value of k is determined by
k ¼ 2ðCCTÞ�1ða� C~f Þ: ð3:8Þ
Then, substituting k into (3.6) we obtain,
f ¼ ~f þ CTðCCTÞ�1ða� C~f Þ; ð3:9Þ
and using equation for forward Euler scheme (3.3), the complete scheme is given by
~f j ¼ f n
j þ dtQðf n

j ; f
n
j Þ;

f nþ1
j ¼ ~f j þ CTðCCTÞ�1ða� C~f Þ8j; with f tn ðv jÞ ¼ f n

j :
ð3:10Þ
Then
f nþ1
j ¼ f n

j þ dtQðf n
j ; f

n
j Þ þ CTðCCTÞ�1ða� C~f Þ ¼ f n

j þ dtQðf n
j ; f

n
j Þ þ CTðCCTÞ�1ða� a� dtCQðf n

j ; f
n
j ÞÞ

¼ f n
j þ dtQðf n

j ; f
n
j Þ � dtCTðCCTÞ�1CQðf n

j ; f
n
j Þ ¼ f n

j þ dt½I� CTðCCTÞ�1C�Qðf n
j ; f

n
j Þ; ð3:11Þ
with I� N � N identity matrix. Letting KNðCÞ ¼ I� CTðCCTÞ�1C with I� N � N identity matrix, one obtains
f nþ1
j ¼ f n

j þ dtKNðCÞQðf n
j ; f

n
j Þ; ð3:12Þ
where we expect the required observables are conserved and the solution approaches a stationary state, since
limn!1kKNðCÞQðf n

j ; f
n
j Þk1 ¼ 0.

Identity (3.12) summarizes the whole conservation process. Moreover, the optimization method can be extended to have
the distribution function satisfy higher order moments from (2.10). In this case, aðtÞ will include entries of mnðtÞ from (3).

We point out that for the linear Boltzmann collision operator used in the mixture problem conserves density and not
momentum (unless one computes isotropic solutions) and energy. For this problem, the constraint would just be the density
equation. For inelastic collisions, density and momentum are conserved and in this case the constraints are the energy and
momentum equations. For the elastic Boltzmann operator, all three quantities (density, momentum and energy) are con-
served and this approximated quantities are the constraints for the optimization problem. This approach of using Lagrangian
constraints in order to secure moment preservation differs from the proposed in [25,26] for conservation of moments using
spectral solvers.
4. Self-similar asymptotics for a general elastic or inelastic BTE of Maxwell type or the cold thermostat problem –
power law tails

As mentioned in the introduction, a new interesting benchmark problem for our scheme is the capability to compute
dynamically scaled solutions or self-similar asymptotics. More precisely, we present simulation where the computed solu-
tion, in a properly scaled time, approaches an admissible self-similar solution. Such procedure yields a choice of non-equi-
spaced time grid depending on the spectral properties of the model being computed. And, in fact, such a choice in the time
rescaling for self-similarity asymptotic approximations in Fourier space are actually a choice of a non-equispaced grid in
Fourier space since the self-similarity variable is a proportion of the quotient of velocity and time as shown in (2.16)–
(2.18) for Maxwell type models. Equivalently, in the corresponding Fourier transformed framework, it is a proportion of
the quotient of the spectral (Fourier) variable and time. This is actually the same qualitative issue that is needed for the cal-
culation of the heat equation kernel (or fundamental solution) by means of non-equispaced grids in Fourier space in [35]. We
recall that the fundamental solution for the initial value problem associated to the heat equation is actually the self-similar
solution the heat equation.

This procedure is of particular interest for our method because of the power tail behavior of the asymptotic self-similar
state, i.e. higher order moments of the computed solution will become unbounded in properly rescaled time. The computa-
tional method and proposed scheme is be benchmarked with an available explicit solution for a particular choice of param-
eters. For the completeness of this presentation, the analytical description of such asymptotics is given in the following two
sub sections.
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4.1. Self-similar solution for a non-negative thermostat temperature

We consider the Maxwell type equation from (2.20) related to a space homogeneous model for a weakly coupled mix-
ture modeling slowdown process. The content of this section is dealt in detail in [14] for a particular choice of zero back-
ground temperature (cold thermostat). For the sake of brevity, we refer to [14] for details and also to [8,10,11] for previous
related work. However, a slightly more general form of the self-similar solution for non-zero background temperature is
derived here from the zero background temperature solution. Without loss of generality for our numerical test, we assume
the differential cross sections bL for collision kernel of the linear and bN , the corresponding one for the non-linear part, are

the same, both denoted by b k:r
jkj

� �
, satisfying the Grad cut-off conditions (2.6). In particular, condition (2.22) is automatically

satisfied.
In [14], it was shown that the Fourier transform of the isotropic self-similar solution associated to problem in (2.20) takes

the form:
/ðx; tÞ ¼ wðxe�ltÞ ¼ 1� aðxe�ltÞp; as xe�lt ! 0; with p 6 1; ð4:1Þ
where x ¼ jfj2=2 and l and H are related by
l ¼ 2
3p2 and H ¼ ð3pþ 1Þð2� pÞ

3p2 :
Note that p ¼ 1 corresponds to initial states with finite energy. It was shown in [14] for T ¼ 0 (i.e. a cold thermostat effect),
the Fourier transform of the self-similar, isotropic solutions of (2.20) is given by
/ðx; tÞ ¼ 4
p

Z 1

0

1

ð1þ s2Þ2
e�xe

�2t
3 as2

ds; ð4:2Þ
and its corresponding inverse Fourier transform, both for p ¼ 1;l ¼ 2
3 and H ¼ 4

3 (as computed in [14]) is given by
f ss
0 ðjv j; tÞ ¼ etF0ðjv jet=3Þ with F0ðjvjÞ ¼

4
p

Z 1

0

1

ð1þ s2Þ2
e�jvj

2=2s2

ð2ps2Þ
3
2

ds: ð4:3Þ
Remark. It is interesting to observe that, as computed originally in [9], for p ¼ 1
3 or p ¼ 1

2 in (4.2) yields H ¼ 0, which
corresponds to the classical elastic model of Maxwell type. In this case it is possible to construct explicit solutions to the
elastic BTE with infinite initial energy. In addition, it is clear now that in order to have self-similar explicit solutions with
finite energy in the case of the classical elastic model of Maxwell type one needs to have an extra ‘‘source term” such as a
weakly couple mixture model for slowdown processes, or bluntly speaking the linear collisional term added to the elastic
energy conservative operator.

In order to recover the self-similar solution for the original equilibrium positive temperature T (i.e. hot thermostat case)
for the linear collisional term, we denote, including time dependence for convenience
/0ðx; tÞ ¼ /ðx; tÞThermostat¼0 and /T ðx; tÞ ¼ /ðx; tÞThermostat¼T so that /T ðx; tÞ ¼ /0ðx; tÞe�T x: ð4:4Þ
Note that the solution constructed in (4.2) is actually /0ðx; tÞ. Then the self-similar solution for non-zero background tem-
perature, denoted by /T ðx; tÞ satisfies
/T ðk; tÞ ¼
4
p

Z 1

0
e�jkj

2e�2t=3as2=2 1

ð1þ s2Þ2
e�jkj

2T =2 ds ¼ 4
p

Z 1

0
e�jkj

2 ½e�2t=3as2þT �=2 1

ð1þ s2Þ2
ds: ð4:5Þ
In particular, letting T ¼ e�2t=3as2 þ T and taking the inverse Fourier transform, we obtain the corresponding self-similar
state for the positive temperature thermostat, which according to (2.17) the can be written in probability space as follows:
f ss
T ðjv j; tÞ ¼ etFT ðjv jet=3Þ; FT ðjv jÞ ¼

4
p

Z 1

0

1

ð1þ s2Þ2
e�jv j

2=2T

ð2pTÞ
3
2

ds: ð4:6Þ
Then, letting t !1, since T ¼ T þ as2e
�2t

3 ! T , yields
FT ðjv jÞ!t!1
4
p

1

ð2pT Þ
3
2

e�jvj
2=2T

Z 1

0

1

ð1þ s2Þ2
ds ¼ MT ðvÞ; ð4:7Þ
since
4
p

Z 1

0

1

ð1þ s2Þ2
ds ¼ 2

p
s

1þ s2 þ arctanðsÞ
� �

j10 ¼ 1: ð4:8Þ
Then, the self-similar particle distribution f ss
T ðv ; tÞ for the positive temperature thermostat approaches a rescaled Maxwellian

distribution with the background temperature T , that is, according to (2.17)
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f ss
T ðjv j; tÞ ¼ etFT ðjv jet=3Þ � et

ð2pT Þ
3
2

e�ðjv j
2e2t=3Þ=2T þt ; as t !1: ð4:9Þ
Remark. As pointed out in the previous remark, such asymptotic behavior, for finite initial energy, is due to the balance of
the binary term and the linear collisional term in (2.20).

In addition, very interesting behavior is seen on FT ðjvjÞ as T ! 0 (cold thermostat problem), where the particle distribu-
tion approaches a distribution with power-like tails (i.e. a power law decay for large values of jv j) and an integral singularity
at the origin. Indeed, is derived in [14] the asymptotic behavior of F0ðjv jÞ from (4.3), for large and small values of jv j, leading
to
F0ðjv j ¼ 2
2
p

� �5=2 1

jvj6
1þ O

1
jv j

� �� �
; for jv j ! 1;

F0ðjv jÞ ¼
21=2

p5=2

1

jv j2
½1þ 2jv j2lnðjvjÞ þ Oðjvj2Þ�; for jv j ! 0:

ð4:10Þ
In particular, the self-similar particle distribution function F0ðjv jÞ;v 2 R3, behaves like 1
jv j6

as jv j ! 1, and as 1
jv j2

as jvj ! 0,

which indicates a very anomalous, non-equilibrium behavior as function of velocity, which nevertheless remains with finite
mass and kinetic energy. This asymptotic effect can be described as an overpopulated (with respect to Maxwellian), large
energy tails and infinitely many particles at zero energy. This interesting, unusual behavior is observed in problems of soft
condensed matter [34].

We shall see in the following section that our solver captures these states described above with spectral accuracy since
the self-similar solutions are attractors for a large class of initial states. These numerical tests are a crucial aspect of the spec-
tral Lagrangian deterministic solver used to simulate this type of non-equilibrium phenomena, where all these explicit for-
mulae for our probability distributions allow us to carefully benchmark the proposed numerical scheme. First we recall some
relevant analytical results that secure the convergence to these particular self-similar states.

4.2. Self-similar asymptotics for a general problem

The self-similar nature of the solutions Fðjv jÞ for a very general class of problems of Maxwell type interactions, for a wide
range of values for the parameters b; p;l and H, was addressed in [12] in much detail. Three different behaviors have been
clearly explained. Of particular interest for our present numerical study are the mixture problem with a cold background and
the inelastic Boltzmann cases. Interested readers are referred to [12].

For the purpose of our presentation, let / ¼ F½f � be the Fourier transform of the probability distribution function satis-
fying the initial value problem (2.1)–(2.5) or (2.11) and let Cð/Þ ¼ F½Qþðf ; f Þ� be the Fourier transform of the gain part of
the collisional term associated with the initial value problem for f ðv ;0Þ ¼ f0ðvÞ prescribed. It was shown in [12] that the
operator Cð/Þ, defined over the Banach space of continuous bounded functions with the L1-norm (i.e. the space of charac-
teristic functions, that is the space of Fourier transforms of probability distributions), satisfies the following three properties
[12]:

(1) Cð/Þ preserves the unit ball in the Banach space.
(2) Cð/Þ is L-Lipschitz operator, i.e. there exists a bounded linear operator L in the Banach space, such that
jCð/1Þ � Cð/2Þjðx; tÞ 6 Lðj/1 � /2jðx; tÞÞ; 8k/ik 6 1; i ¼ 1;2: ð4:11Þ
(3) Cð/Þ is invariant under transformations (dilations)
esDCð/Þ ¼ CðesD/Þ; D ¼ x
o

ox
; esD/ðxÞ ¼ /ðxesÞ; s 2 Rþ: ð4:12Þ
In the particular case of the initial value problem associated to Boltzmann type of equations for Maxwell type of inter-
actions, the bounded linear operator that satisfies property 2 is the one that linearizes the Fourier transform of the gain oper-
ator about the state / ¼ 1.

Next, let xp, restricted to the unit ball, be the eigenfunction corresponding to the eigenvalue kðpÞ of the linear operator L
associated to C in (4.11), i.e. LðxpÞ ¼ kðpÞxp. Also let
lðpÞ ¼ kðpÞ � 1
p

be defined for p > 0; ð4:13Þ
and called the spectral function associated to C. It was shown in [12] that lð0þÞ ¼ þ1 (i.e. p ¼ 0 is a vertical asymptote) and
that for the problems associated to the initial value problems (2.1)–(2.5) or (2.11), there exists a unique minimum for lðpÞ
localized at p0 > 1, and that lðpÞ ! 0� as p! þ1.
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Then, the existence of self-similar states and convergence of the solution to the initial value problem to such a self-similar
distribution function was described and proved in [12], and it is summarized in the following four statements:

(i) Lemma (existence and uniqueness of the initial value problem): There exists a unique isotropic solution f ðjvj; tÞ to the
initial value problem (2.1)–(2.5) or (2.11) for Maxwell type interactions, in the class of probability measures, satisfying
f ðjvj;0Þ ¼ f0ðjv jÞP 0;

R
Rd f0ðjv jÞdv ¼ 1 such that for the Fourier transform problem x ¼ jfj

2

2 ;u0 ¼ F½f0ðjv jÞ� ¼ 1þ OðxÞ,
as x! 0.

(ii) Theorem (existence of self-similar states): f ðjvj; tÞ has self-similar state in the following sense: assume that the Fourier
transform of the initial state satisfies
u0 þ lðpÞxpu00 ¼ Cðu0Þ þ Oðxpþ�Þ; such that pþ � < p0; ð4:14Þ

(i.e. lðpÞ;l0ðpÞ < 0), where lðpÞ is the spectral function defined in (4.13). Then, there exists a unique, non-negative,
self-similar solution

f ssðjv j; tÞ ¼ e�
d
2lðpÞtFpðjvje�

1
2lðpÞtÞ;

with FðFpðjv jÞÞ ¼ wðxÞ; x ¼ jfj2=2 such that lðpÞxpw0ðxÞ þwðxÞ ¼ CðwÞ.

(iii) Theorem (self-similar asymptotics): There exists a unique (in the class of probability measures) solution f ðjv j; tÞ satis-

fying f ðjvj;0Þ ¼ f0ðjv jÞP 0, with
R

Rd f ðjv jÞdv ¼ 1, such that for x ¼ jfj
2

2 ! 0 and
F½f0ðjv jÞ� ¼ 1� axp þ Oðxpþ�Þ; 0 6 p 6 1 with pþ � < p0:

Then, there exists a unique non-negative self-similar solution f ðpÞss ðjv j; tÞ ¼ e�
d
2lðpÞtFp jvje�

1
2lðpÞt

� �
for any given 0 6 p 6 1,

such that

f ðjvj; tÞ!t!1e�
d
2lðpÞtFpðjvje�

1
2lðpÞtÞ: ð4:15Þ

or equivalently

e
d
2lðpÞtf ðjv je1

2lðpÞt ; tÞ!t!1FpðjvjÞ; ð4:16Þ

where lðpÞ is the value of spectral function (4.13) associated to the linear bounded operator L.

(iv) Power tail behavior of the asymptotic limit: If lðpÞ < 0, then the self-similar limiting function Fpðjv jÞ does not have finite

moments of all orders. In addition, if 0 6 p 6 1 then all moments of order less than p are bounded; i.e.
mq ¼

R
Rd FpðjvjÞjv j2q dv 61; 0 6 q 6 p. However, if p ¼ 1 (finite energy case) then, the boundedness of moments of

any order larger than 1, depends on the conjugate value of lð1Þ, the spectral function lðpÞ. That means mq 61 only
for 0 6 q 6 p�, where p� P p0 > 1 is the unique maximal root of the equation lðp�Þ ¼ lð1Þ.
Remark 1. When p ¼ 1;lð1Þ is the energy dissipation rate, and EðtÞ ¼ elð1Þt the kinetic energy evolution function. So,
EðtÞd=2f ðvEðtÞ; tÞ ! F1ðjv jÞ.

Remark 2. We point out that condition (4.14) on the initial state is easily satisfied by taking a sufficiently concentrated Max-
wellian distribution as shown in [12], and as done for our simulations in the next section.

However, when rescaling with a different rate in time, it is not possible to pick up the non-trivial limiting state f ss, since,
as shown in [12],
f ðjvje1
2gt; tÞ!t!1e�

d
2gtd0ðjv jÞ; g > lð1Þ; ð4:17Þ
and
f ðjvje1
2gt; tÞ!t!10; lðpminÞ < lð1þ dÞ < g < lð1Þ: ð4:18Þ
These results are also true for any p 6 1. For the general space homogeneous (elastic or inelastic) Boltzmann model of Max-
well type or the corresponding mixture problem, the spectral function lðpÞ, as defined in (4.13), is given in Fig. 1.
5. Numerical results

We benchmark the proposed numerical method to compute several examples in three dimensions, both in velocity and
time, for several initial value problems associated with non-conservative models where some analysis is available, as are ex-
act moment formulae for Maxwell type of interactions as well as qualitative analysis for solutions of VHS models. We shall
plot our numerical results versus the exact available solutions when available. Because all computed problems converge to
an isotropic long time state, we choose to plot the distribution function in only one direction, which is chosen to be the one
with the initial anisotropies in velocity space. All the numerical simulations considered in this manuscript correspond to



Fig. 1. Typical graph for the spectral function lðpÞ for a general homogeneous Boltzmann collisional problem of Maxwell type.
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examples with space homogeneous, isotropic, VHS collision kernels, i.e. differential cross section independent from scatter-
ing angle.

We simulate the homogeneous problem associated to the following problems for different choices of the parameters b
and k, and the Jacobian Jb and heating force term Gðf Þ.

5.1. Maxwell type of elastic collisions

Consider the initial value problem (2.1) and (2.2), with Bðjuj;lÞ ¼ 1
4p juj

k with the value of the parameters are
e ¼ b ¼ 1; Jb ¼ 1; k ¼ 0 and with the pre-collisional velocities defined from (2.3). In this case, for a general initial state with
finite mass, mean and kinetic energy, there is no exact expression for the evolving distribution function. However, there are
exact expressions for all the statistical moments (observables). Thus, the numerical method is compared with the known
analytical moments for different discretizations in the velocity space.

The initial states we take are convex combinations of two shifted Maxwellian distributions. So consider the following case
of initial states with unit mass

R
R3 f0ðvÞdv ¼ 1 given by convex combinations of shifted Maxwellians
f ðv ;0Þ ¼ f0ðtÞ ¼ cMT1 ðv � V1Þ þ ð1� cÞMT2 ðv � V2Þ; with 0 6 c 6 1;
where MTðv � VÞ ¼ 1
ð2pTÞ3=2 e

�jv�V j2
ð2TÞ . Then, taking c ¼ 0:5 and mean fields for the initial state determined by
V1 ¼ ½�2;2;0�T ; V2 ¼ ½2;0; 0�T ; T1 ¼ 1; T2 ¼ 1;
enables the first five moment equations corresponding to the collision invariants to be computed from those of the initial
state. All higher order moments are computed using the classical moments recursion formulas for Maxwell type of interac-
tions (2.10). In particular, it is possible to obtain the exact evolution of all moments as functions of time. Thus
qðtÞ ¼ q0 ¼ 1 and VðtÞ ¼ V0 ¼ ½0;1; 0�T ;
and, from the moments calculation in (2.10), the complete evolution of the second moment tensor (2.9) is given by
MðtÞ ¼
5 �2 0
�2 3 0
0 0 1

0B@
1CAe�t=2 þ 1

3

8 0 0
0 11 0
0 0 8

0B@
1CAð1� e�t=2Þ;
the energy flow (2.9) by
rðtÞ ¼ 1
2

�4
13
0

0B@
1CAe�t=3 þ 1

6

0
43
0

0B@
1CAð1� e�t=3Þ � 1

6

12
4
0

0B@
1CAðe�t=2 � e�t=3Þ;
and the kinetic temperature is conserved, so
TðtÞ ¼ T0 ¼
8
3
;

since the kinetic energy is also conserved, that is EðtÞ ¼ Eð0Þ for all t.
These moments, along with their numerical approximations for different discretizations in velocity space, are plotted in

Fig. 2. We took N ¼ 16 for the numerical simulations and it can be seen that the computed moments agree almost exactly
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Fig. 2. Spectral-Lagrangian solver test for Maxwell type of elastic collisions constraining only mass, momentum and kinetic energy. Plot of higher order
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with the analytical results except for energy flow rðtÞ, a third order moment. This indicates that as higher order moments,
such as rðtÞ from (2.9), generate larger errors, and may diverge from the analytical solution for large times as it can be ob-
served in the last two plots of the energy flow r1ðtÞ and r2ðtÞ in Fig. 2. This can be improved by increasing the value of N, the
number of Fourier modes. We point out that it is also possible, in this case of Maxwell type interactions, to augment the
number of constrains (i.e. the vector a) to include the time evolution of more explicit moment formulas, however, this ap-
proach would only be useful for higher order computational accuracy of the Boltzmann equation of Maxwell type. Thus, for
this presentation, we just constrain the lowest moments for which conservation holds independent of the collision rate. In
Fig. 3, the evolution of the computed distribution function into a Maxwellian is plotted for N ¼ 40, and it is still possible to
see the error in both the components r1; r2 of the energy flow.

5.2. Maxwell type of elastic collisions – Bobylev–Krook–Wu (BKW) solution

An explicit solution to the initial value problem (2.1) for elastic, Maxwell type of interactions ðb ¼ 1; k ¼ 0Þwas derived in
[3] and later in [40] for initial states that have at least 2þ d-moments bounded. It is not of self-similar type, but it can be
shown to converge to a Maxwellian distribution. This solution takes the form
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f ðv ; tÞ ¼ e�jvj
2=ð2Kg2Þ

2ð2pKg2Þ3=2

5K � 3
K

þ 1� K

K2

jv j2

g2

 !
; ð5:1Þ
where K ¼ 1� e�t=6 and g = initial distribution temperature. It is interesting to observe that this particular explicit solution is
negative for small values of t. Consequently, in order to obtain an admissible probability distribution which may be assigned
a physical meaning, f must be non-negative. This is indeed the case for any K P 3

5 or t P t0 � 6 ln 5
2


 �
	 5:498.

This explicit solution formula is indeed an optimal tester to a homogeneous Boltzmann equation solver. We set the initial
distribution function at t ¼ 0 to be the BKW solution at t ¼ t0. The numerical approximation to the Boltzmann solver for this
initial state and the exact evolution of the BKW solution are plotted for different values of N at various time steps in Fig. 4.

5.3. Hard sphere elastic collisions

In (2.1) and (2.2) or equivalently (2.4), we have b ¼ 1; Jb ¼ 1 and k ¼ 1 with the post-collisional velocities defined from
(2.3). Unlike Maxwell type of interactions, there is no explicit expression for the moment equations and neither is there
any explicit solution expression as in the BKW solution scenario. For hard sphere isotropic collisions, the expected behavior
of the moments is similar to that of the Maxwell type of interactions case except that in this case, the moments somewhat
evolve to the equilibrium a bit faster than in the former case i.e. Fig. 5. We also plot the time evolution of the distribution
function starting from the convex combination of Maxwellians as described in a previous subsection in Fig. 6.
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5.4. Inelastic collisions

This is the case wherein the utility of the proposed method is the most clear. No other deterministic method can compute
the distribution function in the case of inelastic collisions (isotropic). Our current method can compute a 3D evolution with-
out much complication and with exactly the same number of operations as used in an elastic collision case. This model works
for all variable hard sphere interactions. Consider the special case of Maxwell ðk ¼ 0Þ type of inelastic ðb–1Þ collisions in a
space homogeneous Boltzmann equation in (2.1), with (2.4) and (2.5). Let /ðvÞ ¼ jv j2 be a smooth enough test function.
Using the weak form of the Boltzmann equation with such a test function one can obtain the ODE governing the evolution
of the kinetic energy KðtÞ ¼ EðtÞ (2.7):
K 0ðtÞ ¼ bð1� bÞ jV j
2

2
� KðtÞ

 !
; ð5:2Þ
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where V – conserved (constant) bulk velocity of the distribution function. This gives the following solution for the kinetic
energy as computed in (2.10)
Fig. 7.
f ðv ; tÞ (
KðtÞ ¼ Kð0Þe�bð1�bÞt þ jV j
2

2
ð1� e�bð1�bÞtÞ; ð5:3Þ
where Kð0Þ=kinetic energy at time t ¼ 0. As we have an explicit expression for the kinetic energy evolving in time, this ana-
lytical moment can be compared with its numerical approximation for accuracy and the corresponding graph is given in
Fig. 7. The general evolution of the distribution function in an inelastic collision environment is also shown in Fig. 7. In the con-
servation routine (constrained Lagrange multiplier method), energy is not used as a constraint and just density and momen-
tum equations are used for constraints. Fig. 7 shows the numerical accuracy of the method even though the energy (plotted
quantity) is not being conserved as part of the constrained optimization method. So, the conservation correction with respect
to density and momentum ensures that energy evolves as required and as expected. All simulations here, and those shown
below, for inelastic interactions have been carried out for a value of the restitution coefficient e ¼ 0:5, or equivalently b ¼ 0:75.

5.5. Inelastic collisions with diffusion term

We simulate next Eqs. (2.11) and (2.12) modeling inelastic interactions in a randomly excited heat bath with constant
temperature g. The evolution equation for the kinetic temperature as a function of time is given by
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Fig. 6. Evolution of the distribution function for elastic hard sphere collisions; N ¼ 32.

Evolution of the Boltzmann equation for inelastic collisions of Maxwell type. Plots of the kinetic energy EðtÞ (left) and the probability distribution
right); N ¼ 32.
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dT
dt
¼ 2g� f

1� e2

24

Z
v2R3

Z
w2R3

Z
r2S2
ð1� lÞBðjuj;lÞjuj2f ðvÞf ðwÞdrdwdv : ð5:4Þ
In the case of inelastic Maxwell type interactions according to (2.10), the evolution of the temperature (5.4) has a closed form
dT
dt
¼ 2g� fpC0ð1� e2ÞT; ð5:5Þ
which gives a closed expression for the time evolution of the kinetic temperature
TðtÞ ¼ T0e�fpC0ð1�e2Þt þ TMM
1 ½1� e�fpC0ð1�e2Þt�; ð5:6Þ
where
T0 ¼
1
3

Z
v2R3
jvj2f ðvÞdv and TMM

1 ¼ 2g
fpC0ð1� e2Þ :
As it can be seen from the expression for T, in the absence of the diffusion term (i.e. g ¼ 0) and for e–1 (inelastic collisions),
the kinetic temperature of the distribution function decays exponentially in time, just like in the previous section. So, inelas-
tic interaction the presence of the diffusion term pushes the temperature to a positive stationary state TMM

1 > 0. Also note
that if the interactions were elastic and the diffusion coefficient positive then, TMM

1 ¼ þ1, so the model would not admit sta-
tionary states with finite kinetic temperature. These properties were shown in [30] and similar time asymptotic behavior is
expected in the case of hard sphere interactions where THS

1 > 0 is shown to exist. However, the time evolution of the kinetic
temperature is a non-local integral (5.4) and does not satisfy a close ODE form (5.5).

We simulate both cases, hard spheres and Maxwell type inelastic interactions, choosing the diffusion parameter g ¼ 1
and the inelasticity parameter b ¼ 0:75. We also compared in Fig. 8, for the example of Maxwell type interactions, the kinetic
temperature versus the exact analytical solution (5.6) for different initial data. In Fig. 9 observe the expected asymptotic
behavior in the case of hard sphere inelastic interactions, for the same parameters values of g and b.

Notice that the conservation properties for this case of inelastic collisions with a diffusion term are set exactly like in the
previous subsection (inelastic collisions without the diffusion term), i.e. we only constrain mass density an momentum.

5.6. Maxwell type of elastic collisions – slow down process problem

We consider next the initial value problem (2.20) with b ¼ 1; Jb ¼ 1 and Bðjuj;lÞ ¼ 1
4p, i.e. isotropic collisions. The second

term is a linear collision integral modeling the effect of particle interactions and with a constant temperature thermostat
which conserves only density, and the first term is the classical bilinear elastic collision integral from (2.20) conserving den-

sity, momentum and energy. The function MðvÞ in (2.20) denotes the Maxwellian, given by MT ðvÞ ¼ e
�jv j2
ð2T Þ 1

ð2pT Þ3=2, with T the

constant thermostat temperature. In particular, it can be shown [14,12] that any initial distribution function converges to the
background distribution MT . This behavior is well captured by the numerical method. Indeed, Fig. 10 corresponds to an ini-
tial state of a convex combination of two Maxwellians. In addition, we can compute the long time approximation to the self-
similar solution as follows. In the finite energy case of (4.6), with parameters for p ¼ 1; a ¼ 1;l ¼ 2

3 ; h ¼ 4
3 in (4.2), i.e. p ¼ 1 in

(4.15) and (4.16), the Fourier transform of self-similar solution takes the exact form
Fig. 8. Evolution of the kinetic temperature for inelastic collisions of Maxwell type with a diffusion term; N ¼ 16.



Fig. 9. Evolution of the kinetic temperature for inelastic, hard sphere collisions with a diffusion term and THS
1 < T0; N ¼ 16.
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f ss
T ðv ; tÞ ¼

ffiffi
ð

p
2Þ

p5=2

Z 1

0

1

ð1þ s2Þ2
e�jvj

2=2T

T
3
2

ds T ¼ T þ as2e
�2t

3 ; ð5:7Þ
As t !1, the time rescaled numerical distribution is compared with the analytical solution f ss
T for a positive background

temperature T and it can be observed that converges to the Maxwellian MT . It can also be observed in Fig. 10, that the com-
puted distribution is in very good agreement with the analytical self-similar distribution f ss

T from (5.7). Similar agreement is
observed for different constant values of T approaching 0 (Fig. 10).

The interesting asymptotics corresponding to power-like tails and infinitely many particles at zero energies occur only
when T ¼ 0 as shown in (4.10). Since letting T ¼ 0 in the scheme created an instability, we proposed the following new
strategy to counter this effect. We let instead T ¼ fe�at , ensuring that the thermostat temperature vanishes for large time,
and set
T ¼ fe�at þ as2e
�2t

3 ; ð5:8Þ
where the role of a is very important and a proper choice needs to be made. In our simulations a ¼ 1 and we take f ¼ 0:25
and the values of a need to be chosen exactly as a ¼ lð1Þ ¼ 2=3, the energy dissipation rate as described in Section 4.2 to
recover the asymptotics as in (4.10).

Remark. We notice that the procedure we use to compute approximations to self-similar solutions in free space to energy
dissipative models of collisional Maxwell type uses time rescaling of the velocity by the inverse of the squared root of the
kinetic energy (2.17), which it is, for a Maxwell type interaction model, exponential time rescaling in velocity space, and
equivalently, in of Fourier modes. Such procedure may also be viewed as a non-uniform grid of Fourier modes that are
distributed according to the continuum spectrum of the associated problem. This choice plays the equivalent role to the
corresponding spectral approximation of the free space problem of the heat kernel, that is, the Green’s function for the heat
equation, which happens to be a similarity solution as well, due to the linearity of the problem in this case. In particular, we
expect optimal algorithm complexity using such a non-equispaced fast Fourier transform [27], as obtained by Greengard and
Lin [35] for spectral approximation of the free space heat kernel. This problem will be addressed in a forthcoming paper.

The following plots elucidate the fact that the scheme can handle self-similar asymptotics to non-equilibrium states
power-like high energy tails and blow up at the origin, which are achieved asymptotically with a decaying T . For a decaying
background temperature as in (5.8), Fig. 11 shows evolution of a convex combination of Maxwellians to a self-similar (blow
up for zero energies and power-like for high energies) behavior. Fig. 12 plots the computed distribution along with a Max-
wellian with temperature equal to the computed temperature of the numerical solution. This illustrates that the computed
approximation to the self-similar solution is largely deviated from a Maxwellian equilibrium. In order to better capture the
power-like effect using this numerical method, we set T ¼ fe�2t=3 ¼ fe�lt , see (5.8), where l ¼ lðpÞ is related the spectral
properties of the Fourier transformed equation as described in Section 4.2 on the slow down process problem with
l ¼ lð1Þ the energy dissipation rate. Thus, as it was computed in [14] and revised in Section 4 of this paper, we know that
for initial states with finite energy p ¼ 1 and the corresponding energy dissipation rate is l ¼ lð1Þ ¼ 2=3. In particular
p� ¼ 1:5 is the conjugate of p ¼ 1 of the spectral curve mq in Theorem 4.1 part (i). In addition, the rescaled probability will
converge to the moments of the self-similar state (4.15) and (4.16), that is
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Fig. 13. mqðtÞ for T ¼ e�2t=3.
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e�qt2=3
Z

v2R3
f ðvÞjv j2q dv ! mq;
and we know any moment mq is unbounded for q > p� ¼ 1:5.



Fig. 14. mqðtÞ for T ¼ e�2t=3.
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We have plotted in Fig. 13 the evolution of e�qt2=3
R

v2R3 f ðvÞjv j2qdv for q ¼ 1;1:3;1:45;1:5;1:55;1:7;2:0, computed for dif-
ferent values of N ¼ 10;14;16;18;22;26. It can be seen that, as time progresses and as the thermostat temperature T de-
creases to 0, the approximated numerically computed moments converge to mq; q P 1:5 and start to become unbounded
as predicted. The value q ¼ 1:5 is the threshold value, as any moment mq>1:5ðtÞ ! 1.

From the expected spectral accuracy analysis it can be observed the numerical mq>1:5ðtÞ moments improve the growth
zone for larger final times as the value of N increases. The reason for such an effect is because the velocity domain is trun-
cated and we use only a finite number of Fourier modes. That makes the computed distribution function to take small neg-
ative values for large velocities contributing to numerical errors that may cause mq to peak and then relax back. In particular,
larger order moments of the computed self-similar asymptotics with the negative oscillating parts on large energy tails, re-
sult in large negative moment values for the above mentioned values of N creating large negative errors. However, it is no-
ticed that the negative oscillation values of f ðt;vÞ coincide with large velocity values used in getting approximating mq

moments, for q > 1:5, and that such an error is reduced in time for larger number N of Fourier modes. Finally, we point
out that a FFTW package has been used. We have noticed in our numerics are not reliable for that for the specific choice
of values N–6;10;14;18;22;26; . . ., 6þ 4k; k ¼ 0;1;2;3; . . .. More precisely, the approximating moments to mqðtÞ start to
take negative values very quickly, as seen in Fig. 14 for N ¼ 16 and N ¼ 20, making the numerical solution inadmissible since
analytically mqðtÞ > 0;8t. Such effect may be due to the particular choice of the FTTW solver.

6. Conclusions and future work

In conclusion, the presented numerical method works for elastic and inelastic variable hard sphere interactions. This is
first of its kind as no additional modification is required to compute for elastic and inelastic collisions. In comparison with
the known analytical results (moment equations for elastic BTE, BKW self-similar solution, attracting Bobylev–Cercignani–
Gamba self-similar solutions for elastic collisions in a slow down process), the computed results are found to be very accu-
rate. The method employs a fast Fourier transform [27] for faster evaluation of the collision integral. Even though the method
is implemented for a uniform grid in velocity space, it can even be implemented for a non-uniform velocity grid. The only
challenge in this case is computing the fast Fourier transform on such a non-uniform grid. There are available packages for
this purpose, but such a non-uniform FFT can also be implemented using a high degree polynomial interpolation and this
possibility is currently being explored. The integration over the unit sphere is avoided completely and only a simple integra-
tion over a regular velocity grid is needed. Even though a trapezoidal rule is used as an integration rule, other integration
rules like a Gaussian quadrature can be used to get better accuracy. For time discretization, a simple second-order Run-
ge–Kutta scheme is used. The proposed method has a big advantage over other non-deterministic methods as the exact dis-
tribution function can actually be computed instead of just the averages.

Implementation of this scheme for the space inhomogeneous case is currently developed by the authors by means of
splitting algorithms in advection and collision components. Next step in this direction would be to implement the method
for a practical 1 and 2D space inhomogeneous problems such shock tube phenomena for specular and diffusive boundary
conditions, resolution of the probability distribution function boundary layer discontinuity for diffusive boundary conditions
with a sudden change of boundary temperature, and Rayleigh–Benard instability or a Couette flow problem.
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