JOURNAL OF COMPUTATIONAL PHYSICS | 卷:230 |
Fast finite difference solvers for singular solutions of the elliptic Monge-Ampere equation | |
Article | |
Froese, B. D.1  Oberman, A. M.1  | |
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada | |
关键词: Fully nonlinear elliptic Partial Differential Equations; Monge-Ampere equations; Nonlinear finite difference methods; Viscosity solutions; Monotone schemes; Convexity constraints; | |
DOI : 10.1016/j.jcp.2010.10.020 | |
来源: Elsevier | |
【 摘 要 】
The elliptic Monge-Ampere equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail. In this article we build a finite difference solver for the Monge-Ampere equation, which converges even for singular solutions. Regularity results are used to select a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton's method. Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities. (C) 2010 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcp_2010_10_020.pdf | 628KB | download |